An Investigation of the Photonic Application of TeO2-K2TeO3-Nb2O5-BaF2 Glass Co-Doped with Er2O3/Ho2O3 and Er2O3/Yb2O3 at 1.54 μm Based on Its Thermal and Luminescence Properties
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
3.1. Thermal Characteristics
3.2. Density and Molar Volume
3.3. Optical Properties
3.4. Absorption Spectra and Judd and Ofelt Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, J.; Zheng, G.; Ye, Y.; Chen, Y.; Deng, T.; Xiao, P.; Ye, Y.; Wang, W. Enhanced 1.5 μm emission from Yb3+/Er3+ codoped tungsten tellurite glasses for broadband near-infrared optical fiber amplifiers and tunable fiber lasers. RSC Adv. 2021, 1, 27992–27999. [Google Scholar] [CrossRef]
- Chillcce, E.F.; Mazali, I.O.; Alves, O.L.; Barbosa, L.C. Optical and physical properties of Er3+-doped oxy-fluoride tellurite glasses. Opt. Mater. 2011, 33, 389–396. [Google Scholar] [CrossRef]
- Nandi, P.; Jose, G.; Jayakrishnan, C.; Debbarma, S.; Chalapathi, K.; Alti, K.; Dharmadhikari, A.K.; Dharmadhikari, J.A.; Mathur, D. Femtosecond laser written channel waveguides in tellurite glass. Opt. Express 2006, 14, 12145–12150. [Google Scholar] [CrossRef]
- Tong, L.; Hu, L.; Zhang, J.; Qiu, J.; Yang, Q.; Lou, J.; Shen, Y.; He, J.; Ye, Z. Photonic nanowires directly drawn from bulk glasses. Opt. Express 2006, 14, 82–87. [Google Scholar] [CrossRef]
- Alazoumi, S.H.; Aziz, A.A.; El-Mallawany, R.; Aliyu, U.S.; Kamari, H.M.; Zaid, M.H.M.; Matori, K.A.; Ushah, A. Optical properties of zinc lead tellurite glasses. Results Phys. 2018, 9, 1371–1376. [Google Scholar] [CrossRef]
- Meena, S.L.; Bhatia, B. Polarizability and optical basicity of Er3+ ions doped zinc lithium bismuth borate glasses. J. Pure Appl. Ind. Phys. 2016, 6, 175–183. [Google Scholar]
- Thirumaran, S.; Sathish, K. Spectroscopic investigations on structural characterization of borate glass specimen doped with transition metal ions. Res. J. Chem. Environ. 2015, 18, 77–82. [Google Scholar]
- Amin Matori, K.; Mohd Zaid, M.H.; Quah, H.J.; Abdul Aziz, S.H.; Abdul Wahab, Z.; Mohd Ghazali, M.S. Studying the effect of ZnO on physical and elastic properties of (ZnO)x(P2O5)1−x glasses using nondestructive ultrasonic method. Adv. Mater. Sci. Eng. 2015, 2015, 6. [Google Scholar] [CrossRef]
- Sekhar, K.C.; Ahmed, M.R.; Narsimlu, N.; Deshpande, U.; Sathe, V.G.; Shareefuddin, M. The effect of the addition of CaF2 and PbF2 on boro-tellurite glasses doped with chromium ions. Mater. Res. Express 2020, 6, 125206. [Google Scholar] [CrossRef]
- Yousef, E.S.; Mansour, S.F.; Hassaan, M.Y.; Emara, A.M. Synthesis optical properties of novel TeO2 based glasses. Optik 2016, 127, 8933–8939. [Google Scholar] [CrossRef]
- Yousef, E.; Hotzel, M.; Russel, C. Linear and non-linear refractive indices of tellurite glasses in the system TeO2–WO3–ZnF2. J. Non-Cryst. Solids 2004, 342, 82–88. [Google Scholar] [CrossRef]
