Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = magnetic dipole transitions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 351 KiB  
Article
Vacuum Self-Dressing of an Atom and Its Physical Effects
by Roberto Passante and Lucia Rizzuto
Physics 2025, 7(2), 20; https://doi.org/10.3390/physics7020020 - 6 Jun 2025
Viewed by 1217
Abstract
We consider a multilevel atom, such as a hydrogen atom, interacting with the quantum electromagnetic field in the dressed ground state of the interacting system. Using perturbation theory within the dipole approximation, we evaluate the dressed ground state and investigate the effect of [...] Read more.
We consider a multilevel atom, such as a hydrogen atom, interacting with the quantum electromagnetic field in the dressed ground state of the interacting system. Using perturbation theory within the dipole approximation, we evaluate the dressed ground state and investigate the effect of atomic self-dressing on several field and atomic observables. Specifically, we obtain general expressions of the renormalized electric and magnetic field fluctuations and energy densities around the atom, and analyze their scaling with the distance from the atom, obtaining approximated expressions in the so-called near and far zones. We also investigate nonlocal spatial field correlations around the atom. We stress how the quantities we evaluate can be probed through two- and three-body nonadditive Casimir–Polder dispersion interactions. We also investigate the effect of self-dressing—namely, the virtual transitions occurring in the dressed ground state—on atomic observables, such as the average potential energy of the electron in the nuclear field. This also allows us to obtain a more fundamental quantum basis for the Welton interpretation of the Lamb shift of a ground-state hydrogen atom, in terms of the atomic self-dressing processes. Full article
29 pages, 719 KiB  
Article
State Transitions and Hysteresis in a Transverse Magnetic Island Chain
by Gary M. Wysin
Magnetism 2025, 5(1), 9; https://doi.org/10.3390/magnetism5010009 - 12 Mar 2025
Viewed by 1246
Abstract
A chain of dipole-coupled elongated magnetic islands whose long axes are oriented perpendicular to the chain is studied for its magnetization properties. With a magnetic field applied perpendicular to the chain, the competition between dipolar energy, shape anisotropy, and field energy leads to [...] Read more.
A chain of dipole-coupled elongated magnetic islands whose long axes are oriented perpendicular to the chain is studied for its magnetization properties. With a magnetic field applied perpendicular to the chain, the competition between dipolar energy, shape anisotropy, and field energy leads to three types of uniform states with distinct magnetizations: (1) oblique to the chain, (2) perpendicular to the chain, and (3) zero due to having alternating dipoles. The response of these states to a slowly varying field is analyzed, focusing on their stability limits and related oscillation modes, and the dependencies on the dipolar and anisotropy constants. Based on identifiable transitions among the three states and their instability points, the theoretically predicted zero-temperature magnetization curves show significant dependence on the anisotropy. The model suggests a path for designing advanced materials with desired magnetic properties. Different geometries and magnetic media for the islands are considered. Full article
Show Figures

Figure 1

12 pages, 7565 KiB  
Article
Deterministic Fabrication of Fluorescent Nanostructures Featuring Distinct Optical Transitions
by Marijn Rikers, Ayesheh Bashiri, Ángela Barreda, Michael Steinert, Duk-Yong Choi, Thomas Pertsch and Isabelle Staude
Nanomaterials 2025, 15(3), 219; https://doi.org/10.3390/nano15030219 - 29 Jan 2025
Viewed by 848
Abstract
The precise and deterministic integration of fluorescent emitters with photonic nanostructures is an important challenge in nanophotonics and key to the realization of hybrid photonic systems, supporting effects such as emission enhancement, directional emission, and strong coupling. Such integration typically requires the definition [...] Read more.
The precise and deterministic integration of fluorescent emitters with photonic nanostructures is an important challenge in nanophotonics and key to the realization of hybrid photonic systems, supporting effects such as emission enhancement, directional emission, and strong coupling. Such integration typically requires the definition or immobilization of the emitters at defined positions with nanoscale precision. While various methods were already developed for creating localized emitters, in this work we present a new method for the deterministic fabrication of fluorescent nanostructures featuring well-defined optical transitions; it works with a minimal amount of steps and is scalable. Specifically, electron-beam lithography is used to directly pattern a mixture of the negative-tone electron-beam resist with the europium complex Eu(TTA)3, which exhibits both electric and magnetic dipolar transitions. Crucially, the lithography process enables precise control over the shape and position of the resulting fluorescent structures with a feature size of approx. 100 nm. We demonstrate that the Eu(TTA)3 remains fluorescent after exposure, confirming that the electron beam does not alter the structure the optical transitions. This work supports the experimental study of local density of optical states in nanophotonics. It also expands the knowledge base of fluorescent polymer materials, which can have applications in polymer-based photonic devices. Altogether, the presented fabrication method opens the door for the realization of hybrid nanophotonic systems incorporating fluorescent emitters for light-emitting dielectric metasurfaces. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

