Optoelectronic Properties of Shallow Donor Atom in 2D-Curved Nanostructures Under External Electric and Magnetic Fields
Abstract
1. Introduction
2. Theoretical Framework
2.1. The Schrödinger Equation and Its Solution
2.2. Optical Properties
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Watanabe, M.; Komatsu, H.; Tsuji, N.; Aoki, H. Electronic structure of helicoidal graphene: Massless Dirac particles on a curved surface with a screw symmetry. Phys. Rev. B 2015, 92, 205425. [Google Scholar] [CrossRef]
- Gallerati, A. Negative-curvature spacetime solutions for graphene. J. Phys. Condens. Matter 2021, 33, 135501. [Google Scholar] [CrossRef]
- Chouef, S.; Mommadi, O.; Boussetta, R.; Hbibi, M.; El Moussaouy, A.; Şahin, M.; Duque, C.A. Effects of surface curvature and electric field on electronic and optical properties of an off-center hydrogenic donor impurity in 2D nanostructures. Eur. Phys. J. Plus 2024, 139, 381. [Google Scholar] [CrossRef]
- Shin, B.G.; Park, J.H.; Kong, J.; Jung, S.J.; Song, Y.J. Charged Black-Hole-Like Electronic Structure Driven by Geometric Potential of 2D Semiconductors. Adv. Mater. 2024, 2402373. [Google Scholar] [CrossRef] [PubMed]
- Prinz, V.Y.; Seleznev, V.A.; Gutakovsky, A.K.; Chehovskiy, A.V.; Preobrazhenskii, V.V.; Putyato, M.A.; Gavrilova, T.A. Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays. Phys. E Low-Dimens. Syst. Nanostruct. 2000, 6, 828–831. [Google Scholar] [CrossRef]
- Mendach, S.; Schumacher, O.; Welsch, H.; Heyn, C.; Hansen, W. Evenly curved two-dimensional electron systems in rolled-up Hall bars. J. Appl. Phys. 2006, 88, 212113. [Google Scholar] [CrossRef]
- Boussetta, R.; Mommadi, O.; Belamkadem, L.; Chouef, S.; Hbibi, M.; El Moussaouy, A.; Vinasco, J.A.; Duque, C.A.; Satori, H.; Kenfack-Sadem, C.; et al. Deformation and size effects on electronic properties of toroidal quantum dot in the presence of an off-center donor atom. Micro Nanostruct. 2022, 165, 207209. [Google Scholar] [CrossRef]
- Mendach, S.; Songmuang, R.; Kiravittaya, S.; Rastelli, A.; Benyoucef, M.; Schmidt, O.G. Light emission and wave guiding of quantum dots in a tube. Appl. Phys. Lett. 2006, 88, 111120. [Google Scholar] [CrossRef]
- Hosoda, M.; Kishimoto, Y.; Sato, M.; Nashima, S.; Kubota, K.; Saravanan, S.; Vaccaro, P.O.; Ohtani, N. Quantum-well microtube constructed from a freestanding thin quantum-well layer. Appl. Phys. Lett. 2003, 83, 1017–1019. [Google Scholar] [CrossRef]
- Kayanuma, Y.; Saito, N. Wannier excitons on a microsphere. Solid State Commun. 1992, 84, 771–774. [Google Scholar] [CrossRef]
- Viri, D.; Del Sole, R. Exact solution of the Schrödinger equation for Wannier excitons on a microsphere. Solid State Commun. 1996, 97, 985–989. [Google Scholar] [CrossRef]
- Foden, C.L.; Leadbeater, M.L.; Burroughes, J.H.; Pepper, M. Quantum magnetic confinement in a curved two-dimensional electron gas. J. Phys. Condens. Matter 1994, 6, L127. [Google Scholar] [CrossRef]
- Costescu, R.M.; Deneke, C.; Thurmer, D.J.; Schmidt, O.G. Rolled-up nanotech: Illumination-controlled hydrofluoric acid etching of AlAs sacrificial layers. Nanoscale Res. Lett. 2009, 4, 1463–1468. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Van Den Brink, J.; Ortix, C. Strongly anisotropic ballistic magnetoresistance in compact three-dimensional semiconducting nanoarchitectures. Phys. Rev. Lett. 2014, 113, 227205. [Google Scholar] [CrossRef] [PubMed]
- Mendach, S.; Schumacher, O.; Heyn, C.; Schnüll, S.; Welsch, H.; Hansen, W. Preparation of curved two-dimensional electron systems in InGaAs/GaAs-microtubes. Phys. E Low-Dimens. Syst. Nanostruct. 2004, 23, 274–279. [Google Scholar] [CrossRef]