- Dai, S.; Wu, J.; Zhang, J.; Wang, G.; Jiang, Z. The spectroscopic properties of Er3+-doped TeO2–Nb2O5 glasses with high mechanical strength performance. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 62, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Khanna, A.; Aleksandrov, L.I. Structural, thermal, optical and photo-luminescent properties of barium tellurite glasses doped with rare-earth ions. J. Non-Cryst. Solids 2017, 476, 67–74. [Google Scholar] [CrossRef]
- Mhareb, M.H.A.; Alajerami, Y.S.M.; Dwaikat, N.; Al-Buriahi, M.S.; Alqahtani, M.; Alshahri, F.; Saleh, N.; Alonizan, N.; Saleh, M.A.; Sayyed, M.I. Investigation of photon, neutron and proton shielding features of H3BO3–ZnO–Na2O–BaO glass system. Nucl. Eng. Technol. 2021, 53, 949–959. [Google Scholar] [CrossRef]
- Yin, S.; Wang, H.; Li, A.; Huang, H.; Zhang, J.; Liu, L.; Zhu, Y. Study on the Optical Properties of High Refractive Index TeO2-PbO-ZnO-BaF2 Glass System. Adv. Mater. Sci. Eng. 2021, 2021, 6466344. [Google Scholar] [CrossRef]
- Elkhoshkhany, N.; Marzouk, S.Y.; Shahin, S. Synthesis and optical properties of new fluoro-tellurite glass within (TeO2-ZnO-LiF-Nb2O5-NaF) system. J. Non-Cryst. Solids 2017, 472, 39–45. [Google Scholar] [CrossRef]
- Kilic, G.; Issever, U.G.; Ilik, E. Synthesis, characterization and crystalline phase studies of TeO2–Ta2O5–ZnO/ZnF2 oxyfluoride semiconducting glasses. J. Non-Cryst. Solids 2020, 527, 119747. [Google Scholar] [CrossRef]
- Hraiech, S.; Ferid, M.; Guyot, Y.; Boulon, G. Structural and optical studies of Yb3+, Er3+ and Er3+/Yb3+ co-doped phosphate glasses. J. Rare Earths 2013, 31, 685–693. [Google Scholar] [CrossRef]
- Hou, Z.; Xue, Z.; Li, F.; Wang, M.; Hu, X.; Wang, S. Luminescence and up-conversion mechanism of Er3+/Ho3+ co-doped oxyfluoride tellurite glasses and glass–ceramics. J. All. Comp. 2013, 577, 523–527. [Google Scholar] [CrossRef]
- Miniscalco, W.J. Erbium-doped glasses for fiber amplifiers at 1550 nm. J. Light. Technol. 1991, 9, 234. [Google Scholar] [CrossRef]
- Obaton, A.F.; Parent, C.; Le Flem, G.; Thony, P.; Brenier, A.; Boulon, G. Yb3+- Er3+-codoped LaLiP4O12 glass: A new eye-safe laser at 1535 nm. J. Alloys Compd. 2000, 300–301, 123–130. [Google Scholar] [CrossRef]
- Weng, F.Y.; Chen, D.Q.; Wang, Y.S.; Yu, Y.L.; Huang, P.; Lin, H. Energy transfer and up-conversion luminescence in Er3+/Yb3+co- doped transparent glass ceramic containing YF3 nano- crystals. Ceram. Int. 2009, 35, 2619. [Google Scholar] [CrossRef]
- Zhang, J.J.; Dai, S.X.; Wang, G.N.; Zhang, L.; Sun, H.T.; Hu, L.L. Investigation on upconversion luminescence in Er3+/Yb3+ codoped tellurite glasses and fibers. Phys. Lett. A. 2005, 345, 409. [Google Scholar] [CrossRef]
- Al-Syadi, A.M.; Al-Assiri, M.S.; Hassan, H.M.A.; El Enany, G.; El-Desoky, M.M. Effect of sulfur addition on the electrochemical performance of lithium-vanadium-phosphate glasses as electrodes for energy storage devices. J. Electroanal. Chem. 2017, 804, 36–41. [Google Scholar] [CrossRef]
