Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (205)

Search Parameters:
Keywords = magnetic MEMS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 11669 KiB  
Article
Design and Electromagnetic Performance Optimization of a MEMS Miniature Outer-Rotor Permanent Magnet Motor
by Kaibo Lei, Haiwang Li, Shijia Li and Tiantong Xu
Micromachines 2025, 16(7), 815; https://doi.org/10.3390/mi16070815 - 16 Jul 2025
Viewed by 323
Abstract
In this study, we present the design and electromagnetic performance optimization of a micro-electromechanical system (MEMS) miniature outer-rotor permanent magnet motor. With increased attention towards higher torque density and lower torque pulsations in MEMS micromotor designs, an adaptation of an external rotor can [...] Read more.
In this study, we present the design and electromagnetic performance optimization of a micro-electromechanical system (MEMS) miniature outer-rotor permanent magnet motor. With increased attention towards higher torque density and lower torque pulsations in MEMS micromotor designs, an adaptation of an external rotor can be highly attractive. However, with the design complexity involved in such high-performance MEMS outer-rotor motor designs, the ultra-miniature 3D coil structures and the thin-film topology surrounding the air gap have been one of the main challenges. In this study, an ultra-thin outer-rotor motor with 3D MEMS silicon-based coils and a MEMS-compatible manufacturing method for the 3D coils is presented. Additionally, finite element simulations are conducted for the thin-film topology around the air gap to optimize performance characteristics such as torque developed, torque pulsations, and back electromotive force amplitude. Ultimately, the average magnetic flux density increased by 37.1%, from 0.361 T to 0.495 T. The root mean square (RMS) value of the back EMF per phase rises by 14.4%. Notably, the average torque is improved by 11.3%, while the torque ripple is significantly reduced from 1.281 mNm to 0.74 mNm, corresponding to a reduction of 49.9% in torque ripple percentage. Full article
Show Figures

Figure 1

30 pages, 8909 KiB  
Review
Recent Design and Application Advances in Micro-Electro-Mechanical System (MEMS) Electromagnetic Actuators
by Jianqun Cheng, Ning Xue, Bocang Qiu, Boqi Qin, Qingchun Zhao, Gang Fang, Zhihui Yao, Wenyi Zhou and Xuguang Sun
Micromachines 2025, 16(6), 670; https://doi.org/10.3390/mi16060670 - 31 May 2025
Cited by 1 | Viewed by 3601
Abstract
Micro-electro-mechanical system (MEMS) electromagnetic actuators have rapidly evolved into critical components of various microscale applications, offering significant advantages including precision, controllability, high force density, and rapid responsiveness. Recent advancements in actuator design, fabrication methodologies, smart control integration, and emerging application domains have significantly [...] Read more.
Micro-electro-mechanical system (MEMS) electromagnetic actuators have rapidly evolved into critical components of various microscale applications, offering significant advantages including precision, controllability, high force density, and rapid responsiveness. Recent advancements in actuator design, fabrication methodologies, smart control integration, and emerging application domains have significantly broadened their capabilities and practical applications. This comprehensive review systematically analyzes the recent developments in MEMS electromagnetic actuators, highlighting core operating principles such as Lorentz force and magnetic attraction/repulsion mechanisms and examining state-of-the-art fabrication technologies, such as advanced microfabrication techniques, additive manufacturing, and innovative material applications. Additionally, we provide an in-depth discussion on recent enhancements in actuator performance through smart and adaptive integration strategies, focusing on improved reliability, accuracy, and dynamic responsiveness. Emerging application fields, particularly micro-optical systems, microrobotics, precision micromanipulation, and microfluidic components, are extensively explored, demonstrating how recent innovations have significantly impacted these sectors. Finally, critical challenges, including miniaturization constraints, integration complexities, power efficiency, and reliability issues, are identified, alongside a prospective outlook outlining promising future research directions. This review aims to serve as an authoritative resource, fostering further innovation and technological advancement in MEMS actuators and related interdisciplinary fields. Full article
(This article belongs to the Special Issue Magnetic Manipulation in Micromachines)
Show Figures

