Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (241)

Search Parameters:
Keywords = mSOD1 mice

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5256 KiB  
Article
Impact of Alginate Oligosaccharides on Ovarian Performance and the Gut Microbial Community in Mice with D-Galactose-Induced Premature Ovarian Insufficiency
by Yan Zhang, Hongda Pan, Dao Xiang, Hexuan Qu and Shuang Liang
Antioxidants 2025, 14(8), 962; https://doi.org/10.3390/antiox14080962 (registering DOI) - 5 Aug 2025
Abstract
Premature ovarian insufficiency (POI) is an important factor in female infertility and is often associated with oxidative stress. Alginate oligosaccharides (AOSs), derived from the degradation of alginate, have been demonstrated to have protective effects against various oxidative stress-related diseases. However, the impact of [...] Read more.
Premature ovarian insufficiency (POI) is an important factor in female infertility and is often associated with oxidative stress. Alginate oligosaccharides (AOSs), derived from the degradation of alginate, have been demonstrated to have protective effects against various oxidative stress-related diseases. However, the impact of AOSs on POI has not been previously explored. The current study explored the effects of AOSs on ovarian dysfunction in a mouse model of POI induced by D-galactose (D-gal). Female C57BL/6 mice were randomly divided into five groups: the control (CON), POI model (D-gal), and low-, medium-, and high-dose AOS groups (AOS-L, 100 mg/kg/day; AOS-M, 150 mg/kg/day; AOS-H, 200 mg/kg/day). For 42 consecutive days, mice in the D-gal, AOS-L, AOS-M, and AOS-H groups received daily intraperitoneal injections of D-gal (200 mg/kg/day), whereas those in the CON group received equivalent volumes of sterile saline. Following D-gal injection, AOSs were administered via gavage at the specified doses; mice in the CON and D-gal groups received sterile saline instead. AOS treatment markedly improved estrous cycle irregularities, normalized serum hormone levels, reduced granulosa cell apoptosis, and increased follicle counts in POI mice. Moreover, AOSs significantly reduced ovarian oxidative stress and senescence in POI mice, as indicated by lower levels of malondialdehyde (MDA), higher activities of catalase (CAT) and superoxide dismutase (SOD), and decreased protein expression of 4-hydroxynonenal (4-HNE), nitrotyrosine (NTY), 8-hydroxydeoxyguanosine (8-OHdG), and p16 in ovarian tissue. Analysis of the gut microbiota through 16S rRNA gene sequencing and short-chain fatty acid (SCFA) analysis revealed significant differences in gut microbiota composition and SCFA levels (acetic acid and total SCFAs) between control and D-gal-induced POI mice. These differences were largely alleviated by AOS treatment. AOSs changed the gut microbiota by increasing the abundance of Ligilactobacillus and decreasing the abundance of Clostridiales, Clostridiaceae, Marinifilaceae, and Clostridium_T. Additionally, AOSs mitigated the decline in acetic acid and total SCFA levels observed in POI mice. Notably, the total SCFA level was significantly correlated with the abundance of Ligilactobacillus, Marinifilaceae, and Clostridium_T. In conclusion, AOS intervention effectively mitigates ovarian oxidative stress, restores gut microbiota homeostasis, and regulates the microbiota–SCFA axis, collectively improving D-gal-induced POI. Therefore, AOSs represent a promising therapeutic strategy for POI management. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

20 pages, 4727 KiB  
Article
Developing a Novel Fermented Milk with Anti-Aging and Anti-Oxidative Properties Using Lactobacillus kefiranofaciens HL1 and Lactococcus lactis APL015
by Sheng-Yao Wang, Wei-Chen Yen, Yen-Po Chen, Jia-Shian Shiu and Ming-Ju Chen
Nutrients 2025, 17(15), 2447; https://doi.org/10.3390/nu17152447 - 27 Jul 2025
Viewed by 560
Abstract
Background/Objectives: Lactobacillus kefiranofaciens HL1, isolated from kefir, exhibits antioxidant and anti-aging activities, defined here as improved cognitive function and reductions in oxidative stress and inflammatory markers. However, its poor milk viability limits application. This study developed a novel fermented milk by co-culturing [...] Read more.
Background/Objectives: Lactobacillus kefiranofaciens HL1, isolated from kefir, exhibits antioxidant and anti-aging activities, defined here as improved cognitive function and reductions in oxidative stress and inflammatory markers. However, its poor milk viability limits application. This study developed a novel fermented milk by co-culturing HL1 with Lactococcus lactis subsp. cremoris APL015 (APL15) to enhance fermentation and health benefits. Methods: HL1 and APL15 were co-cultured to produce fermented milk (FM), and fermentation performance, microbial viability, texture, and syneresis were evaluated. A D-galactose-induced aging BALB/c mouse model was used to assess cognitive function, oxidative stress, inflammation, antioxidant enzyme activity, and gut microbiota after 8 weeks of oral administration. Results: FM reached pH 4.6 within 16 h, with high viable counts (~109 CFU/mL) for both strains. HL1 viability and texture were maintained, with smooth consistency and low syneresis. In vivo, FM improved cognitive behavior (Y-maze, Morris water maze), reduced oxidative damage (MDA), lowered IL-1β and TNF-α, and enhanced brain SOD levels. FM-fed mice exhibited increased short-chain fatty acid producers, higher cecal butyrate, and reduced Clostridium perfringens. Conclusions: The co-cultured fermented milk effectively delivers HL1 and provides antioxidant, anti-inflammatory, and anti-aging effects in vivo, likely via gut–brain axis modulation. It shows promise as a functional food for healthy aging. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