- Krishna, G.; Veeraiah, N.; Venkatramaiah, N.; Venkatesan, R. Induced crystallization and physical properties of Li2O–CaF2–P2O5, TiO2 glass system: Part I. Characterization, spectroscopic and elastic properties. J. Alloys Compd. 2008, 450, 477–485. [Google Scholar] [CrossRef]
- Sakka, S.; Mackenzie, J.D. Relation between apparent glass transition temperature and liquids temperature for inorganic glasses. J. Non-Cryst. Solids 1971, 6, 145–162. [Google Scholar] [CrossRef]
- Al-Syadi, A.M. Electrochemical performance of Na2O–Li2O–P2S5–V2S5 glass–ceramic nanocomposites as electrodes for supercapacitors. Appl. Phys. A 2021, 127, 755. [Google Scholar] [CrossRef]
- Sestak, J. Applicability of DTA to the Study of Crystallization Kinetics of Glasses. Phys. Chem. Glas. 1974, 15, 137. [Google Scholar]
- Hruby, A.J. Evaluation of Glass-Forming Tendency by Means of DTA. Czech. Phys. 1972, 22, 1187. [Google Scholar] [CrossRef]
- Hussein, K.I.; Al-Syadi, A.M.; Alqahtani, M.S.; Elkhoshkhany, N.; Algarni, H.; Reben, M.; Yousef, E.S.; Stability, T. Thermal stability, optical properties, and Gamma Shielding Properties of Tellurite Glass Modified with Potassium Chloride. Materials 2022, 15, 2403. [Google Scholar] [CrossRef]
- Elkhoshkhany, N.; Mohamed, H.M.; Yousef, E.S. UV–Vis-NIR spectroscopy, structural and thermal properties of novel oxyhalide tellurite glasses with composition TeO2-B2O3-SrCl2-LiF-Bi2O3 for optical application. Results Phys. 2019, 13, 102222. [Google Scholar] [CrossRef]
- Luo, Y.R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Brik, M.G.; Srivastava, A.M.; Popov, A.I. A few common misconceptions in the interpretation of experimental spectroscopic data. Opt. Mater. 2022, 127, 112276. [Google Scholar] [CrossRef]
- El Sayed Yousef, B.; Al-Qaisi, U.V. spectroscopy, refractive indices and elastic properties of the (76 − x) TeO2· 9P2O5· 15ZnO· xLiNbO3 glass. Solid State Sci. 2013, 19, 6–11. [Google Scholar] [CrossRef]
- Eevon, C.; Halimah, M.K.; Zakaria, A.; Azurahanim, C.A.C.; Azlan, M.N.; Faznny, M.F. Linear and nonlinear optical properties of Gd3+ doped zinc borotellurite glasses for all-optical switching applications. Results Phys. 2016, 6, 761–766. [Google Scholar] [CrossRef]
- Dimitrov, V.; Sakka, S. Electronic oxide polarizability and optical basicity of simple oxides. I. J. Appl. Phys. 1996, 79, 1736–1740. [Google Scholar] [CrossRef]
- Jlassi, I.; Elhouichet, H.; Ferid, M. Thermal and optical properties of tellurite glasses doped erbium. J. Mater. Sci. 2011, 46, 806–812. [Google Scholar] [CrossRef]
- Saddeek, Y.B.; Yahia, I.S.; Aly, K.A.; Dobrowolski, W. Spectroscopic, mechanical and magnetic characterization of some bismuth borate glasses containing gadolinium ions. Solid State Sci. 2010, 12, 1426–1434. [Google Scholar] [CrossRef]
- Sushama, D.; Predeep, P. Thermal and optical studies of rare earth doped tungston-tellurite glasses, International. J. Appl. Phys. Math. 2014, 4, 139. [Google Scholar]