Figure 1

19 pages, 9069 KiB  
Article
Highly Accurate Attitude Estimation of Unmanned Aerial Vehicle Payloads Using Low-Cost MEMS
by Xuyang Zhou, Long Chen, Changhao Sun, Wei Jia, Naixin Yi and Wei Sun
Micromachines 2025, 16(6), 632; https://doi.org/10.3390/mi16060632 - 27 May 2025
Cited by 1 | Viewed by 491
Abstract
Low-cost MEMS sensors are widely utilized in UAV platforms to address attitude estimation problems due to their compact size, low power consumption, and cost-effectiveness. Diverse UAV payloads pose new challenges for attitude estimation, such as magnetic interference environments and high dynamic environments. In [...] Read more.
Low-cost MEMS sensors are widely utilized in UAV platforms to address attitude estimation problems due to their compact size, low power consumption, and cost-effectiveness. Diverse UAV payloads pose new challenges for attitude estimation, such as magnetic interference environments and high dynamic environments. In this paper, we propose a hierarchical decoupled attitude estimation algorithm, termed HDAEA. Initially, a novel hierarchical decoupling approach is introduced for the attitude and angle representation of the direction cosine matrix, enabling the representation of angles in a new manner. This method reduces the data dimensionality and nonlinearity of observation equations. Furthermore, a magnetic interference identification algorithm is proposed to compute the magnetic interference intensity accurately and quantitatively. Combining the quantified errors of estimated state variables, an error model for magnetic interference and attitude angles in high-dynamic environments is constructed. Subsequently, the proposed error model is employed to calibrate the hierarchical decoupled angles using accelerometer and magnetometer measurements, effectively mitigating the impact of magnetic interference on the calculation of pitch angles and roll angles. Moreover, the integration of the proposed hierarchical decoupled attitude estimation algorithm with the error-state extended Kalman filter reduces system nonlinearity and minimizes linearization errors. Experimental results demonstrate that HDAEA exhibits significantly improved attitude estimation accuracy of UAV payloads. Full article
(This article belongs to the Special Issue MEMS Inertial Device, 2nd Edition)
Show Figures

Figure 1

12 pages, 2838 KiB  
Article
Glass Microbubble Encapsulation for Improving the Lifetime of a Ferrofluid-Based Magnetometer
by Chenchen Zhang and Srinivas Tadigadapa
Micromachines 2025, 16(5), 519; https://doi.org/10.3390/mi16050519 - 28 Apr 2025
Viewed by 435
Abstract
In this paper, we explore the use of chip-scale blown glass microbubble structures for MEMS packaging applications. Specifically, we demonstrate the efficacy of this method of packaging for the improvement of the lifetime of a ferrofluid-based magnetoviscous magnetometer. We have previously reported on [...] Read more.
In this paper, we explore the use of chip-scale blown glass microbubble structures for MEMS packaging applications. Specifically, we demonstrate the efficacy of this method of packaging for the improvement of the lifetime of a ferrofluid-based magnetoviscous magnetometer. We have previously reported on the novel concept of a ferrofluid based magnetometer in which the viscoelastic response of a ferrofluid interfacial layer on a high frequency shear wave quartz resonator is sensitively monitored as a function of applied magnetic field. The quantification of the magnetic field is accomplished by monitoring the at-resonance admittance characteristics of the ferrofluid-loaded resonator. While the proof-of-concept measurements of the device have been successfully made, under open conditions, the evaporation of the carrier fluid of the ferrofluid continuously changes its viscoelastic properties and compromises the longevity of the magnetometer. To prevent the evaporation of the ferrofluid, here, we seal the ferrofluid on top of the micromachined quartz resonator within a blown glass hemispherical microbubble attached to it using epoxy. The magnetometer design used a bowtie-shaped thin film Metglas (Fe85B5Si10) magnetic flux concentrator on the resonator chip. A four-times smaller noise equivalent, a magnetic field of 600 nT/√Hz at 0.5 Hz was obtained for the magnetometer using the Metglas flux concentrator. The ferrofluid-based magnetometer is capable of sensing magnetic fields up to a modulation frequency of 40 Hz. Compared with the unsealed ferrofluid device, the lifetime of the glass microbubble integrated chip packaged device improved significantly from only a few hours to over 50 days and continued. Full article
Show Figures