23 pages, 5768 KiB  
Article
Effect of Peanut Shell Extract and Luteolin on Gut Microbiota and High-Fat Diet-Induced Sequelae of the Inflammatory Continuum in a Metabolic Syndrome-like Murine Model
by Hemalata Deshmukh, Roberto Mendóza, Julianna M. Santos, Sathish Sivaprakasam, Moamen M. Elmassry, Jonathan M. Miranda, Patrick Q. Pham, Zarek Driver, Matthew Bender, Jannette M. Dufour and Chwan-Li Shen
Nutrients 2025, 17(14), 2290; https://doi.org/10.3390/nu17142290 - 10 Jul 2025
Viewed by 527
Abstract
Background: Metabolic syndrome (MetS) is characterized by chronic inflammation, oxidative stress, and mitochondrial dysfunction. MetS is associated with increased intestinal permeability and dysbiosis. The objective of this study was to investigate the effects of peanut shell extract (PSE) and luteolin (LUT) on the [...] Read more.
Background: Metabolic syndrome (MetS) is characterized by chronic inflammation, oxidative stress, and mitochondrial dysfunction. MetS is associated with increased intestinal permeability and dysbiosis. The objective of this study was to investigate the effects of peanut shell extract (PSE) and luteolin (LUT) on the kidneys, colon, and ileum in a MetS-like murine model. Methods: Thirty-six male Slc6a14y/− mice were divided into four groups: low-fat diet (LFD), high-fat diet (HFD), HFD + 200 mg PSE/kg BW (PSE, p.o.), and HFD + 100 mg LUT/kg BW (LUT, p.o.) for 4 months. Outcome measures included glucose homeostasis, intestinal permeability, gut microbiome composition, and mRNA gene expression of mitochondrial homeostasis and inflammation/oxidative stress in the kidneys, colon, and ileum. Results: HFD resulted in glucose dysregulation with hyperglycemia and insulin resistance. PSE and LUT improved insulin tolerance and beta-cell function. PSE and LUT mitigated HFD-increased serum lipopolysaccharide-binding protein concentration. Perturbations in the gut microbiome were associated with HFD, and PSE or LUT reversed some of these changes. Specifically, Phocaeicola vulgatus was depleted by HFD and reverted by PSE or LUT. Relative to the LFD group, the HFD group (1) upregulated mitochondrial fusion (MFN1, MFN2, OPA1), mitophagy (TLR4, PINK1, LC3B), and inflammation (NFκB, TNFα, IL6), and (2) downregulated mitochondrial fission (FIS1, DRP1), biosynthesis (PGC1α, NRF1, NRF2, TFAM), electron transport chain (complex I), and antioxidant enzyme (SOD1) in the kidneys, colon, and ileum. Conclusions: PSE and LUT reversed such HFD-induced changes in the aforementioned gene expression levels. Full article
(This article belongs to the Special Issue Effects of Plant Extracts on Human Health—2nd Edition)
Show Figures