- AbuShanab, W.S.; Moustafa, E.B.; Hammad, A.H.; Ramadan, R.M.; Wassel, A.R. Enhancement the structural, optical and non-linear optical properties of cadmium phosphate glasses by nickel ions. J. Mater. Sci. Mater. Electron. 2019, 30, 18058–18064. [Google Scholar] [CrossRef]
- Al-Assiri, M.S.; El-Desoky, M.M.; Alyamani, A.; Al-Hajry, A.; Al-Mogeeth, A.; Bahga, A.A. Spectroscopic study of nanocrystalline V2O5· nH2O films doped with Li ions. Opt. Laser Technol. 2010, 42, 994–1003. [Google Scholar] [CrossRef]
- El-Mallawany, R.M.; Ribeiro, M.A.; Lara, L.S.; Lenzi, E.K.; Alsadig, I.A.A.; Novatski, A. Refractive index behavior of tellurite glasses. Opt. Mater. 2021, 112, 110810. [Google Scholar] [CrossRef]
- Ghosh, G. Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses. Appl. Optic. 1997, 36, 1540–1546. [Google Scholar] [CrossRef] [PubMed]
- El-Mallawany, R.M.; Abdalla, D.; Ahmed, I.A. New tellurite glass: Optical properties. Mater. Chem. Phys. 2008, 109, 291–296. [Google Scholar] [CrossRef]
- Wemple, S.H.; DiDomenico, M., Jr. Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. 1971, 3, 1338. [Google Scholar] [CrossRef]
- Rao, A.S. Saturation effects in nonlinear absorption, refraction, and frequency conversion: A review. Optik 2022, 267, 169638. [Google Scholar] [CrossRef]
- Christodoulides, D.N.; Khoo, I.C.; Salamo, G.J.; Stegeman, G.I.; Van Stryland, E.W. Nonlinear refraction and absorption mechanisms and magnitudes. Adv. Opt. Photonics 2010, 2, 60–200. [Google Scholar] [CrossRef]
- Suresh, S.; Ramanand, A.; Jayaraman, D.; Mani, P. Review on theoretical Aspect of nonlinear optics. Rev. Adv. Mater. Sci. 2012, 30, 175–183. [Google Scholar]
- Carnall, W.T.; Fields, P.R.; Rajnak, K. Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J. Chem. Phys. 1968, 49, 4424–4442. [Google Scholar] [CrossRef]
- Reisfeld, R.; Eckstein, Y. Dependence of spontaneous emission and nonradiative relaxations of Tm3+ and Er3+ on glass host and temperature. J. Chem. Phys. 1975, 63, 4001–4012. [Google Scholar] [CrossRef]
- Damak, K.; Al-Shihri, A.S.; Seo, H.J.; Rüssel, C.; Maâlej, R. Quantifying Raman and emission gain coefficients of Ho3+ doped TeO2· ZnO· PbO· PbF2· Na2O (TZPPN) tellurite glass. Solid State Sci. 2014, 28, 74–80. [Google Scholar] [CrossRef]
- Yusof, N.N.; Ghoshal, S.K.; Jupri, S.A. Luminescence of neodymium ion-activated magnesium zinc sulfophosphate glass: Role of titanium nanoparticles sensitization. Opt. Mater. 2020, 109, 110390. [Google Scholar] [CrossRef]
- Reddy, K.S.R.K.; Swapna, K.; Mahamuda, S.; Venkateswarulu, M.; Rao, A.S. Structural, optical and photoluminescence properties of alkaline-earth boro tellurite glasses doped with trivalent Neodymium for 1.06 μm optoelectronic devices. Opt. Mater. 2021, 111, 110615. [Google Scholar] [CrossRef]
- Judd, B.R. The Matrix Elements of Tensor Operators for the Electronic Configurations fn. Proc. Phys. Soc. 1959, 74, 330. [Google Scholar] [CrossRef]
- Ofelt, G.S. Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 1962, 37, 511–520. [Google Scholar] [CrossRef]