Figure 1

14 pages, 2809 KiB  
Article
Underwater Magnetic Sensors Network
by Arkadiusz Adamczyk, Maciej Klebba, Mariusz Wąż and Ivan Pavić
Sensors 2025, 25(8), 2493; https://doi.org/10.3390/s25082493 - 15 Apr 2025
Viewed by 613
Abstract
This study explores the design and performance of an underwater magnetic sensor network (UMSN) tailored for intrusion detection in complex environments such as riverbeds and areas with dense vegetation. The system utilizes wireless sensor network (WSN) principles and integrates AMR-based magnetic sensors (e.g., [...] Read more.
This study explores the design and performance of an underwater magnetic sensor network (UMSN) tailored for intrusion detection in complex environments such as riverbeds and areas with dense vegetation. The system utilizes wireless sensor network (WSN) principles and integrates AMR-based magnetic sensors (e.g., LSM303AGR) with MEMS-based accelerometers to provide accurate and high-resolution magnetic field measurements. Extensive calibration techniques were employed to correct hard-iron and soft-iron distortions, ensuring reliable performance in fluctuating environmental conditions. Field tests included both controlled setups and real-world scenarios, such as detecting intrusions across river sections, shorelines, and coordinated land-water activities. The results showed detection rates consistently above 90%, with response times averaging 2.5 s and a maximum detection range of 5 m. The system also performed well under adverse weather conditions, including fog and rain, demonstrating its adaptability. The findings underline the potential of UMSN as a scalable and cost-efficient solution for monitoring sensitive areas. By addressing the limitations of traditional surveillance systems, this research offers a practical framework for enhancing security in critical regions, laying the groundwork for future developments in magnetic sensor technology. Full article
Show Figures

Figure 1

25 pages, 9193 KiB  
Review
Recent Advances in Translational Electromagnetic Energy Harvesting: A Review
by Marco Valerio Perrozzi, Mirco Lo Monaco and Aurelio Somà
Energies 2025, 18(7), 1588; https://doi.org/10.3390/en18071588 - 22 Mar 2025
Viewed by 760
Abstract
Wireless Sensor Nodes (WSNs) are becoming increasingly popular in various industrial sectors due to their capability of real-time remote monitoring of assets. Powering these devices with vibrational energy harvesters (EHs) provides multiple benefits, such as minimal maintenance and ideally infinite lifespan. Among the [...] Read more.
Wireless Sensor Nodes (WSNs) are becoming increasingly popular in various industrial sectors due to their capability of real-time remote monitoring of assets. Powering these devices with vibrational energy harvesters (EHs) provides multiple benefits, such as minimal maintenance and ideally infinite lifespan. Among the vibrational harvesters, translational electromagnetic ones (TEMEHs) are a promising solution due to their simple and reliable architecture and their ability to harvest energy at low frequencies. However, a major challenge is achieving a high power density. In this paper, recent literature about this typology of harvesters is reviewed. Different techniques to tune the resonance frequencies to the fundamental frequencies of the ambient vibrations are analyzed, such as non-linearities and multi-DOF configurations. The harvesters are classified on the basis of the suspension type, highlighting advantages and disadvantages. A final comparison is carried out in terms of NPD and FoMv, two indexes that evaluate power density in relation to size and excitation amplitudes. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

18 pages, 8023 KiB  
Article
Two Degrees of Freedom Synchronous Motion Modulation Technique Using MEMS Voltage-Controlled Oscillator-Based Phase-Locked Loop for Magnetoresistive Sensing
by Zhenyu Shi, Zhenxiang Qi, Haoqi Lyu, Qifeng Jiao, Chen Chen and Xudong Zou
Sensors 2025, 25(6), 1835; https://doi.org/10.3390/s25061835 - 15 Mar 2025
Viewed by 2227
Abstract
This study presents a novel dual phase-locked loop two-dimensional synchronized motion modulation (TDSMM-DPLL) system designed to enhance the low-frequency detection capability of magnetoresistive (MR) sensors by effectively mitigating 1/f noise. The TDSMM-DPLL system integrates a comb-driven resonator and a piezoelectric cantilever beam resonator, [...] Read more.
This study presents a novel dual phase-locked loop two-dimensional synchronized motion modulation (TDSMM-DPLL) system designed to enhance the low-frequency detection capability of magnetoresistive (MR) sensors by effectively mitigating 1/f noise. The TDSMM-DPLL system integrates a comb-driven resonator and a piezoelectric cantilever beam resonator, achieving synchronized magnetic field modulation through a DPLL circuit that adjusts the resonant frequency of the comb-driven resonator to twice that of the cantilever beam resonator. Theoretical analysis and finite element simulations demonstrate a modulation efficiency of 38.98%, which is significantly higher than that of traditional one-dimensional modulation methods. Experimental validation confirms the system’s effectiveness, showing a 3.13-fold reduction in frequency Allan variance, decreasing from 217.32 ppb to 69.46 ppb, indicating substantial noise suppression. These results highlight the TDSMM-DPLL system’s potential to improve the performance of MR sensors in low-frequency applications, making it a promising solution for high-precision magnetic field detection. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