Figure 1

23 pages, 3707 KiB  
Article
Structural and Functional Profiling of Water-Extracted Polypeptides from Periplaneta americana: A Multifunctional Cosmetic Bioactive Agent with Antioxidative and Anti-Inflammatory Properties
by Xinyu Sun, Zhengyang Zhang, Jingyao Qu, Deyun Yao, Zeyuan Sun, Jingyi Zhou, Jiayuan Xie, Mingyang Zhou, Xiaodeng Yang and Ling Wang
Molecules 2025, 30(14), 2901; https://doi.org/10.3390/molecules30142901 - 9 Jul 2025
Viewed by 441
Abstract
Low-molecular-weight polypeptides (<3 kDa) were prepared from Periplaneta americana via enzymatic hydrolysis and ultrafiltration, yielding 3.53 ± 0.01 mg/g of peptide-rich extract. The extract was primarily composed of peptides, proteins, polysaccharides, phenolics, and flavonoids. HPLC-MS analysis identified 1402 peptide sequences, 80.51% of which [...] Read more.
Low-molecular-weight polypeptides (<3 kDa) were prepared from Periplaneta americana via enzymatic hydrolysis and ultrafiltration, yielding 3.53 ± 0.01 mg/g of peptide-rich extract. The extract was primarily composed of peptides, proteins, polysaccharides, phenolics, and flavonoids. HPLC-MS analysis identified 1402 peptide sequences, 80.51% of which were below 1000 Da, predominantly consisting of tri-, tetra-, and octapeptides. Monosaccharide profiling detected D-(+)-galactose, and quantitative assays determined the contents of total phenolics (12.28 mg/g), flavonoids (15.50 mg/g), proteins (85.84 mg/g), and total sugars (17.62 mg/g). The biological activities of the extract were systematically evaluated. The peptide fraction inhibited hyaluronidase activity by 58% at 5 mg/mL, suggesting protection of extracellular matrix integrity. In HaCaT keratinocytes, it promoted cell proliferation by 62.6%, accelerated scratch wound closure by 54%, upregulated Wnt-10b and β-catenin expression, and reduced intracellular ROS levels under oxidative stress. In LPS-stimulated RAW 264.7 macrophages, the extract decreased TNF-α, IL-6, and IL-1β production by 30%, 25%, and 28%, respectively, reduced MDA levels by 35.2%, and enhanced CAT and SOD activities by 12.3% and 60.3%. In vivo, complete closure of full-thickness skin wounds in mice was achieved by day 14. Safety evaluations using the chick chorioallantoic membrane assay and human patch tests confirmed the extract to be non-irritating and non-toxic. These findings highlight Periplaneta americana extract as a promising multifunctional bioactive ingredient for cosmetic and dermatological applications. Further studies on its active components, mechanisms of action, and clinical efficacy are warranted to support its development in skin health and aesthetic medicine. Full article
Show Figures

Figure 1

19 pages, 2466 KiB  
Article
Agmatine Mitigates Diabetes-Related Memory Loss in Female Mice by Targeting I2/I3 Imidazoline Receptors and Enhancing Brain Antioxidant Defenses
by Luis E. Cobos-Puc and Hilda Aguayo-Morales
Antioxidants 2025, 14(7), 837; https://doi.org/10.3390/antiox14070837 - 8 Jul 2025
Viewed by 920
Abstract
Cognitive decline is a common complication of diabetes mellitus, driven in part by oxidative stress and impaired glucose–insulin homeostasis. This study examined the neuroprotective effects of agmatine (200 mg/kg intraperitoneally) in female BALB/c diabetic mice. Several receptor pathways were examined using commercially available [...] Read more.
Cognitive decline is a common complication of diabetes mellitus, driven in part by oxidative stress and impaired glucose–insulin homeostasis. This study examined the neuroprotective effects of agmatine (200 mg/kg intraperitoneally) in female BALB/c diabetic mice. Several receptor pathways were examined using commercially available antagonists. Behavioral performance was evaluated using the novel object recognition test. Metabolic parameters, such as glucose and insulin levels, as well as antioxidants, including catalase (CAT), superoxide dismutase (SOD), and glutathione (GSH), were measured in blood and brain tissue. The diabetic mice exhibited impaired recognition memory (discrimination index = 0.08), hyperglycemia (24.3 mmol/L), decreased insulin levels (38.4 µU/mL), and diminished antioxidant defenses (CAT: 75.4 U/g tissue, SOD: 32.6 U/g tissue, and GSH: 8.3 mmol/g tissue). Agmatine treatment improved cognitive function and reversed the biochemical alterations. However, these effects were reduced when agmatine was co-administered with imidazoline I2/I3 receptor antagonists. Correlation analysis revealed that cognitive performance positively correlated with antioxidant enzyme levels and insulin levels and negatively correlated with glucose concentrations. Strong intercorrelations among CAT, SOD, and GSH levels suggest a coordinated antioxidant response. Overall, these results imply that agmatine’s neuroprotective effects are partially mediated by modulation of the oxidative balance and glucose–insulin regulation via imidazoline receptors. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