- Carnall, W.T.; Hessler, J.P.; Wagner, F.W., Jr. Transition probabilities in the absorption and fluorescence spectra of lanthanides in molten lithium nitrate-potassium nitrate eutectic. J. Phys. Chem. 1978, 82, 2152–2158. [Google Scholar] [CrossRef]
- Singh, G.; Tiwari, V.S.; Gupta, P.K. Spectroscopic analysis on the basis Judd–Ofelt theory of Nd3+ in (Y0.985Nd0.015)2O3: A transparent laser-host ceramic. Mater. Res. Bull. 2014, 60, 838–842. [Google Scholar] [CrossRef]
- Kaminskii, A.; Alexander, A. Laser Crystals: Their Physics and Properties; Springer: Berlin/Heidelberg, Germany, 2013; Volume 14. [Google Scholar]
- Damak, K.; Yousef, E.; AlFaify, S.; Rüssel, C.; Maâlej, R. green and infrared emission cross-sectionsof Er3+ doped TZPPN tellurite glass. Opt. Mater. Express 2014, 4, 597–612. [Google Scholar] [CrossRef]
- Wang, X.; Fan, S.; Li, K.; Zhang, L.; Wang, S.; Hu, L. Compositional dependence of the 1.8 μm emission properties of Tm3+ ions in silicate glass. J. Appl. Phys. 2012, 112, 103521. [Google Scholar] [CrossRef]
- Tanabe, S.; Hanada, T.; Ohyagi, T.; Soga, N. Correlation between Eu 151 Mössbauer isomer shift and Judd-Ofelt Ω 6 parameters of Nd3+ ions in phosphate and silicate laser glasses. Phys. Rev. B 1993, 48, 10591. [Google Scholar] [CrossRef]
- Judd, B.R. Optical absorption intensities of rare-earthions. Phys. Rev. 1962, 127, 750–761. [Google Scholar] [CrossRef]
- Damak, K.; Maâlej, R.; Qusti, A.H.; Rüssel, C. Thermal and spectroscopic properties of Tm3+ doped TZPPN transparent glass laser material. J. Non-Cryst. Solids 2012, 358, 2974–2980. [Google Scholar] [CrossRef]
- León-Luis, S.F.; Rodríguez-Mendoza, U.R.; Martín, I.R.; Lalla, E.; Lavín, V. Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors. Sens. Actuators B Chem. 2013, 176, 1167–1175. [Google Scholar] [CrossRef]
- Sui, G.Z.; Li, X.P.; Cheng, L.H.; Zhang, J.S.; Sun, J.S.; Zhong, H.Y.; Tian, Y.; Fu, S.B.; Chen, B.J. Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses. Appl. Phys. B 2013, 110, 471–476. [Google Scholar] [CrossRef]
- Vijaya, N.; Babu, P.; Venkatramu, V.; Jayasankar, C.K.; León-Luis, S.F.; Rodríguez-Mendoza, U.R.; Martín, I.R.; Lavín, V. Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors. Sens. Actuators B Chem. 2013, 186, 156–164. [Google Scholar] [CrossRef]
- Feng, L.; Lai, B.; Wang, J.; Du, G.; Su, Q. Spectroscopic properties of Er3+ in a oxyfluoride glass and upconversion and temperature sensor behaviour of Er3+/Yb3+-codoped oxyfluoride glass. J. Lumin. 2010, 130, 2418–2423. [Google Scholar] [CrossRef]
- León-Luis, S.F.; Rodríguez-Mendoza, U.R.; Haro-González, P.; Martín, I.R.; Lavín, V. Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors. Sens. Actuators B Chem. 2012, 174, 176–186. [Google Scholar] [CrossRef]
- Rodríguez-Mendoza, U.R.; Lalla, E.A.; Cáceres, J.M.; Rivera-López, F.; León-Luís, S.F.; Lavín, V. Optical characterization, 1.5 μm emission and IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses. J. Lumin. 2011, 131, 1239–1248. [Google Scholar] [CrossRef]