28 pages, 451 KiB  
Article
Magnetohyrodynamic Turbulence in a Spherical Shell: Galerkin Models, Boundary Conditions, and the Dynamo Problem
by John V. Shebalin
Fluids 2025, 10(2), 24; https://doi.org/10.3390/fluids10020024 - 23 Jan 2025
Viewed by 873
Abstract
The ‘dynamo problem’ requires that the origin of the primarily dipole geomagnetic field be found. The source of the geomagnetic field lies within the outer core of the Earth, which contains a turbulent magnetofluid whose motion is described by the equations of magnetohydrodynamics [...] Read more.
The ‘dynamo problem’ requires that the origin of the primarily dipole geomagnetic field be found. The source of the geomagnetic field lies within the outer core of the Earth, which contains a turbulent magnetofluid whose motion is described by the equations of magnetohydrodynamics (MHD). A mathematical model can be based on the approximate but essential features of the problem, i.e., a rotating spherical shell containing an incompressible turbulent magnetofluid that is either ideal or real but maintained in an equilibrium state. Galerkin methods use orthogonal function expansions to represent dynamical fields, with each orthogonal function individually satisfying imposed boundary conditions. These Galerkin methods transform the problem from a few partial differential equations in physical space into a huge number of coupled, non-linear ordinary differential equations in the phase space of expansion coefficients, creating a dynamical system. In the ideal case, using Dirichlet boundary conditions, equilibrium statistical mechanics has provided a solution to the problem. As has been presented elsewhere, the solution also has relevance to the non-ideal case. Here, we examine and compare Galerkin methods imposing Neumann or mixed boundary conditions, in addition to Dirichlet conditions. Any of these Galerkin methods produce a dynamical system representing MHD turbulence and the application of equilibrium statistical mechanics in the ideal case gives solutions of the dynamo problem that differ only slightly in their individual sets of wavenumbers. One set of boundary conditions, Neumann on the outer and Dirichlet on the inner surface, might seem appropriate for modeling the outer core as it allows for a non-zero radial component of the internal, turbulent magnetic field to emerge and form the geomagnetic field. However, this does not provide the necessary transition of a turbulent MHD energy spectrum to match that of the surface geomagnetic field. Instead, we conclude that the model with Dirichlet conditions on both the outer and the inner surfaces is the most appropriate because it provides for a correct transition of the magnetic field, through an electrically conducting mantle, from the Earth’s outer core to its surface, solving the dynamo problem. In addition, we consider how a Galerkin model velocity field can satisfy no-slip conditions on solid boundaries and conclude that some slight, kinetically driven compressibility must exist, and we show how this can be accomplished. Full article
(This article belongs to the Section Geophysical and Environmental Fluid Mechanics)
Show Figures