24 pages, 5468 KiB  
Article
Pretreatment with Citrus reticulata ‘Chachi’ Polysaccharide Alleviates Alcohol-Induced Gastric Ulcer by Inhibiting NLRP3/ASC/Caspase-1 and Nrf2/HO-1 Signaling Pathways
by Huosheng Liang, Yiyao Liang, Lipeng Wu, Long Lin, Yunan Yao, Jinji Deng, Jiepei Xu, Huajian Li, Fangfang Gao, Wenlong Xing, Meng Yu, Xuejing Jia, Minyan Wei, Chuwen Li and Guodong Zheng
Nutrients 2025, 17(13), 2062; https://doi.org/10.3390/nu17132062 - 20 Jun 2025
Viewed by 604
Abstract
Objectives: This study was designed to investigate the gastroprotective effects of Citrus reticulata ‘Chachi’ polysaccharide (CRP) against alcohol-induced gastric ulcers (GUs) and to elucidate its underlying mechanisms. Methods: CRP was extracted, purified, and structurally characterized. BALB/c mice (50/250 mg/kg CRP) and GES-1 cells [...] Read more.
Objectives: This study was designed to investigate the gastroprotective effects of Citrus reticulata ‘Chachi’ polysaccharide (CRP) against alcohol-induced gastric ulcers (GUs) and to elucidate its underlying mechanisms. Methods: CRP was extracted, purified, and structurally characterized. BALB/c mice (50/250 mg/kg CRP) and GES-1 cells (1 mg/mL CRP) were subjected to alcohol-induced injury. Oxidative stress (SOD, MDA, ROS), inflammation (TNF-α, IL-1β, NLRP3 inflammasome), mucosal barrier proteins (ZO-1, occludin, Claudin-5), and Nrf2/HO-1 signaling were analyzed via histopathology, Western blot, flow cytometry, and immunohistochemistry. Results: CRP pretreatment significantly alleviated gastric lesions, decreased oxidative stress, and suppressed inflammatory responses in alcohol-induced mice. Mechanistically, CRP induced the Nrf2/HO-1 antioxidant pathway while inhibiting the activation of the NLRP3 inflammasome. CRP also restored tight junction protein expression, enhanced mucosal repair, and reduced epithelial apoptosis. In vitro, CRP promoted cell proliferation, migration, and survival of GES-1 cells under alcohol stress. Conclusions: CRP mitigated alcohol-induced GU via dual antioxidant, anti-inflammatory, and barrier-protective mechanisms, positioning it as a considerable agent for GU. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Graphical abstract

15 pages, 2958 KiB  
Article
Isostrictiniin Alleviates LPS-Induced Acute Lung Injury via the Regulation of the Keap1-Nrf2/HO-1 and MAPK/NF-κB Signaling Pathways
by Wanting Ding, Yuan Sun, Wulipan Tuohudaali, Chenyang Li, Yuhan Yao and Jun Zhao
Int. J. Mol. Sci. 2025, 26(12), 5912; https://doi.org/10.3390/ijms26125912 - 19 Jun 2025
Viewed by 569
Abstract
This study aimed to investigate the preventive effects of isostrictiniin (ITN) from Nymphaea candida against acute lung injury (ALI) through lipopolysaccharide (LPS)-induced ALI mice and LPS-induced A549 cells. Compared with the model group, ITN (50 and 100 mg/kg) significantly reduced the lung indexes, [...] Read more.
This study aimed to investigate the preventive effects of isostrictiniin (ITN) from Nymphaea candida against acute lung injury (ALI) through lipopolysaccharide (LPS)-induced ALI mice and LPS-induced A549 cells. Compared with the model group, ITN (50 and 100 mg/kg) significantly reduced the lung indexes, W/D rates, BALF WBC counts, and total protein contents in ALI mice (p < 0.05), as well as the blood neu counts (p < 0.01), while increasing the blood lym counts (p < 0.01). ITN (50 and 100 mg/kg) also markedly decreased the lung tissue TNF-α, IL-6, IL-1β, MDA, and MPO activities in ALI mice (p < 0.01) and enhanced the SOD and GSH levels (p < 0.01). Additionally, ITN (50 and 100 mg/kg) significantly improved lung histopathological damage in ALI mice. Moreover, ITN (10 and 25 µM) significantly reduced the NO, PGE2, IL-1β, IL-6, TNF-α, and MDA levels in LPS-induced A549 cells (p < 0.01) while significantly increasing the SOD and GSH activities (p < 0.01). After LPS-induced A549 cells, the Keap1, p-JNK/JNK, p-ERK1/2/ERK1/2, p-P38/P38, p-IκBα/IκBα, and p-NF-κBp65/NF-κB p65 levels were significantly upregulated (p < 0.05), whereas the Nrf2 and HO-1 protein expressions were downregulated (p < 0.05). After treatment with ITN (25 μM), the changes in these relative protein expressions in LPS-induced A549 cells were significantly reversed (p < 0.05). The above results indicate that ITN has a better preventive effect against ALI, and its mechanisms are related to the regulation of the Keap1-Nrf2/HO-1 and MAPK/NF-κB signaling pathways. Full article
(This article belongs to the Special Issue Antioxidants: The Molecular Guardians Against Oxidative Stress)
Show Figures