- Buse, G.; Preda, E.; Stef, M.; Nicoara, I. Influence of Yb3+ ions on the optical properties of double-doped Er, Yb: CaF2 crystals. Phys. Scr. 2011, 83, 025604. [Google Scholar] [CrossRef]
- Lin, L.; Ren, G.; Chen, M.; Liu, Y. The behavior of Er3+ dopants during crystallization in oxyfluoride silicate glass ceramics. J. Alloys Compd. 2009, 486, 261–264. [Google Scholar] [CrossRef]
- Zou, X.; Izumitani, T. Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses. J. Non-Cryst. Solids 1993, 162, 68–80. [Google Scholar] [CrossRef]
- Wang, H.; Qian, G.; Wang, Z.; Wang, M. Spectroscopic properties and Judd–Ofelt theory analysis of erbium chelates. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 62, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Labbe, C.; Doualan, J.L.; Girard, S.; Moncorge, R.; Thuau, M. Crystal Growth, Spectroscopic and Laser Investigation of the Er3+ Doped Fluoride Crystals for 2.8 µm Laser Applications. In Proceedings of the LASERS’98, Tucson, Arizona, 7 November 1998; Corcoran, V.J., Goldman, T.A., Eds.; STS Press: McLean, VA, USA, 1999; p. 217. [Google Scholar]
- Djellab, S.; Diaf, M.; Labbaci, K.; Guerbous, L. Crystal growth and spectroscopic properties of Er3+ ions doped CdF2 single crystals. Phys. Scr. 2014, 89, 045101. [Google Scholar] [CrossRef]
- Khiari, S.; Bendjedaa, F.; Diaf, M. Optical Characterization of Erbium Doped KY3F10 Fluoride Single Crystals. Opt. Phot. J. 2013, 3, 13. [Google Scholar] [CrossRef]
- Ma, Y.; Guo, Y.; Huang, F.; Hu, L.; Zhang, J. Spectroscopic properties in Er3+ doped zinc-and tungsten-modified tellurite glasses for 2.7 μm laser materials. J. Lumin. 2014, 147, 372–377. [Google Scholar] [CrossRef]
- Liu, R.; Chen, M.; Zhu, X.; Zhou, Y.; Zeng, F.; Su, Z. Luminescent properties and structure of Dy3+ doped germanosilicate glass. J. Lumin. 2020, 226, 117378. [Google Scholar] [CrossRef]
- Arunkumar, S.; Marimuthu, K. Spectroscopic properties of Er3+ doped bismuth leadtelluroborate glasses for 1.53 μm optical amplifiers. J. Alloys Compd. 2015, 627, 54–68. [Google Scholar] [CrossRef]
- Soga, K.; Tsuda, M.; Sakuragi, S.; Inoue, H.; Inoue, S.; Makishima, A. Effects of chloride introduction on the optical properties and the upconversion emission with 980-nm excitation of Er3+ in ZBLAN fluoride glasses. J. Non-Cryst. Solids 1997, 222, 272–281. [Google Scholar] [CrossRef]
- Miniscalco, W.J.; Quimby, R.S. General procedure for the analysis of Er3+ cross sections. Opt. Lett. 1991, 16, 258–260. [Google Scholar] [CrossRef]
- Payne, S.A.; Chase, L.L.; Smith, L.K.; Kway, W.L.; Krupke, W.F. Infrared cross-section measurements for crystals doped with Er/sup3+/, Tm/sup3+/, and Ho/sup3+. IEEE J. Quantum Electron. 1992, 28, 2619–2630. [Google Scholar] [CrossRef]