Figure 1

17 pages, 807 KiB  
Article
Optoelectronic Properties of Shallow Donor Atom in 2D-Curved Nanostructures Under External Electric and Magnetic Fields
by Soufiane Chouef, Mohammed Hbibi, Reda Boussetta, Abdelaziz El Moussaouy, Farid Falyouni, Omar Mommadi and Carlos Alberto Duque
Nanomaterials 2025, 15(1), 15; https://doi.org/10.3390/nano15010015 - 26 Dec 2024
Cited by 1 | Viewed by 798
Abstract
Using the effective mass approximation and the finite difference method, we examined the linear, non-linear, and total optical absorption coefficients (OAC), as well as the relative refractive index coefficients (RIC) variations for an off-center shallow donor impurity in a 2D-curved electronic nanostructure subjected [...] Read more.
Using the effective mass approximation and the finite difference method, we examined the linear, non-linear, and total optical absorption coefficients (OAC), as well as the relative refractive index coefficients (RIC) variations for an off-center shallow donor impurity in a 2D-curved electronic nanostructure subjected to external electric and magnetic fields. Our results reveal that the peak positions of the OAC and RIC are susceptible to the geometrical angles, the impurity position, and the strength of the applied electric and magnetic fields. In particular, the positions of the OAC and RIC peaks can be shifted towards blue or red by adjusting the geometric angle. In addition, the amplitudes of these peaks are influenced by the application of external fields and by the position of the impurity. This knowledge is essential for understanding and optimizing the optical characteristics of 2D-Curved nanostructure for advanced optoelectronic applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

14 pages, 2571 KiB  
Article
Magnetization States and Coupled Spin-Wave Modes in Concentric Double Nanorings
by Bushra Hussain and Michael G. Cottam
Nanomaterials 2024, 14(19), 1594; https://doi.org/10.3390/nano14191594 - 2 Oct 2024
Cited by 1 | Viewed by 1478
Abstract
Concentric multiple nanorings have previously been fabricated and investigated mainly for their different static magnetization states. Here, we present a theoretical analysis for the magnetization dynamics in double nanorings arranged concentrically, where there is coupling across a nonmagnetic spacer due to the long-range [...] Read more.
Concentric multiple nanorings have previously been fabricated and investigated mainly for their different static magnetization states. Here, we present a theoretical analysis for the magnetization dynamics in double nanorings arranged concentrically, where there is coupling across a nonmagnetic spacer due to the long-range dipole–dipole interactions. We employ a microscopic, or Hamiltonian-based, formalism to study the discrete spin waves that exist in the magnetic states where the individual rings may be in either a vortex or an onion state. Numerical results are shown for the frequencies and the spatial amplitudes (with relative phase included) of the spin-wave modes. Cases are considered in which the magnetic materials of the rings are the same (taken to be permalloy) or two different materials such as permalloy and cobalt. The dependence of these properties on the mean radial position of the spacer were studied, showing, in most cases, the existence of two distinct transition fields. The special cases, where the radial spacer width becomes very small (less than 1 nm) were analyzed to study direct interfaces between dissimilar materials and/or effects of interfacial exchange interactions such as Ruderman–Kittel–Kasuya–Yoshida coupling. These spin-wave properties may be of importance for magnetic switching devices and sensors. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

26 pages, 8426 KiB  
Article
Development and Testing of a Helicon Plasma Thruster Based on a Magnetically Enhanced Inductively Coupled Plasma Reactor Operating in a Multi-Mode Regime
by Anna-Maria Theodora Andreescu, Daniel Eugeniu Crunteanu, Maximilian Vlad Teodorescu, Simona Nicoleta Danescu, Alexandru Cancescu, Adrian Stoicescu and Alexandru Paraschiv
Appl. Sci. 2024, 14(18), 8308; https://doi.org/10.3390/app14188308 - 14 Sep 2024
Viewed by 2378
Abstract
A disruptive Electric Propulsion system is proposed for next-generation Low-Earth-Orbit (LEO) small satellite constellations, utilizing an RF-powered Helicon Plasma Thruster (HPT). This system is built around a Magnetically Enhanced Inductively Coupled Plasma (MEICP) reactor, which enables acceleration of quasi-neutral plasma through a magnetic [...] Read more.
A disruptive Electric Propulsion system is proposed for next-generation Low-Earth-Orbit (LEO) small satellite constellations, utilizing an RF-powered Helicon Plasma Thruster (HPT). This system is built around a Magnetically Enhanced Inductively Coupled Plasma (MEICP) reactor, which enables acceleration of quasi-neutral plasma through a magnetic nozzle. The MEICP reactor features an innovative design with a multi-dipole magnetic confinement system, generated by neodymium iron boron (NdFeB) permanent magnets, combined with an azimuthally asymmetric half-wavelength right (HWRH) antenna and a variable-section ionization chamber. The plasma reactor is followed by a solenoid-free magnetic nozzle (MN), which facilitates the formation of an ambipolar potential drop, enabling the conversion of electron thermal energy into ion beam energy. This study explores the impact of an inhomogeneous magnetic field on the heating mechanism of the HPT and highlights its multi-mode operation within a pulsed power range of 200 to 500 W of RF. The discharge state, characterized by high-energy electron-excited ions and low-energy excited neutral particles in the plasma plume, was analyzed using optical emission spectroscopy (OES). The experimental testing campaign, conducted under pulsed power excitation, reveals that, as RF input power increases, the MEICP reactor transitions from inductive (H-mode) to wave coupling (W-mode) discharge modes. Spectrograms, electron temperature, and plasma density measurements were obtained for the Helicon Plasma Thruster within its operational envelope. Based on OES data, the ideal specific impulse was estimated to exceed 1000 s, highlighting the significant potential of this technology for future LEO/VLEO space missions. Full article
Show Figures