13 pages, 3223 KiB  
Article
Coil-Only High-Frequency Lamb Wave Generation in Nickel Sheets
by Yini Song, Yihua Kang, Kai Wang, Yizhou Guo, Jun Tu and Bo Feng
Sensors 2024, 24(22), 7141; https://doi.org/10.3390/s24227141 - 6 Nov 2024
Viewed by 1951
Abstract
This study presents a novel, coil-only magnetostrictive ultrasonic detection method that operates effectively without permanent magnets, introducing a simpler alternative to conventional designs. The system configuration is streamlined, consisting of a single meander coil, an excitation source, and a nickel sheet, with both [...] Read more.
This study presents a novel, coil-only magnetostrictive ultrasonic detection method that operates effectively without permanent magnets, introducing a simpler alternative to conventional designs. The system configuration is streamlined, consisting of a single meander coil, an excitation source, and a nickel sheet, with both the bias magnetic field and ultrasonic excitation achieved by a composite excitation containing both DC and AC components. This design offers significant advantages, enabling high-frequency Lamb wave generation in nickel sheets for ultrasonic detection while reducing device complexity. Experimental validation demonstrated that an S0-mode Lamb wave at a frequency of 2.625 MHz could be effectively excited in a 0.2 mm nickel sheet using a double-layer meander coil. The experimentally measured wave velocity was 4.9946 m/s, with a deviation of only 0.4985% from the theoretical value, confirming the accuracy of the method. Additionally, this work provides a theoretical basis for future development of flexible MEMS-based magnetostrictive ultrasonic transducers, expanding the potential for miniaturized magnetostrictive patch transducers. Full article
(This article belongs to the Special Issue Advances and Applications of Magnetic Sensors)
Show Figures

Figure 1

12 pages, 4580 KiB  
Article
A Polyimide Composite-Based Electromagnetic Cantilever Structure for Smart Grid Current Sensing
by Zeynel Guler and Nathan Jackson
Micromachines 2024, 15(10), 1189; https://doi.org/10.3390/mi15101189 - 26 Sep 2024
Cited by 1 | Viewed by 4205
Abstract
Polyimides (PIs) have been extensively used in thin film and micro-electromechanical system (MEMS) processes based on their excellent thermal and mechanical stability and high glass transition temperature. This research explores the development of a novel multilayer and multifunctional polymer composite electro-piezomagnetic device that [...] Read more.
Polyimides (PIs) have been extensively used in thin film and micro-electromechanical system (MEMS) processes based on their excellent thermal and mechanical stability and high glass transition temperature. This research explores the development of a novel multilayer and multifunctional polymer composite electro-piezomagnetic device that can function as an energy harvester or sensor for current-carrying wires or magnetic field sensing. The devices consist of four layers of composite materials with a polyimide matrix. The composites have various nanoparticles to alter the functionality of each layer. Nanoparticles of Ag were used to increase the electrical conductivity of polyimide and act as electrodes; lead zirconate titanate was used to make the piezoelectric composite layer; and either neodymium iron boron (NdFeB) or Terfenol-D was used to make the magnetic and magnetostrictive composite layer, which was used as the proof mass. A novel all-polymer multifunctional polyimide composite cantilever was developed to operate at low frequencies. This paper compares the performance of the different magnetic masses, shapes, and concentrations, as well as the development of an all-magnetostrictive device to detect voltage or current changes when coupled to the magnetic field from a current-carrying wire. The PI/PZT cantilever with the PI/NdFeB proof mass demonstrated higher voltage output compared to the PI/Terfenol-D proof mass device. However, the magnetostrictive composite film could be operated without a piezoelectric film based on the Villari effect, which consisted of a single PI-Terfenol-D film. The paper illustrates the potential to develop an all-polymer composite MEMS device capable of acting as a magnetic field or current sensor. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

