Photoluminescence Spectra Correlations with Structural Distortion in Eu3+- and Ce3+-Doped Y3Al5-2x(Mg,Ge)xO12 (x = 0, 1, 2) Garnet Phosphors
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naira, G.B.; Swarta, H.C.; Dhoble, S.J. A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): Phosphor synthesis, device fabrication and characterization. Prog. Mater. Sci. 2020, 109, 100622. [Google Scholar] [CrossRef]
- Ye, S.; Xiao, F.; Parn, Y.X.; Ma, Y.Y.; Zhang, Q.Y. Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties. Mater. Sci. Eng. R 2010, 71, 1–34. [Google Scholar] [CrossRef]
- Schubert, E.F.; Kim, J.K. Solid-state light sources getting smart. Science 2005, 308, 1274–1278. [Google Scholar] [CrossRef] [PubMed]
- Blasse, G.; Bril, A. A new phosphor for flying-spot cathode-ray tube for color television: Yellow-emitting Y3Al5O12-Ce3+. Appl. Phys. Lett. 1967, 11, 53–55. [Google Scholar] [CrossRef]
- Kim, Y.; Park, S. Eu2+, Mn2+ co-doped Ba9Y2Si6O24 phosphors based on near-UV-excitable LED lights. Mater. Res. Bull. 2014, 49, 469–474. [Google Scholar] [CrossRef]
- Ueda, J.; Tanabe, S. Review of luminescent properties of Ce3+-doped garnet phosphors: New insight into the effect of crystal and electronic structure. Opt. Mater. X 2019, 1, 100018. [Google Scholar] [CrossRef]
- Xia, Z.; Meijerink, A. Ce3+-Doped garnet phosphors: Composition modification, luminescence properties and applications. Chem. Soc. Rev. 2017, 46, 275–299. [Google Scholar] [CrossRef] [PubMed]
- Berends, A.C.; van de Haar, M.A.; Krames, M.R. YAG:Ce3+ Phosphor: From Micron-Sized Workhorse for General Lighting to a Bright Future on the Nanoscale. Chem. Rev. 2020, 120, 13461–13479. [Google Scholar] [CrossRef] [PubMed]
- Dobrzycki, Ł.; Bulska, E.; Pawlak, D.A.; Frukacz, Z.; Woźniak, K. Structure of YAG Crystals Doped/Substituted with Erbium and Ytterbium. Inorg. Chem. 2004, 43, 7656–7664. [Google Scholar] [CrossRef] [PubMed]
- Shang, M.; Fan, J.; Lian, H.; Zhang, Y.; Geng, D.; Lin, J. A Double Substitution of Mg2+−Si4+/Ge4+ for Al(1)3+−Al(2)3+ in Ce3+-Doped Garnet Phosphor for White LEDs. Inorg. Chem. 2014, 53, 7748–7755. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Li, W.; Xu, Y.; Hu, Q.; Zheng, Y. Structure and redshift of Ce3+ emission in anisotropically expanded garnet phosphor MgY2Al4SiO12:Ce3+. RSC Adv. 2016, 6, 20458–20466. [Google Scholar] [CrossRef]
- He, C.; Ji, H.; Huang, Z.; Wang, T.; Zhang, X.; Liu, Y.; Fang, M.; Wu, X.; Zhang, J.; Min, X. Red-shifted emission in Y3MgSiAl3O12:Ce3+ garnet phosphor for blue light-pumped white light-emitting diodes. J. Phys. Chem. C 2018, 122, 15659–15665. [Google Scholar] [CrossRef]
- Yen, W.M.; Shionoya, S. Phosphor Handbook; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Park, C.; Park, S. Centrosymmetric and non-centrosymmetric structural and optical study of Eu3+ ions in (Ba,Ca,Na)9(Al,Y)2Si6O24 orthosilicate phosphors. Opt. Mater. 2022, 123, 111863. [Google Scholar] [CrossRef]
- Pater, D.K.; Vishwanadh, B.; Sudarsan, V.; Kulshreshtha, S.K. Difference in the Nature of Eu3+ Environment in Eu3+-Doped BaTiO3 and BaSnO3. J. Am. Ceram. Soc. 2013, 96, 3857–3861. [Google Scholar]
- Shin, S.; Yang, S.; Lee, S.-H.; Shin, T.J.; Park, S. Distinctive occurrences of green-yellow luminescence from orthogermanate-type Ba9Y2(GeO4)6:Ce3+, Na+ phosphors under blue excitation and white-light performance with light-emitting diodes. J. Alloys Compd. 2022, 897, 163213. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J.; Roisnel, T. FullProf.98 and WinPLOTR New Windows Applications for Diffraction. Commission on Powder Diffraction, IUCr, Newsletter, 20 May–August 1998.