Figure 1

21 pages, 4800 KiB  
Article
An Investigation of the Photonic Application of TeO2-K2TeO3-Nb2O5-BaF2 Glass Co-Doped with Er2O3/Ho2O3 and Er2O3/Yb2O3 at 1.54 μm Based on Its Thermal and Luminescence Properties
by Ahlem Boussetta, Aref M. Al-Syadi, Hasan B. Albargi, Kamel Damak, Ali Erçin Ersundu, Miray Çelikbilek Ersundu, Essam Ramadan, Ali M. Alshehri, Khalid I. Hussein, Ramzi Maalej and El Sayed Yousef
Materials 2024, 17(17), 4188; https://doi.org/10.3390/ma17174188 - 23 Aug 2024
Cited by 4 | Viewed by 1607
Abstract
A glass composition using TeO2-K2TeO3-Nb2O5-BaF2 co-doped with Er2O3/Ho2O3 and Er2O3/Yb2O3 was successfully fabricated. Its thermal stability and physical [...] Read more.
A glass composition using TeO2-K2TeO3-Nb2O5-BaF2 co-doped with Er2O3/Ho2O3 and Er2O3/Yb2O3 was successfully fabricated. Its thermal stability and physical parameters were studied, and luminescence spectroscopy of the fabricated glasses was conducted. The optical band gap, Eopt, decreased from 2.689 to 2.663 eV following the substitution of Ho2O3 with Yb2O3. The values of the refractive index, third-order nonlinear optical susceptibility (χ(3)), and nonlinear refractive index (n2) of the fabricated glasses were estimated. Furthermore, the Judd–Ofelt intensity parameters Ωt (t=2,4,6), radiative properties such as transition probabilities (Aed), magnetic dipole-type transition probabilities (Amd), branching ratios (β), and radiative lifetime (τ) of the fabricated glasses were evaluated. The emission cross-section and FWHM of the 4I13/24I15/2 transition around 1.54 μm of the glass were reported, and the emission intensity of the visible signal was studied under 980 nm laser excitation. The material might be a useful candidate for solid lasers and nonlinear amplifier devices, especially in the communications bands. Full article
Show Figures

Figure 1

15 pages, 5916 KiB  
Article
Modulation of the Structural, Magnetic, and Dielectric Properties of YMnO3 by Cu Doping
by Feng Wan, Xuexia Hua and Qiufen Guo
Materials 2024, 17(12), 2929; https://doi.org/10.3390/ma17122929 - 14 Jun 2024
Cited by 3 | Viewed by 898
Abstract
The lower valence compensation of YMn1-xCuxO3 (x = 0.00, 0.05, and 0.10) is prepared by the solid-state reaction, and the effects of divalent cation Cu-doping on the construction and magnetic and dielectric attributes of multiferroic YMnO [...] Read more.
The lower valence compensation of YMn1-xCuxO3 (x = 0.00, 0.05, and 0.10) is prepared by the solid-state reaction, and the effects of divalent cation Cu-doping on the construction and magnetic and dielectric attributes of multiferroic YMnO3 are systemically researched. Powder X-ray diffraction shows YMn1-xCuxO3 has a single-phase hexagonal construction with a P63cm space group as the parent YMnO3, and lattice parameters decrease systematically as Cu concentration increases. Using the scanning electric microscope, structure morphologies analysis shows that the mean grain size varies between 1.90 and 2.20 μm as Cu content increases. YMn1-xCuxO3 magnetization increases as Cu doping concentration increases, and the antiferromagnetic transition temperature declines from 71 K for x = 0.00 to 58 K for x = 0.10. The valence distributions of Mn ions conduce to the modified magnetic attributes. Due to Cu substitution, the dielectric loss and dielectric constant decline as frequency increases from 400 to 700 K, showing representative relaxation behaviors. Indeed, that is a thermally activated process. In addition, the peak of the dielectric loss complies with the Arrhenius law. The relaxation correlates to the dipole effect regarding carrier hopping between Mn3+ and Mn4+, and also correlates to oxygen vacancies generated by Mn2+. Full article
Show Figures