14 pages, 3988 KiB  
Article
Study on the Detection of Single and Dual Partial Discharge Sources in Transformers Using Fiber-Optic Ultrasonic Sensors
by Feng Liu, Yansheng Shi, Shuainan Zhang and Wei Wang
Photonics 2024, 11(9), 815; https://doi.org/10.3390/photonics11090815 - 29 Aug 2024
Viewed by 3891
Abstract
Partial discharge is a fault that occurs at the site of insulation defects within a transformer. Dual instances of partial discharge origination discharging simultaneously embody a more intricate form of discharge, where the interaction between the discharge sources leads to more intricate and [...] Read more.
Partial discharge is a fault that occurs at the site of insulation defects within a transformer. Dual instances of partial discharge origination discharging simultaneously embody a more intricate form of discharge, where the interaction between the discharge sources leads to more intricate and unpredictable insulation damage. Conventional piezoelectric transducers are magnetically affixed to the exterior metal tank of transformers. The ultrasonic signals emanating from partial discharge undergo deflection and reverberation upon traversing the windings, insulation paperboards, and the outer shell, resulting in signal attenuation and thus making it difficult to detect such faults. Furthermore, it is challenging to distinguish between simultaneous discharges from dual partial discharge sources and continuous discharges from a single source, often leading to missed detection and repairs of fault points, which increase the maintenance difficulty and cost of power equipment. With the advancement of MEMS (Micro-Electro-Mechanical System) technology, fiber-optic ultrasonic sensors have surfaced as an innovative technique for optically detecting partial discharges. These sensors are distinguished by their minute dimensions, heightened sensitivity, and robust immunity to electromagnetic disturbances. and excellent insulation properties, allowing for internal installation within power equipment for partial discharge monitoring. In this study, we developed an EFPI (Extrinsic Fabry Perot Interferometer) optical fiber ultrasonic sensor that can be installed inside transformers. Based on this sensor array, we also created a partial discharge ultrasonic detection system that estimates the directional information of single and dual partial discharge sources using the received signals from the sensor array. By utilizing the DOA (Direction of Arrival) as a feature recognition parameter, our system can effectively detect both simultaneous discharges from dual partial discharge sources and continuous discharges from a single source within transformer oil tanks, meeting practical application requirements. The detection methodology presented in this paper introduces an original strategy and resolution for pinpointing the types of partial discharges occurring under intricate conditions within power apparatus, effectively distinguishing between discharges from single and dual partial discharge sources. Full article
Show Figures

Figure 1

15 pages, 4483 KiB  
Article
High-Resolution Rotation-Measuring System for MEMS Ultrasonic Motors Using Tunneling Magnetoresistance Sensors
by Jiangbo He, Qiuyue Feng, Yu Chen, Tianyu Yang, Xiaoshi Li and Wu Zhou
Micromachines 2024, 15(8), 1028; https://doi.org/10.3390/mi15081028 - 12 Aug 2024
Cited by 1 | Viewed by 4160
Abstract
This study proposes a high-resolution rotation-measuring system for miniaturized MEMS ultrasonic motors using tunneling magnetoresistance (TMR) sensors for the first time. Initially, the architecture and principle of the rotation-measuring system are described in detail. Then, the finite element simulation is implemented to determine [...] Read more.
This study proposes a high-resolution rotation-measuring system for miniaturized MEMS ultrasonic motors using tunneling magnetoresistance (TMR) sensors for the first time. Initially, the architecture and principle of the rotation-measuring system are described in detail. Then, the finite element simulation is implemented to determine the miniaturized permanent magnet’s residual magnetization, dimensions, and TMR sensor position. Finally, the experiments are implemented to evaluate the performance. Using calibration based on a high-precision servo motor, it is found that the relationship between the output and rotational angle is highly linear and immune to the rotor’s out-of-plane movement. Meanwhile, the angle-detecting resolution is higher than 0.1°. After the calibration, the continuous rotation of the MEMS ultrasonic motor is tested. It is found that the angle testing result varies with a period close to 360°, which indicates that the rotation-measuring system has successfully detected the motor’s rotation. Full article
Show Figures