Figure 1

20 pages, 6365 KiB  
Article
Peptide DFCPPGFNTK Mitigates Dry Eye Pathophysiology by Suppressing Oxidative Stress, Apoptosis, Inflammation, and Autophagy: Evidence from In Vitro and In Vivo Models
by Kaishu Deng, Wenan Li, Jinyuan Liang, Zhengdao Chen, Yan Xu, Jingxi Zhang, Yingtong Zhan, Zhiyou Yang, Shaohong Chen, Yun-Tao Zhao and Chuanyin Hu
Curr. Issues Mol. Biol. 2025, 47(6), 441; https://doi.org/10.3390/cimb47060441 - 10 Jun 2025
Viewed by 521
Abstract
Dry eye is an ophthalmic disease with an intricate pathomechanism, and there are no effective interventions or medications available. We investigated the effects of a peptide, DFCPPGFNTK (DFC), screened from tilapia skin hydrolysate on dry eye and its underlying mechanisms. In vitro, human [...] Read more.
Dry eye is an ophthalmic disease with an intricate pathomechanism, and there are no effective interventions or medications available. We investigated the effects of a peptide, DFCPPGFNTK (DFC), screened from tilapia skin hydrolysate on dry eye and its underlying mechanisms. In vitro, human corneal epithelial cells (HCECs) were challenged by 100 mM NaCl in a hyperosmotic environment. DFC restored the cell viability of HCECs induced by NaCl, reduced the transition of mitochondrial membrane potential, delayed the apoptosis of damaged cells, reduced the production of reactive oxygen (ROS) and malondialdehyde (MDA), increased the activities of superoxide dismutase (SOD) and catalase (CAT), and increased the expression rate of Bcl-2/Bax. Compared to the model group, the protein expression levels of COX-2 and iNOS were down-regulated, the mRNA expression of Tnf-α and Il-6 were decreased, the protein expression levels of Nrf2 and HO-1 were increased, and the levels of autophagy-related proteins p62 and LC3B were regulated. In vivo, the dry eye model was developed by administering eye drops of 0.2% BAC to mice for 14 days. DFC increased tear secretion, changed the morphology of tear fern crystals, prevented corneal epithelial thinning, reduced the loss of conjunctival goblet cells (GCs), and inhibited the apoptosis of mice corneal epithelial cells. In summary, DFC improved dry eye by inhibiting oxidative stress, apoptosis, inflammation, and autophagy. Full article
(This article belongs to the Special Issue Molecular Research in Bioactivity of Natural Products, 2nd Edition)
Show Figures

Figure 1

23 pages, 6844 KiB  
Article
A Hydrolyzed Soybean Protein Enhances Oxidative Stress Resistance in C. elegans and Modulates Gut–Immune Axis in BALB/c Mice
by Jun Liu, Yansheng Zhao, Fei Leng, Xiang Xiao, Weibo Jiang and Shuntang Guo
Antioxidants 2025, 14(6), 689; https://doi.org/10.3390/antiox14060689 - 5 Jun 2025
Viewed by 704
Abstract
Soy protein isolate (SPI) is a high-purity protein from defatted soybeans, providing emulsifying and gelling functions for plant-based foods and supplements. Hydrolysis can facilitate the production of bioactive small-molecule proteins or peptides with potential functional applications. In this study, 20% hydrolyzed soy protein [...] Read more.
Soy protein isolate (SPI) is a high-purity protein from defatted soybeans, providing emulsifying and gelling functions for plant-based foods and supplements. Hydrolysis can facilitate the production of bioactive small-molecule proteins or peptides with potential functional applications. In this study, 20% hydrolyzed soy protein (20% HSP) was prepared from SPI, and the effects of 20% HSP and SPI on alleviating oxidative stress in Caenorhabditis elegans (C. elegans) and regulating immune–gut microbiota in cyclophosphamide (CTX)-induced immunocompromised BALB/c mice were investigated. In C. elegans, both SPI and 20% HSP (300 μg/mL) enhanced locomotive activities, including body bending and head thrashing, and improved oxidative stress resistance under high glucose conditions. This improvement was mediated by increased antioxidant enzyme activities (SOD, CAT, and GSH-Px), while malondialdehyde (MDA) content was reduced by 60.15% and 82.28%, respectively. Both of them can also significantly extend the lifespan of normal C. elegans and paraquat-induced oxidative stress models by inhibiting lipofuscin accumulation. This effect was mediated through upregulation of daf-16 and suppression of daf-2 and akt-1 expression. In immunocompromised mice, 20% HSP alleviated CTX-induced immune dysfunction by increasing peripheral white blood cells and lymphocytes, attenuating thymic atrophy, and reducing hepatic oxidative stress via MDA inhibition. Gut microbiota analysis revealed that 20% HSP restored microbial balance by suppressing Escherichia-Shigella and enriching beneficial genera, like Psychrobacter. These findings highlight 20% HSP and SPI’s conserved anti-aging mechanisms via daf-16 activation in C. elegans and immune–gut modulation in mice, positioning them as plant-derived nutraceuticals targeting oxidative stress and immune dysregulation. Full article
(This article belongs to the Special Issue The Interaction Between Gut Microbiota and Host Oxidative Stress)
Show Figures