Figure 1

8 pages, 2325 KiB  
Article
Photoluminescence Spectra Correlations with Structural Distortion in Eu3+- and Ce3+-Doped Y3Al5-2x(Mg,Ge)xO12 (x = 0, 1, 2) Garnet Phosphors
by Heonji Ha, Sungjun Yang and Sangmoon Park
Materials 2024, 17(10), 2445; https://doi.org/10.3390/ma17102445 - 19 May 2024
Cited by 1 | Viewed by 1306
Abstract
Garnet-type materials consisting of Y3Al5-2x(Mg,Ge)xO12 (x = 0, 1, 2), combined with Eu3+ or Ce3+ activator ions, were prepared by a solid-state method to determine the structural and optical correlations. The structure [...] Read more.
Garnet-type materials consisting of Y3Al5-2x(Mg,Ge)xO12 (x = 0, 1, 2), combined with Eu3+ or Ce3+ activator ions, were prepared by a solid-state method to determine the structural and optical correlations. The structure of Y3Al5-2x(Mg,Ge)xO12 (x = 1, 2) was determined to be a cubic unit cell (Ia-3d), which contains an 8-coordinated Y3+ site with octahedral (Mg,Al)O6 and tetrahedral (Al,Ge)O4 polyhedra, using synchrotron powder X-ray diffraction. When Eu3+ or Ce3+ ions were substituted for the Y3+ site in the Y3Al5-2x(Mg,Ge)xO12 host lattices, the emission spectra showed a decrease in the magnetic dipole f-f Eu3+ transition and a redshift of the d-f Ce3+ transition, related to centrosymmetry and crystal field splitting, respectively. These changes were monitored according to the increase in Mg2+ and Ge4+ contents. The dodecahedral and octahedral edge sharing was identified as a key distortion factor for the structure-correlated luminescence in the Eu3+/Ce3+-doped Y3Al5-2x(Mg,Ge)xO12 garnet phosphors. Full article
Show Figures

Figure 1

22 pages, 9653 KiB  
Article
Quantum Size-Driven Spectral Variations in Pillar[n]arene Systems: A Density Functional Theory and Wave Function Assessment
by Cailian Yao and Tao Wang
Molecules 2024, 29(9), 1912; https://doi.org/10.3390/molecules29091912 - 23 Apr 2024
Cited by 2 | Viewed by 1482
Abstract
This study explores the quantum size effects on the optical properties of pillar[n]arene (n = 5, 6, 7, 8) utilizing density functional theory (DFT) and wave function analysis. The mechanisms of electron transitions in one-photon absorption (OPA) and two-photon absorption (TPA) spectra are [...] Read more.
This study explores the quantum size effects on the optical properties of pillar[n]arene (n = 5, 6, 7, 8) utilizing density functional theory (DFT) and wave function analysis. The mechanisms of electron transitions in one-photon absorption (OPA) and two-photon absorption (TPA) spectra are investigated, alongside the calculation of electron circular dichroism (ECD) for these systems. Transition Density Matrix (TDM) and electron–hole pair density maps are employed to study the electron excitation characteristics, unveiling a notable size dependency. Analysis of the transition electric dipole moment (TEDM) and the transition magnetic dipole moment (TMDM) reveals the electromagnetic interaction mechanism within pillar[n]arene. Raman spectra computations further elucidate vibrational modes, while interactions with external environments are studied using electrostatic potential (ESP) analysis, and electron delocalization is assessed under an external magnetic field, providing insights into the magnetically induced current phenomena within these supramolecular structures. The thermal stability of pillar[n]arene was investigated by ab initio molecular dynamics (AIMD). Full article
(This article belongs to the Topic Advances in Computational Materials Sciences)
Show Figures