Figure 1

15 pages, 9105 KiB  
Article
Integration of Sm2Co17 Micromagnets in a Ferromagnetic Multipolar Microrotor to Enhance MEMS and Micromotor Performance
by Efren Diez-Jimenez, Alberto Bollero, Ignacio Valiente-Blanco, Ester M. Palmero, Miguel Fernandez-Munoz, Diego Lopez-Pascual and Gabriel Villalba-Alumbreros
Micromachines 2024, 15(7), 875; https://doi.org/10.3390/mi15070875 - 1 Jul 2024
Viewed by 1374
Abstract
MEMS and micromotors may benefit from the increasing complexity of rotors by integrating a larger number of magnetic dipoles. In this article, a new microassembly and bonding process to integrate multiple Sm2Co17 micromagnets in a ferromagnetic core is presented. We [...] Read more.
MEMS and micromotors may benefit from the increasing complexity of rotors by integrating a larger number of magnetic dipoles. In this article, a new microassembly and bonding process to integrate multiple Sm2Co17 micromagnets in a ferromagnetic core is presented. We experimentally demonstrate the feasibility of a multipolar micrometric magnetic rotor with 11 magnetic dipoles made of N35 Sm2Co17 micromagnets (length below 250 μm and thickness of 65 μm), integrated on a ferromagnetic core. We explain the micromanufacturing methods and the multistep microassembly process. The core is manufactured on ferromagnetic alloy Fe49Co49V2 and has an external diameter of 800 μm and a thickness of 200 μm. Magnetic and geometric measurements show good geometric fitting and planarity. The manufactured microrotor also shows good agreement among the magnetic measurements and the magnetic simulations which means that there is no magnetic degradation of the permanent magnet during the manufacturing and assembly process. This technique enables new design possibilities to significantly increase the performance of micromotors or MEMS. Full article
(This article belongs to the Special Issue Emerging Smart Materials for Microelectromechanical Systems)
Show Figures

Figure 1

13 pages, 4504 KiB  
Article
Enhanced Magnetoimpedance Effect in Co-Based Micron Composite CoFeNiSiB Ribbon Strips Coated by Carbon and FeCoGa Nanofilms for Sensing Applications
by Zhen Yang, Mengyu Liu, Jingyuan Chen, Xuecheng Sun, Chong Lei, Yuanwei Shen, Zhenbao Wang, Mengjiao Zhu and Ziqin Meng
Sensors 2024, 24(10), 2961; https://doi.org/10.3390/s24102961 - 7 May 2024
Viewed by 3071
Abstract
Quenched Co-based ribbon strips are widely used in the fields of magnetic amplifier, magnetic head material, magnetic shield, electric reactor, inductance core, sensor core, anti-theft system label, and so on. In this study, Co-based composite CoFeNiSiB ribbon strips with a micron width were [...] Read more.
Quenched Co-based ribbon strips are widely used in the fields of magnetic amplifier, magnetic head material, magnetic shield, electric reactor, inductance core, sensor core, anti-theft system label, and so on. In this study, Co-based composite CoFeNiSiB ribbon strips with a micron width were fabricated by micro-electro-mechanical systems (MEMS) technology. The carbon and FeCoGa nanofilms were deposited for surface modification. The effect of carbon and FeCoGa nanofilm coatings on the crystal structure, surface morphology, magnetic properties, and magnetoimpedance (MI) effect of composite ribbon strips were systematically investigated. The results show that the surface roughness and coercivity of the composite ribbon strips are minimum at a thickness of the carbon coating of 60 nm. The maximum value of MI effect is 41% at 2 MHz, which is approximately 2.4 times greater than plain ribbon and 1.6 times greater than FeCoGa-coated composite ribbon strip. The addition of a carbon layer provides a conductive path for high frequency currents, which effectively reduces the characteristic frequency of the composite ribbon strip. The FeCoGa coating is able to close the flux path and reduce the coercivity, which, in turn, increases the transverse permeability and improves the MI effect. The findings indicate that a successful combination of carbon layer and magnetostrictive FeCoGa nanofilm layer can improve the MI effect and magnetic field sensitivity of the ribbon strips, demonstrating the potential of the composite strips for local and micro area field sensing applications. Full article
(This article belongs to the Special Issue Smart Sensors and Integration Technology for MEMS Devices)
Show Figures