- Rodríguez-Carvajal, J. Recent developments of the program FullProf. Commission on Powder Diffraction, IUCr, Newsletter, 26 December 2001. [Google Scholar]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst. 1976, A32, 751–767. [Google Scholar] [CrossRef]
Chemical Formula | Y3Al5O12 (ICSD 170157) | Y3MgAl3GeO12 | Y3Mg2AlGe2O12 |
---|---|---|---|
Radiation type, λ (Å) | Synchrotron (6D-BM), 0.65303 | ||
2θ range (deg) | 4–36 | ||
Crystal system | Cubic | Cubic | |
Space group | Ia-3d | Ia-3d | |
Lattice parameter (Å) | a = 11.9900 (14) | a = 12.1479 (2) | a = 12.2628 (1) |
Volume (Å3) | V = 1723.68 | V = 1792.682 (17) | V = 1844.027 (14) |
Density (g/cm3) | 4.57 | 4.888 | 4.816 |
Rp (%) | 0.717 | 0.728 | |
Rwp (%) | 1.22 | 1.47 | |
Rexp (%) | 1.26 | 1.88 | |
S | 0.96 | 0.78 | |
χ2 | 0.931 | 0.608 |
Y3Al5O12 (ICSD 170157) | ||||||
Atom | Wyckoff position | x | y | z | Biso | SOF |
Y | 24c | 0.125 | 0 | 0.25 | 0.00365 (12) | 1 |
Al(1) | 16a | 0 | 0 | 0 | 0.0030 (3) | 1 |
Al(2) | 24d | 0.375 | 0 | 0.25 | 0.0011 (3) | 1 |
O | 96h | 0.28023 (17) | 0.10110 (16) | 0.19922 (17) | 0.0036 (4) | 1 |
Y3MgAl3GeO12 | ||||||
Atom | Wyckoff position | x | y | z | Biso | SOF |
Y | 24c | 0 | 0.25 | 0.125 | 0.33 (8) | 1 |
Mg | 16a | 0 | 0 | 0 | 0.49 | 0.5 |
Al(1) | 16a | 0 | 0 | 0 | 0.49 | 0.5 |
Al(2) | 24d | 0 | 0.25 | 0.375 | 0.57 | 0.6667 |
Ge | 24d | 0 | 0.25 | 0.375 | 0.57 | 0.3333 |
O | 96h | −0.0305 (5) | 0.0551 (6) | 0.1518 (6) | 0.4 (2) | 1 |
Y3Mg2AlGe2O12 | ||||||
Atom | Wyckoff position | x | y | z | Biso | SOF |
Y | 24c | 0 | 0.25 | 0.125 | 0.2 (2) | 1 |
Mg | 16a | 0 | 0 | 0 | 1.0 (2) | 1 |
Al(2) | 24d | 0 | 0.25 | 0.375 | 0.1 (2) | 0.3333 |
Ge | 24d | 0 | 0.25 | 0.375 | 0.1 (2) | 0.6667 |
O | 96h | −0.0315 (7) | 0.0576 (6) | 0.1576 (6) | 0.2 (2) | 1 |
Y3Al5O12 (ICSD 170157) | Y3MgAl3GeO12 | Y3Mg2AlGe2O12 | |||
---|---|---|---|---|---|
Atom | Distance (Å) | Atom | Distance (Å) | Atom | Distance (Å) |
Y-O (×4) | 2.433 | Y-O (×4) | 2.419 (2) | Y-O (×4) | 2.424 (4) |
Y-O (×4) | 2.303 | Y-O (×4) | 2.332 (2) | Y-O (×4) | 2.338 (4) |
Al-O (×6) | 1.921 | (Mg/Al1)-O (×6) | 1.997 (2) | Mg-O (×6) | 2.094 (4) |
Al-O (×4) | 1.766 | (Al2/Ge)-O (×4) | 1.785 (2) | Ge/Al-O (×4) | 1.760 (4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, H.; Yang, S.; Park, S. Photoluminescence Spectra Correlations with Structural Distortion in Eu3+- and Ce3+-Doped Y3Al5-2x(Mg,Ge)xO12 (x = 0, 1, 2) Garnet Phosphors. Materials 2024, 17, 2445. https://doi.org/10.3390/ma17102445
Ha H, Yang S, Park S. Photoluminescence Spectra Correlations with Structural Distortion in Eu3+- and Ce3+-Doped Y3Al5-2x(Mg,Ge)xO12 (x = 0, 1, 2) Garnet Phosphors. Materials. 2024; 17(10):2445. https://doi.org/10.3390/ma17102445
Chicago/Turabian StyleHa, Heonji, Sungjun Yang, and Sangmoon Park. 2024. "Photoluminescence Spectra Correlations with Structural Distortion in Eu3+- and Ce3+-Doped Y3Al5-2x(Mg,Ge)xO12 (x = 0, 1, 2) Garnet Phosphors" Materials 17, no. 10: 2445. https://doi.org/10.3390/ma17102445
APA StyleHa, H., Yang, S., & Park, S. (2024). Photoluminescence Spectra Correlations with Structural Distortion in Eu3+- and Ce3+-Doped Y3Al5-2x(Mg,Ge)xO12 (x = 0, 1, 2) Garnet Phosphors. Materials, 17(10), 2445. https://doi.org/10.3390/ma17102445