Graphical abstract

14 pages, 7420 KiB  
Article
The Physical Mechanism of Linear and Nonlinear Optical Properties of Nanographene-Induced Chiral Inversion
by Zhiyuan Yang, Xinwen Gai, Yi Zou and Yongjian Jiang
Molecules 2024, 29(5), 1053; https://doi.org/10.3390/molecules29051053 - 28 Feb 2024
Cited by 4 | Viewed by 1371
Abstract
Based on density functional theory (DFT) and wave function analysis, the ultraviolet and visible spectrophotometry (UV-Vis) spectra and Raman spectra of 1-meso and 1-rac obtained by the chiral separation of chiral nanographenes are theoretically investigated. The electron excitation properties of 1-meso and 1-rac [...] Read more.
Based on density functional theory (DFT) and wave function analysis, the ultraviolet and visible spectrophotometry (UV-Vis) spectra and Raman spectra of 1-meso and 1-rac obtained by the chiral separation of chiral nanographenes are theoretically investigated. The electron excitation properties of 1-meso and 1-rac are studied by means of transition density matrix (TDM) and charge density difference (CDD) diagrams. The intermolecular interaction is discussed based on an independent gradient model based on Hirshfeld partition (IGMH). The interaction of 1-meso and 1-rac with the external environment is studied using the electrostatic potential (ESP), and the electron delocalization degree of 1-meso and 1-rac is studied based on the magnetically induced current under the external magnetic field. Through the chiral separation of 1-rac, two enantiomers, 1-(P, P) and 1-(M, M), were obtained. The electrical–magnetic interaction of the molecule is revealed by analyzing the electron circular dichroism (ECD) spectra of 1-meso, 1-(P, P) and 1-(M, M), the transition electric dipole moment (TEDM) and the transition magnetic dipole moment (TMDM). It is found that 1-(P, P) and 1-(M, M) have opposite chiral properties due to the inversion of the structure. Full article
(This article belongs to the Special Issue Advanced Carbon Nanomaterials and Their Applications)
Show Figures

Figure 1

19 pages, 1151 KiB  
Article
Dynamic Phase Transition in 2D Ising Systems: Effect of Anisotropy and Defects
by Federico Ettori, Thibaud Coupé, Timothy J. Sluckin, Ezio Puppin and Paolo Biscari
Entropy 2024, 26(2), 120; https://doi.org/10.3390/e26020120 - 29 Jan 2024
Cited by 1 | Viewed by 1895
Abstract
We investigate the dynamic phase transition in two-dimensional Ising models whose equilibrium characteristics are influenced by either anisotropic interactions or quenched defects. The presence of anisotropy reduces the dynamical critical temperature, leading to the expected result that the critical temperature approaches zero in [...] Read more.
We investigate the dynamic phase transition in two-dimensional Ising models whose equilibrium characteristics are influenced by either anisotropic interactions or quenched defects. The presence of anisotropy reduces the dynamical critical temperature, leading to the expected result that the critical temperature approaches zero in the full-anisotropy limit. We show that a comprehensive understanding of the dynamic behavior of systems with quenched defects requires a generalized definition of the dynamic order parameter. By doing so, we demonstrate that the inclusion of quenched defects lowers the dynamic critical temperature as well, with a linear trend across the range of defect fractions considered. We also explore if and how it is possible to predict the dynamic behavior of specific magnetic systems with quenched randomness. Various geometric quantities, such as a defect potential index, the defect dipole moment, and the properties of the defect Delaunay triangulation, prove useful for this purpose. Full article
Show Figures