- Lorke, A.; Böhm, S.; Wegscheider, W. Curved two-dimensional electron gases. Superlattices Microstruct. 2003, 33, 347–356. [Google Scholar] [CrossRef]
- Vorob’ev, A.B.; Friedland, K.J.; Kostial, H.; Hey, R.; Jahn, U.; Wiebicke, E.; Yukecheva, J.S.; Prinz, V.Y. Giant asymmetry of the longitudinal magnetoresistance in high-mobility two-dimensional electron gas on a cylindrical surface. Phys. Rev. B 2007, 75, 205309. [Google Scholar] [CrossRef]
- Songmuang, R.; Rastelli, A.; Mendach, S.; Schmidt, O.G.; Jablonski, R.; Hamid, E.; Tarido, J.C.; Mizuno, T.; Tabe, M. SiOx/Si radial superlattices and microtube optical ring resonators. Appl. Phys. Lett. 2007, 90, 091905. [Google Scholar] [CrossRef]
- Songmuang, R.; Rastelli, R.; Mendach, S.; Deneke, C.; Schmidt, O.G. From rolled-up Si microtubes to SiOx/Si optical ring resonators. Microelectron. Eng. 2007, 84, 1427–1430. [Google Scholar] [CrossRef]
- Boussetta, R.; Mommadi, O.; El Moussaouy, A.; Hbibi, M.; Chouef, S.; Duque, C.A.; El-Miad, A.K. Effect of the electric field orientation on Stark shift, dipole moment and electronic properties in a circular toroidal quantum ring: Presence of shallow donor impurity. Phys. B Condens. Matter 2024, 690, 416263. [Google Scholar] [CrossRef]
- Maouhoubi, I.; Boussetta, R.; Chouef, S.; Mommadi, O.; En-nadir, R.; Hbibi, M.; Zorkani, I.; Jorio, A.; Moudou, L.; El Moussaouy, A. Electron-related properties in a GaAs/GaAlAs Ultra-thin Core/Shell Film through external field direction for energy and photonic devices. Phys. B Condens. Matter 2024, 690, 416216. [Google Scholar] [CrossRef]
- Chouef, S.; Mommadi, O.; Boussetta, R.; Belamkadem, L.; Hbibi, M.; El Moussaouy, A.; Falyouni, F. Donor atom properties in 2D ultra-thin cylindrical quantum dots. Solid State Phenom. 2023, 350, 137–143. [Google Scholar] [CrossRef]
- Chouef, S.; Mommadi, O.; Boussetta, R.; Belamkadem, L.; Hbibi, M.; El Moussaouy, A.; Falyouni, F. Impact of applied temperature and hydrostatic pressure on the off-center donor spectrum in spherical quantum dot. Solid State Phenom. 2022, 335, 31–41. [Google Scholar] [CrossRef]
- Xie, W. Optical properties of an off-center hydrogenic impurity in a spherical quantum dot with Gaussian potential. Superlattices Microstruct. 2010, 48, 239–247. [Google Scholar] [CrossRef]
- Kria, M.; Nautiyal, V.V.; Lakaal, K.; Laroze, D.; Pérez, L.M.; Prasad, V.; Feddi, E. Optical properties of donor impurity in Yukawa-like potential: Application to SiGe/Si and Si/SiGe. Phys. Scr. 2023, 98, 055914. [Google Scholar]
- Shinada, T.; Okamoto, S.; Kobayashi, T.; Ohdomari, I. Enhancing semiconductor device performance using ordered dopant arrays. Nature 2005, 437, 1128. [Google Scholar] [CrossRef] [PubMed]
- Lansbergen, G.P.; Rahman, R.; Wellard, C.J.; Woo, I.; Caro, J.; Collaert, N.; Biesemans, S.; Klimeck, G.; Hollenberg, L.C.L.; Rogge, S. Gate-induced quantum confinement transition of a single dopant atom in a silicon finFET. Nat. Phys. 2008, 4, 656. [Google Scholar] [CrossRef]
- Rahman, R.; Lansbergen, G.P.; Park, S.H.; Verduijn, J.; Klimeck, G.; Rogge, S.; Hollenberg, L.C.L. Orbital Stark effect and quantum confinement transition of donors in silicon. Phys. Rev. B 2009, 80, 165314. [Google Scholar] [CrossRef]
- Hu, L.; Yang, B.; Hou, Z.; Lu, Y.; Su, W.; Li, L. Unlocking the charge doping effect in softly intercalated ultrathin ferromagnetic superlattice. eScience 2023, 3, 100117. [Google Scholar] [CrossRef]
- Hu, L.; Zhou, J.; Hou, Z.; Su, W.; Yang, B.; Li, L.; Yan, M. Polymer-buried van der Waals magnets for promising wearable room-temperature spintronics. Mater. Horiz. 2021, 8, 3306–3314. [Google Scholar] [CrossRef] [PubMed]