Figure 1

34 pages, 5929 KiB  
Article
Robust Orientation Estimation from MEMS Magnetic, Angular Rate, and Gravity (MARG) Modules for Human–Computer Interaction
by Pontakorn Sonchan, Neeranut Ratchatanantakit, Nonnarit O-Larnnithipong, Malek Adjouadi and Armando Barreto
Micromachines 2024, 15(4), 553; https://doi.org/10.3390/mi15040553 - 21 Apr 2024
Cited by 4 | Viewed by 4544
Abstract
While the availability of low-cost micro electro-mechanical systems (MEMS) accelerometers, gyroscopes, and magnetometers initially seemed to promise the possibility of using them to easily track the position and orientation of virtually any object that they could be attached to, this promise has not [...] Read more.
While the availability of low-cost micro electro-mechanical systems (MEMS) accelerometers, gyroscopes, and magnetometers initially seemed to promise the possibility of using them to easily track the position and orientation of virtually any object that they could be attached to, this promise has not yet been fulfilled. Navigation-grade accelerometers and gyroscopes have long been the basis for tracking ships and aircraft, but the signals from low-cost MEMS accelerometers and gyroscopes are still orders of magnitude poorer in quality (e.g., bias stability). Therefore, the applications of MEMS inertial measurement units (IMUs), containing tri-axial accelerometers and gyroscopes, are currently not as extensive as they were expected to be. Even the addition of MEMS tri-axial magnetometers, to conform magnetic, angular rate, and gravity (MARG) sensor modules, has not fully overcome the challenges involved in using these modules for long-term orientation estimation, which would be of great benefit for the tracking of human–computer hand-held controllers or tracking of Internet-Of-Things (IoT) devices. Here, we present an algorithm, GMVDμK (or simply GMVDK), that aims at taking full advantage of all the signals available from a MARG module to robustly estimate its orientation, while preventing damaging overcorrections, within the context of a human–computer interaction application. Through experimental comparison, we show that GMVDK is more robust to magnetic disturbances than three other MARG orientation estimation algorithms in representative trials. Full article
Show Figures

Figure 1

15 pages, 5398 KiB  
Article
Fabrication and Characterization of Monolithic Integrated Three-Axis Acceleration/Pressure/Magnetic Field Sensors
by Ying Wang, Yu Xiao, Xiaofeng Zhao and Dianzhong Wen
Micromachines 2024, 15(3), 412; https://doi.org/10.3390/mi15030412 - 19 Mar 2024
Cited by 3 | Viewed by 2008
Abstract
In order to realize the measurement of three-axis acceleration, pressure, and magnetic field, monolithic integrated three-axis acceleration/pressure/magnetic field sensors are proposed in this paper. The proposed sensors were constructed with an acceleration sensor consisting of four L-shaped double beams, two masses, middle double-beams, [...] Read more.
In order to realize the measurement of three-axis acceleration, pressure, and magnetic field, monolithic integrated three-axis acceleration/pressure/magnetic field sensors are proposed in this paper. The proposed sensors were constructed with an acceleration sensor consisting of four L-shaped double beams, two masses, middle double-beams, and twelve piezoresistors, a pressure sensor made of a square silicon membrane, and four piezoresistors, as well as a magnetic field sensor composed of five Hall elements. COMSOL software and TCAD-Atlas software were used to simulate characteristics of integrated sensors, and analyze the working principles of the sensors in measuring acceleration, pressure, and magnetic field. The integrated sensors were fabricated by using micro-electro-mechanical systems (MEMS) technology and packaged by using inner lead bonding technology. When applying a working voltage of 5 V at room temperature, it is possible for the proposed sensors to achieve the acceleration sensitivities of 3.58 mV/g, 2.68 mV/g, and 9.45 mV/g along the x-axis, y-axis, and z-axis (through an amplifying circuit), and the sensitivities towards pressure and magnetic field are 0.28 mV/kPa and 22.44 mV/T, respectively. It is shown that the proposed sensors can measure three-axis acceleration, pressure, and magnetic field. Full article
(This article belongs to the Special Issue Multifunctional-Nanomaterials-Based Semiconductor Devices and Sensors)
Show Figures

Figure 1

Back to TopTop