Figure 1

24 pages, 7441 KiB  
Article
Understanding Complex Interplay among Different Instabilities in Multiferroic BiMn7O12 Using 57Fe Probe Mössbauer Spectroscopy
by Iana S. Soboleva, Vladimir I. Nitsenko, Alexey V. Sobolev, Maria N. Smirnova, Alexei A. Belik and Igor A. Presniakov
Int. J. Mol. Sci. 2024, 25(3), 1437; https://doi.org/10.3390/ijms25031437 - 24 Jan 2024
Viewed by 1525
Abstract
Here, we report the results of a Mössbauer study on hyperfine electrical and magnetic interactions in quadruple perovskite BiMn7O12 doped with 57Fe probes. Measurements were performed in the temperature range of 10 K < T < 670 K, wherein [...] Read more.
Here, we report the results of a Mössbauer study on hyperfine electrical and magnetic interactions in quadruple perovskite BiMn7O12 doped with 57Fe probes. Measurements were performed in the temperature range of 10 K < T < 670 K, wherein BiMn6.9657Fe0.04O12 undergoes a cascade of structural (T1 ≈ 590 K, T2 ≈ 442 K, and T3 ≈ 240 K) and magnetic (TN1 ≈ 57 K, TN2 ≈ 50 K, and TN3 ≈ 24 K) phase transitions. The analysis of the electric field gradient (EFG) parameters, including the dipole contribution from Bi3+ ions, confirmed the presence of the local dipole moments pBi, which are randomly oriented in the paraelectric cubic phase (T > T1). The unusual behavior of the parameters of hyperfine interactions between T1 and T2 was attributed to the dynamic Jahn–Teller effect that leads to the softening of the orbital mode of Mn3+ ions. The parameters of the hyperfine interactions of 57Fe in the phases with non-zero spontaneous electrical polarization (Ps), including the P1 ↔ Im transition at T3, were analyzed. On the basis of the structural data and the quadrupole splitting Δ(T) derived from the 57Fe Mössbauer spectra, the algorithm, based on the Born effective charge model, is proposed to describe Ps(T) dependence. The Ps(T) dependence around the ImI2/m phase transition at T2 is analyzed using the effective field approach. Possible reasons for the complex relaxation behavior of the spectra in the magnetically ordered states (T < TN1) are also discussed. Full article
(This article belongs to the Special Issue Physical Inorganic Chemistry in 2024)
Show Figures

Figure 1

11 pages, 2998 KiB  
Article
Simulations of the Characteristics of the Entropy Mode in Dipole-Magnetic-Confined Plasmas
by Liang Qian, Zhibin Wang, Jian Chen, Aohua Mao, Yi Yv, Qiuyue Nie and Xiaogang Wang
Entropy 2023, 25(11), 1481; https://doi.org/10.3390/e25111481 - 26 Oct 2023
Cited by 2 | Viewed by 1734
Abstract
Plasmas confined in a dipole magnetic field widely exist in both space and laboratories, and this kind of plasma draws much attention from researchers both in plasma physics and in space science. In this paper, the characteristics of the collisionless electrostatic instability of [...] Read more.
Plasmas confined in a dipole magnetic field widely exist in both space and laboratories, and this kind of plasma draws much attention from researchers both in plasma physics and in space science. In this paper, the characteristics of the collisionless electrostatic instability of the entropy mode in a dipole-magnetic-confined plasma are simulated with the linear gyrokinetic model. It is found that the entropy mode can be generated in dipole-magnetic-confined plasmas, and there are two typical stages of the entropy mode, with another transitional stage at different values of η. The main instability changes from the ion diamagnetic drift to the electronic diamagnetic drift as η becomes larger. In addition, the MHD mode predicts that the most stable point is at η~2/3 when kρi << 1. However, we find that η and kρi are coupled with each other, and the most stable point of the mode moves gradually to η~1 as kρi increases. There is a peak value for the entropy mode growth rate around kρi~1.0, and more complicated modes are induced so that the dispersion relation has been changed when the driving force of the plasma pressure gradient effect is obvious. For example, the characteristics of the interchange-like modes gradually emerge when the driving effect of the plasma pressure becomes stronger. Further investigations should be taken to reveal the characteristics of the entropy mode in magnetospheric plasmas. Full article
(This article belongs to the Special Issue Applications of Information Theory in Solar and Space Plasma Physics)
Show Figures

Figure 1

Back to TopTop