- Hbibi, M.; Mommadi, O.; Chouef, S.; Boussetta, R.; Belamkadem, L.; El Moussaouy, A.; Falyouni, F. Hydrostatic pressure and temperature effects on linear and nonlinear optical properties in 2D ultra-thin quantum dot. In International Conference on Electronic Engineering and Renewable Energy Systems; Springer Nature: Singapore, 2022; pp. 251–261. [Google Scholar]
- Şahin, M. Third-order nonlinear optical properties of a one-and two-electron spherical quantum dot with and without a hydrogenic impurity. J. Appl. Phys. 2009, 106, 063710. [Google Scholar] [CrossRef]
- Çadirci, M.; Gündoğdu, Y.; Elibol, E.; Kılıç, H.Ş. Nonlinear optical properties of core shell type II quantum dot structures. Opt. Laser Technol. 2020, 128, 106246. [Google Scholar] [CrossRef]
- Boussetta, R.; Mommadi, O.; El Moussaouy, A.; Chouef, S.; Hbibi, M.; Duque, C.A.; El-Miad, A.K. Magnetic field effects on electronic and optical properties in variant toroidal quantum ring: A comparative study of GaN, GaAs, and CdSe materials. Phys. Lett. A 2024, 520, 129717. [Google Scholar] [CrossRef]
- Ed-Dahmouny, A.; Jaouane, M.; Zeiri, N.; Arraoui, R.; Fakkahi, A.; Azmi, H.; Duque, C.A. Electric field-induced modulation of electronic and optical properties in doped CdTe/CdS core/shell quantum dots embedded in an oxide matrix. Phys. B Condens. Matter 2024, 691, 416292. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, M.; Deopa, N.; Kumar, A. The effect of hydrostatic pressure, temperature and impurity factor on linear and nonlinear optical properties of InxGa1−xAs tuned quantum dot with modified Gaussian potential under the action of a vertical magnetic field. Optik 2024, 311, 171938. [Google Scholar] [CrossRef]
- Al, E.B.; Ali, N.; Aljunid, S.A.; Endut, R.; Yusof, N.R. Donor impurity related linear and nonlinear optical properties of symmetric and asymmetric double triangular quantum dots. IEEE Access 2024. [Google Scholar] [CrossRef]
- Pramjorn, N.; Amthong, A. Donor binding energies in a curved two-dimensional electron system. Appl. Surf. Sci. 2020, 508, 145195. [Google Scholar] [CrossRef]
- Belamkadem, L.; Mommadi, O.; Boussetta, R.; Chnafi, M.; Vinasco, J.A.; Laroze, D.; Duque, C.A. First study on the electronic and donor atom properties of the ultra-thin nanoflakes quantum dots. Nanomaterials 2022, 12, 966. [Google Scholar] [CrossRef]
- Ortix, C.; Van Den Brink, J. Effect of curvature on the electronic structure and bound-state formation in rolled-up nanotubes. Phys. Rev. B—Condens. Matter Mater. Phys. 2010, 81, 165419. [Google Scholar] [CrossRef]
- Chnafi, M.; Mommadi, O.; El Moussaouy, A.; Chouef, S.; Boussetta, R.; Hbibi, M.; Falyouni, F. Optoelectronic properties of an off-center donor atom in a wedge-shaped quantum dot under the combined effect of electric and magnetic fields. Optik 2024, 310, 171881. [Google Scholar] [CrossRef]
- Kumar, V.; Bansal, M.; Bhardwaj, S.B.; Singh, R.M.; Chand, F. Optical properties of spherical quantum dot using screened Kratzer potential. Phys. B Condens. Matter 2024, 683, 415920. [Google Scholar] [CrossRef]
- Khordad, R.; Bahramiyan, H. Impurity position effect on optical properties of various quantum dots. Phys. E Low-Dimens. Syst. Nanostruct. 2015, 66, 107–115. [Google Scholar] [CrossRef]
- Máthé, L.; Onyenegecha, C.P.; Farcaş-Ţimbolmaş, A.A.; Pioraş-Ţimbolmaş, L.M.; Solaimani, M.; Hassanabadi, H. Linear and nonlinear optical properties in spherical quantum dots: Inversely quadratic Hellmann potential. Phys. Lett. A 2021, 397, 127262. [Google Scholar] [CrossRef]