Figure 1

20 pages, 3284 KiB  
Article
Suk-SaiYasna Remedy, a Traditional Thai Medicine, Mitigates Stress-Induced Cognitive Impairment via Keap1-Nrf2 Pathway
by Wuttipong Masraksa, Supawadee Daodee, Orawan Monthakantirat, Chantana Boonyarat, Charinya Khamphukdee, Pakakrong Kwankhao, Abdulwaris Mading, Poowanarth Muenhong, Juthamart Maneenet, Suresh Awale, Kinzo Matsumoto and Yaowared Chulikhit
Int. J. Mol. Sci. 2025, 26(11), 5388; https://doi.org/10.3390/ijms26115388 - 4 Jun 2025
Viewed by 805
Abstract
Suk-SaiYasna (SSY) is a well-documented traditional Thai herbal formula in the Royal Scripture of King Narai’s Traditional Medicine. SSY contains Cannabis sativa leaves as a key ingredient and has traditionally been used to promote sleep, alleviate stress-related symptoms, and stimulate appetite. This study [...] Read more.
Suk-SaiYasna (SSY) is a well-documented traditional Thai herbal formula in the Royal Scripture of King Narai’s Traditional Medicine. SSY contains Cannabis sativa leaves as a key ingredient and has traditionally been used to promote sleep, alleviate stress-related symptoms, and stimulate appetite. This study aimed to investigate the neuroprotective effects of SSY in a mouse model of unpredictable chronic mild stress (UCMS)-induced cognitive impairment and explore the underlying mechanisms, particularly antioxidant enzyme pathways. Behavioral tests, including the Y-maze test, novel object recognition test, and Morris water maze test, demonstrated that UCMS-exposed mice exhibited cognitive impairment compared to non-stress mice. However, SSY treatment significantly improved learning and memory performance in UCMS-exposed mice. Mechanistic studies revealed that SSY reduced lipid peroxidation in the hippocampus and frontal cortex, key brain regions affected by chronic stress. Furthermore, UCMS significantly reduced the activity of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), whereas SSY treatment restored their activity, indicating antioxidative and neuroprotective effects in vivo. Gene expression analysis further revealed that SSY regulates oxidative stress via the Nrf2/Keap1 signaling pathway. In vitro studies using 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay confirmed the radical scavenging activities of SSY and its herbal components, demonstrating significant antioxidant potential. Phytochemical analysis identified delta-9-tetrahydrocannabinol, delta-9-tetrahydrocannabinolic acid A, and cannabinoids as bioactive compounds in SSY, along with potent antioxidants such as gallic acid, myricetin, myristicin, piperine, costunolide, and gingerol. These findings suggest that the SSY formula mitigates UCMS-induced cognitive function through its antioxidant properties via multiple pathways, including radical scavenging activities, modulating the Nrf2-Keap1 pathway, inducing the expression of HO-1, NQO1 mRNAs, and other antioxidant enzymes. This work bridges traditional Thai medicine with modern neuropharmacology. Full article
(This article belongs to the Special Issue Natural Products for Neuroprotection and Neurodegeneration)
Show Figures

Graphical abstract

25 pages, 6477 KiB  
Article
Endarachne binghamiae Ameliorates Hepatic Steatosis, Obesity, and Blood Glucose via Modulation of Metabolic Pathways and Oxidative Stress
by Sang-Seop Lee, Sang-Hoon Lee, So-Yeon Kim, Ga-Young Lee, Seung-Yun Han, Bong-Ho Lee and Yung-Choon Yoo
Int. J. Mol. Sci. 2025, 26(11), 5103; https://doi.org/10.3390/ijms26115103 - 26 May 2025
Viewed by 769
Abstract
Obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) are major contributors to the rise in metabolic disorders, particularly in developed countries. Despite the need for effective therapies, natural product-based interventions remain underexplored. This study investigated the therapeutic effects of Endarachne binghamiae, a [...] Read more.
Obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) are major contributors to the rise in metabolic disorders, particularly in developed countries. Despite the need for effective therapies, natural product-based interventions remain underexplored. This study investigated the therapeutic effects of Endarachne binghamiae, a type of brown algae, hot water extract (EB-WE) in ameliorating obesity and MASLD using high-fat diet (HFD)-induced ICR mice for an acute obesity model (4-week HFD feeding) and C57BL/6 mice for a long-term MASLD model (12-week HFD feeding). EB-WE administration significantly reduced body and organ weights and improved serum lipid markers, such as triglycerides (TG), total cholesterol (T-CHO), HDL (high-density lipoprotein), LDL (low-density lipoprotein), adiponectin, and apolipoprotein A1 (ApoA1). mRNA expression analysis of liver and skeletal muscle tissues revealed that EB-WE upregulated Ampkα and Cpt1 while downregulating Cebpα and Srebp1, suppressing lipogenic signaling. Additionally, EB-WE activated brown adipose tissue through Pgc1α and Ucp1, contributing to fatty liver alleviation. Western blot analysis of liver tissues demonstrated that EB-WE enhanced AMPK phosphorylation and modulated lipid metabolism by upregulating PGC-1α and UCP-1 and downregulating PPAR-γ, C/EBP-α, and FABP4 proteins. It also reduced oxidation markers, such as OxLDL (oxidized low-density lipoprotein) and ApoB (apolipoprotein B), while increasing ApoA1 levels. EB-WE suppressed lipid peroxidation by modulating oxidative stress markers, such as SOD (superoxide dismutase), CAT (catalase), GSH (glutathione), and MDA (malondialdehyde), in liver tissues. Furthermore, EB-WE regulated the glucose regulatory pathway in the liver and muscle by inhibiting the expression of Sirt1, Sirt4, Glut2, and Glut4 while increasing the expression of Nrf2 and Ho1. Tentative liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis for EB-WE identified bioactive compounds, such as pyropheophorbide A and digiprolactone, which are known to have antioxidant or metabolic regulatory activities. These findings suggest that EB-WE improves obesity and MASLD through regulation of metabolic pathways, glucose homeostasis, and antioxidant activity, making it a promising candidate for natural product-based functional foods and pharmaceuticals targeting metabolic diseases. Full article
(This article belongs to the Special Issue Advances and Emerging Trends in Marine Natural Products)
Show Figures