- Yang, G.F.; Shi, D.M.; Zhang, Q.Y.; Jiang, Z.H. Spectroscopic Properties of Er3+/Yb3+-codoped PbO–Bi2O3–Ga2O3–GeO2 glasses. J. Fluoresc. 2008, 18, 131–137. [Google Scholar] [CrossRef]
Sample Code | Composition (mol%) | Ρ (g/cm3) ± 0.001 | Vm (cm3/mol) ± 0.0056 |
---|---|---|---|
TKNB1 | 70TeO2-15K2TeO3-10Nb2O5-5BaF2-30,000 ppm Ho2O3-30,000 ppm Er2O3 | 4.9585 | 35.373 |
TKNB2 | 70TeO2-15K2TeO3-10Nb2O5-5BaF2-30,000 ppm Yb2O3-30,000 ppm Er2O3 | 4.9622 | 35.353 |
Sample Code | Tg (°C) ± 1.0 | Tc (°C) ± 0.1 | Tp (°C) ± 1.0 | ∆T (°C) ± 1.0 | H ± 1.0 | KSP ± 1.0 |
---|---|---|---|---|---|---|
TKNB1 | 333 | 422 | 447 | 89 | 0.267 | 8.56 |
TKNB2 | 332 | 419 | 442 | 87 | 0.262 | 7.62 |
Sellmeier Coefficients | Rm (Mol−1) ± 0.0465 | αm (Å−3) ± 0.0064 | M ± 0.0008 | Eopt (eV) ± 0.001 | ||||
---|---|---|---|---|---|---|---|---|
Sample Code | A | B | C | D | ||||
TKNB1 | 3.195 | 0.7393 | 0.2552 | 0.01397 | 17.449 | 6.921 | 0.507 | 2.689 |
TKNB2 | 3.205 | 0.7512 | 0.2593 | 0.01695 | 17.558 | 6.964 | 0.503 | 2.663 |
Sample Code | Dispersion Parameters | Nonlinearity Parameters | ||||
---|---|---|---|---|---|---|
Eo (eV) | Ed (eV) | no ± 0.001 | χ(1) | χ(3) × 10−13 (esu) | n2 × 10−12 (esu) | |
TKNB1 | 8.59 | 25.28 | 1.98 | 0.23407 | 5.1 | 9.68 |
TKNB2 | 8.75 | 25.95 | 1.99 | 0.23596 | 5.26 | 9.97 |
Transition from 4I15/2 to | |||
---|---|---|---|
4I13/2 | 0.0194 | 0.1173 | 1.4332 |
4I9/2 | 0.0 | 0.1694 | 0.0101 |
4F9/2 | 0.0 | 0.548 | 0.4769 |
4S3/2 | 0.0 | 0.0 | 0.2369 |
2H11/2 | 0.8120 | 0.4669 | 0.0951 |
4F7/2 | 0.0 | 0.1447 | 0.6348 |
Transition from 4I15/2 to | ||||||
---|---|---|---|---|---|---|
4I13/2 | 1530 | 1.9975 | 17.88414 | 1.2087 | 1.1855 | 0.7148 |
4I9/2 | 800 | 2.0155 | 1.06715 | 0.3254 | 0.2938 | 0 |
4F9/2 | 650 | 2.0286 | 4.02307 | 1.3446 | 1.3483 | 0 |
4S3/2 | 545 | 2.0480 | 0.46898 | 0.1558 | 0.1845 | 0 |
2H11/2 | 520 | 2.0554 | 7.03041 | 2.8796 | 2.8801 | 0 |
4F7/2 | 490 | 2.0669 | 1.70483 | 0.6949 | 0.7341 | 0 |
Glass Host | Reference | ||||
---|---|---|---|---|---|
Er3+/Yb3+ | 2.387 | 1.881 | 0.657 | 2.8630 | [Present work] |
ZBLAN | 2.73 | 1.40 | 1.10 | 1.2727 | [77,80] |
Boro-tellurite | 4.232 | 0.779 | 0.612 | 1.2729 | [78,81] |
Tellurite | 5.6 | 2.11 | 0.73 | 2.8904 | [79,82] |
TLNT | 6.48 | 1.82 | 1.27 | 1.4331 | [80,83] |
Transitions | = | |||||||
---|---|---|---|---|---|---|---|---|
4I13/2→4I15/2 | 6536 | 1.998 | 1.2079 | 0.7000 | 277 | 80.4906 | 100.00 | 2.7956 |
4I11/2→4I15/2 | 10,256 | 2.007 | 0.3205 | 0 | 339 | 0 | 89.617 | 2.6416 |
4I11/2→4I13/2 | 3720 | 1.995 | 0.4040 | 0.7910 | 20 | 19.4855 | 10.383 | |
4I9/2→4I15/2 | 12,500 | 2.016 | 0.3253 | 0 | 762 | 0 | 85.548 | 1.1221 |
4I9/2→4I13/2 | 5964 | 1.997 | 0.5063 | 0 | 123 | 0 | 13.838 | |
4I9/2→4I11/2 | 2244 | 1.995 | 0.2490 | 0.3480 | 3 | 2.2576 | 0.6143 | |
4F9/2→4I15/2 | 15,385 | 2.029 | 1.3441 | 0 | 605.5 | 0 | 92.589 | 0.1529 |
4F9/2→4I13/2 | 8849 | 2.003 | 0.3787 | 0 | 306 | 0 | 4.6771 | |
4F9/2→4I11/2 | 5129 | 1.996 | 1.0018 | 0.1720 | 155 | 13.3420 | 2.5720 | |
4F9/2→4I9/2 | 2885 | 1.995 | 0.3303 | 0.1120 | 9 | 1.5441 | 0.1623 | |