- Al, E.B.; Kasapoglu, E.; Sakiroglu, S.; Sari, H.; Sökmen, I.; Duque, C.A. Binding energies and optical absorption of donor impurities in spherical quantum dot under applied magnetic field. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 119, 114011. [Google Scholar] [CrossRef]
- Onyenegecha, C.P. Linear and nonlinear optical properties in spherical quantum dots: Modified Möbius squared potential. Heliyon 2022, 8, e10387. [Google Scholar] [CrossRef]
- Cherni, A.; Zeiri, N.; Yahyaoui, N.; Said, M. Consequences of dielectric mismatch on linear and third order nonlinear optical properties for CdS/ZnSe core/shell QD-matrix. Chem. Phys. 2020, 539, 110947. [Google Scholar] [CrossRef]
- Hasanirokh, K.; Radu, A.; Duque, C.A. Donor impurity in CdS/ZnS spherical quantum dots under applied electric and magnetic fields. Nanomaterials 2022, 12, 4014. [Google Scholar] [CrossRef] [PubMed]
- Ungan, F.; Bahar, M.K.; Barseghyan, M.G.; Pérez, L.M.; Laroze, D. Effect of intense laser and electric fields on nonlinear optical properties of cylindrical quantum dot with Morse potential. Optik 2021, 236, 166621. [Google Scholar] [CrossRef]
- López-Gondar, J.; Castro, J.D.A.; Oliveira, L.E. Electric-field effects on shallow impurity states in GaAs-(Ga, Al) As quantum wells. Phys. Rev. B 1990, 42, 7069. [Google Scholar] [CrossRef] [PubMed]
- Warburton, R.J.; Schäflein, C.; Haft, D.; Bickel, F.; Lorke, A.; Karrai, K.; Petroff, P.M. Optical emission from a charge-tunable quantum ring. Nature 2000, 405, 926–929. [Google Scholar] [CrossRef]
- Feddi, E.; Talbi, A.; Mora-Ramos, M.E.; El Haouari, M.; Dujardin, F.; Duque, C.A. Linear and nonlinear magneto-optical properties of an off-center single dopant in a spherical core/shell quantum dot. Phys. B Condens. Matter 2017, 524, 64–70. [Google Scholar] [CrossRef]
- Bera, D.; Qian, L.; Tseng, T.K.; Holloway, P.H. Quantum dots and their multimodal applications: A review. Materials 2010, 3, 2260–2345. [Google Scholar] [CrossRef]
- Valizadeh, A.; Mikaeili, H.; Samiei, M.; Farkhani, S.M.; Zarghami, N.; Kouhi, M.; Davaran, S. Quantum dots: Synthesis, bioapplications, and toxicity. Nanoscale Res. Lett. 2012, 7, 480. [Google Scholar] [CrossRef]
- Lu, Y. Development of High-Performance, Cost-Effective Quantum Dot Lasers for Data-Centre and Si Photonics Applications. Ph.D. Dissertation, UCL (University College London), London, UK, 2003. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chouef, S.; Hbibi, M.; Boussetta, R.; El Moussaouy, A.; Falyouni, F.; Mommadi, O.; Duque, C.A. Optoelectronic Properties of Shallow Donor Atom in 2D-Curved Nanostructures Under External Electric and Magnetic Fields. Nanomaterials 2025, 15, 15. https://doi.org/10.3390/nano15010015
Chouef S, Hbibi M, Boussetta R, El Moussaouy A, Falyouni F, Mommadi O, Duque CA. Optoelectronic Properties of Shallow Donor Atom in 2D-Curved Nanostructures Under External Electric and Magnetic Fields. Nanomaterials. 2025; 15(1):15. https://doi.org/10.3390/nano15010015
Chicago/Turabian StyleChouef, Soufiane, Mohammed Hbibi, Reda Boussetta, Abdelaziz El Moussaouy, Farid Falyouni, Omar Mommadi, and Carlos Alberto Duque. 2025. "Optoelectronic Properties of Shallow Donor Atom in 2D-Curved Nanostructures Under External Electric and Magnetic Fields" Nanomaterials 15, no. 1: 15. https://doi.org/10.3390/nano15010015
APA StyleChouef, S., Hbibi, M., Boussetta, R., El Moussaouy, A., Falyouni, F., Mommadi, O., & Duque, C. A. (2025). Optoelectronic Properties of Shallow Donor Atom in 2D-Curved Nanostructures Under External Electric and Magnetic Fields. Nanomaterials, 15(1), 15. https://doi.org/10.3390/nano15010015