Figure 1

16 pages, 3661 KiB  
Article
Mechanism of Astragalus Polysaccharide in Alleviating Bovine Mammary Fibrosis Through ROS/NLRP3 Inhibition and EMT Regulation
by Jiang Zhang, Kejiang Liu, Tingji Yang, Hongwei Duan, Longfei Xiao, Quanwei Zhang, Yong Zhang, Weitao Dong and Xingxu Zhao
Antioxidants 2025, 14(5), 503; https://doi.org/10.3390/antiox14050503 - 23 Apr 2025
Viewed by 754
Abstract
Mastitis in dairy cows, typically caused by bacterial infection, is a common inflammatory condition of the mammary tissue that leads to fibrosis, adversely affecting cow health, milk production, and dairy product quality. Astragalus polysaccharide (APS) has shown effectiveness in alleviating inflammation and fibrosis [...] Read more.
Mastitis in dairy cows, typically caused by bacterial infection, is a common inflammatory condition of the mammary tissue that leads to fibrosis, adversely affecting cow health, milk production, and dairy product quality. Astragalus polysaccharide (APS) has shown effectiveness in alleviating inflammation and fibrosis in various organs. The study employed lipopolysaccharide (LPS) to induce fibrotic conditions in two experimental systems: MAC-T bovine mammary epithelial cells and Kunming mouse models. Key parameters, including relative gene mRNA expression, protein levels, and reactive oxygen species (ROS) levels, were assessed using RT-qPCR, Western blotting (WB), and 2’,7’-Dichlorofluorescin diacetate (DCFH-DA) techniques, while histological analysis of mammary tissue was performed using H&E and Masson trichrome staining. Measuring malondialdehyde (MDA) levels, assessing the enzyme activities of catalase (CAT), and superoxide dismutase (SOD) were two methods of assessing oxidative stress. These methods were also tested in mouse mammary glands. APS significantly decreased ROS concentrations (p < 0.01), restored oxidative stress balance in mice (p < 0.05), and reduced fibrosis and inflammation, as demonstrated by histological observations and analysis. It also exerted regulatory effects on fibrosis markers (E-cadherin, N-cadherin, α-SMA) and inflammation markers (NLRP3, ASC, Caspase-1, IL-1β), as demonstrated by changes in their mRNA and protein expression. These findings endorse APS’s viability as an alternative therapeutic agent for mammary fibrosis therapy by demonstrating its ability to inhibit epithelial-mesenchymal transition (EMT) in vitro and mammary fibrosis in vivo, while also mitigating ROS production and reducing inflammation. Full article
Show Figures

Figure 1

26 pages, 5850 KiB  
Article
Lipid-Based Nanoformulations of [6]-Gingerol for the Chemoprevention of Benzo[a] Pyrene-Induced Lung Carcinogenesis: Preclinical Evidence
by Faris Alrumaihi, Ali Yousif Babiker and Arif Khan
Pharmaceuticals 2025, 18(4), 574; https://doi.org/10.3390/ph18040574 - 15 Apr 2025
Viewed by 620
Abstract
Background/Objectives: [6]-Gingerol ([6]-G), a bioactive compound derived from Zingiber officinale (ginger), exhibits strong anticancer potential but is hindered by poor aqueous solubility and low bioavailability. This study aimed to develop and evaluate PEGylated liposomal [6]-G (6-G-Lip) to enhance its stability, bioavailability, and chemopreventive [...] Read more.
Background/Objectives: [6]-Gingerol ([6]-G), a bioactive compound derived from Zingiber officinale (ginger), exhibits strong anticancer potential but is hindered by poor aqueous solubility and low bioavailability. This study aimed to develop and evaluate PEGylated liposomal [6]-G (6-G-Lip) to enhance its stability, bioavailability, and chemopreventive efficacy in benzo[a]pyrene (BaP)-induced lung carcinogenesis. Methods: 6-G-Lip was synthesized using a modified thin-film hydration technique and characterized for size, polydispersity index (PDI), zeta potential, encapsulation efficiency (EE%), and release kinetics. The chemopreventive effects were assessed in BaP-induced lung cancer in Swiss albino mice, with prophylactic 6-G-Lip administration from two weeks before BaP exposure through 21 weeks. Cancer biomarkers, antioxidant enzyme activity, reactive oxygen species (ROS) generation, induction of apoptosis, and histopathological alterations were analyzed. Results: 6-G-Lip exhibited a particle size of 129.7 nm, a polydispersity index (PDI) of 0.16, a zeta potential of −18.2 mV, and an encapsulation efficiency (EE%) of 91%, ensuring stability and effective drug loading. The formulation exhibited a controlled release profile, with 26.5% and 47.5% of [6]-G released in PBS and serum, respectively, at 72 h. 6-G-Lip significantly lowered cancer biomarkers, restored antioxidant defenses (SOD: 5.60 U/min/mg protein; CAT: 166.66 μm H2O2/min/mg protein), reduced lipid peroxidation (MDA: 3.3 nm/min/mg protein), and induced apoptosis (42.2%), highlighting its chemopreventive efficacy. Conclusions: This study is the first to prepare, characterize, and evaluate PEGylated [6]-G-Lip for the chemoprevention of lung cancer. It modulates oxidative stress, restores biochemical homeostasis, and selectively induces apoptosis. These findings support 6-G-Lip as a promising nanotherapeutic strategy for cancer prevention. Full article
Show Figures