4S3/2→4I15/2 | 18,349 | 2.048 | 0.1556 | 0 | 310.9 | 0 | 69.047 | 0.2221 |
4S3/2→4I13/2 | 11,813 | 2.013 | 0.2298 | 0 | 113.0 | 0 | 25.086 | |
4S3/2→4I11/2 | 8093 | 2.001 | 0.0646 | 0 | 99 | 0 | 2.2064 | |
4S3/2→4I9/2 | 5849 | 1.996 | 0.2848 | 0 | 164 | 0 | 3.6314 | |
4S3/2→4F9/2 | 2964 | 1.995 | 0.0181 | 0 | 1 | 0 | 0.0299 | |
2H3/2→4I15/2 | 19,231 | 2.055 | 2.8790 | 0 | 2245.2 | 0 | 94.859 | 0.0423 |
2H3/2→4I13/2 | 12,695 | 2.016 | 0.2473 | 0.1160 | 507 | 117.2763 | 2.6367 | |
2H3/2→4I11/2 | 8975 | 2.003 | 0.3695 | 0.0860 | 260 | 30.1353 | 1.2244 | |
2H3/2→4I9/2 | 6731 | 1.998 | 0.8182 | 0.0300 | 239 | 4.3980 | 1.0303 | |
2H11/2→4F9/2 | 3846 | 1.995 | 1.0819 | 0.0090 | 59 | 0.2450 | 0.2489 | |
2H11/2→4S3/2 | 882 | 1.995 | 0.4219 | 0 | 0 | 0 | 0.0012 | |
4F7/2→4I15/2 | 20,408 | 2.067 | 0.6945 | 0 | 996.8 | 0 | 71.627 | 0.0719 |
4F7/2→4I13/2 | 13,872 | 2.021 | 0.6294 | 0 | 255.4 | 0 | 18.355 | |
4F7/2→4I11/2 | 10,152 | 2.0070 | 0.6296 | 0 | 969 | 0 | 6.9622 | |
4F7/2→4I9/2 | 7908 | 2.0005 | 0.5105 | 0.051 | 366 | 18.2576 | 2.7589 | |
4F7/2→4F9/2 | 5023 | 1.9955 | 0.1131 | 0.212 | 21 | 19.3050 | 0.2862 | |
4F7/2→4S3/2 | 2059 | 1.9947 | 0.0087 | 0 | 0 | 0 | 0.0008 | |
4F7/2→4H11/2 | 1177 | 1.9947 | 0.6207 | 0 | 1 | 0 | 0.0104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boussetta, A.; Al-Syadi, A.M.; Albargi, H.B.; Damak, K.; Ersundu, A.E.; Ersundu, M.Ç.; Ramadan, E.; Alshehri, A.M.; Hussein, K.I.; Maalej, R.; et al. An Investigation of the Photonic Application of TeO2-K2TeO3-Nb2O5-BaF2 Glass Co-Doped with Er2O3/Ho2O3 and Er2O3/Yb2O3 at 1.54 μm Based on Its Thermal and Luminescence Properties. Materials 2024, 17, 4188. https://doi.org/10.3390/ma17174188
Boussetta A, Al-Syadi AM, Albargi HB, Damak K, Ersundu AE, Ersundu MÇ, Ramadan E, Alshehri AM, Hussein KI, Maalej R, et al. An Investigation of the Photonic Application of TeO2-K2TeO3-Nb2O5-BaF2 Glass Co-Doped with Er2O3/Ho2O3 and Er2O3/Yb2O3 at 1.54 μm Based on Its Thermal and Luminescence Properties. Materials. 2024; 17(17):4188. https://doi.org/10.3390/ma17174188
Chicago/Turabian StyleBoussetta, Ahlem, Aref M. Al-Syadi, Hasan B. Albargi, Kamel Damak, Ali Erçin Ersundu, Miray Çelikbilek Ersundu, Essam Ramadan, Ali M. Alshehri, Khalid I. Hussein, Ramzi Maalej, and et al. 2024. "An Investigation of the Photonic Application of TeO2-K2TeO3-Nb2O5-BaF2 Glass Co-Doped with Er2O3/Ho2O3 and Er2O3/Yb2O3 at 1.54 μm Based on Its Thermal and Luminescence Properties" Materials 17, no. 17: 4188. https://doi.org/10.3390/ma17174188
APA StyleBoussetta, A., Al-Syadi, A. M., Albargi, H. B., Damak, K., Ersundu, A. E., Ersundu, M. Ç., Ramadan, E., Alshehri, A. M., Hussein, K. I., Maalej, R., & Yousef, E. S. (2024). An Investigation of the Photonic Application of TeO2-K2TeO3-Nb2O5-BaF2 Glass Co-Doped with Er2O3/Ho2O3 and Er2O3/Yb2O3 at 1.54 μm Based on Its Thermal and Luminescence Properties. Materials, 17(17), 4188. https://doi.org/10.3390/ma17174188