Graphical abstract

15 pages, 2754 KiB  
Article
Synergistic Anti-Inflammatory Effects of Pomegranate Peel–Hawthorn Combinations in Ulcerative Colitis: Network Pharmacology Prediction and Experimental Validation
by Shouqing Zhang, Quanyuan Qiu, Mengzhen Yuan, Jiajia Yu, Weiwei Gao, Xi Wang, Zhen Liu, Peng Yu, Cen Xiang and Yuou Teng
Curr. Issues Mol. Biol. 2025, 47(4), 243; https://doi.org/10.3390/cimb47040243 - 1 Apr 2025
Viewed by 659
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by complex pathogenesis involving dysregulated immunity and gut microbiota imbalance, demanding innovative therapeutic strategies. This study investigates the synergistic therapeutic potential of pomegranate peel–hawthorn combinations and their active constituents (ellagic acid and maslinic [...] Read more.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by complex pathogenesis involving dysregulated immunity and gut microbiota imbalance, demanding innovative therapeutic strategies. This study investigates the synergistic therapeutic potential of pomegranate peel–hawthorn combinations and their active constituents (ellagic acid and maslinic acid) through an integrative approach combining network pharmacology, in vitro/in vivo experiments, and gut microbiota analysis. Network pharmacology identified 61 shared therapeutic targets (p < 0.05 for pathway enrichment) and revealed complementary mechanisms: pomegranate peel primarily modulated AGE-RAGE/PI3K-Akt pathways, while hawthorn targeted IL-17/NF-κB signaling. Experimental validation demonstrated potent synergistic anti-inflammatory effects (combination index < 1), with optimal combinations reducing nitric oxide production by 52.35% (herbal extracts, p < 0.05) and 74.4% (active monomers, p < 0.05). In DSS-induced UC mice, combinatorial therapies significantly suppressed pro-inflammatory cytokines (TNF-α: 204.78 vs. 446.52 pg/mL in UC group, p < 0.05; IL-6: 33.19 vs. 64.86 pg/mL, p < 0.05), restored colonic SOD activity (72.31 vs. 50.10 U/mg·prot in UC group, p < 0.01), and alleviated histopathological damage, outperforming monotherapeutics. Gut microbiota analysis revealed the recovery of α-diversity indices and normalized Bacteroidota/Bacillota ratios. Mechanistically, the combinations suppressed MAPK/NF-κB signaling cascades, reducing p-p38/p38 (p < 0.01 vs. UC group) and p-ERK1/2/ERK1/2 (p < 0.01 vs. UC group) phosphorylation. These findings establish that pomegranate peel–hawthorn formulations exert multi-modal therapeutic effects through the synergistic inhibition of pathways, mitigation of oxidative stress, and restoration of the microbiota, offering a scientifically validated approach for UC management rooted in traditional medicine principles. Full article
Show Figures

Graphical abstract

17 pages, 3997 KiB  
Article
Ameliorative Effect of Banana Lectin in TNBS-Induced Colitis in C57BL/6 Mice Relies on the Promotion of Antioxidative Mechanisms in the Colon
by Radmila Miljković, Emilija Marinković, Ivana Prodić, Ana Kovačević, Isidora Protić-Rosić, Marko Vasić, Ivana Lukić, Marija Gavrović-Jankulović and Marijana Stojanović
Biomolecules 2025, 15(4), 476; https://doi.org/10.3390/biom15040476 - 25 Mar 2025
Cited by 1 | Viewed by 2857
Abstract
Background: The global burden of inflammatory bowel diseases (IBDs), including ulcerative colitis and Crohn’s disease, is constantly rising. As IBDs significantly reduce patients’ quality of life, prevention and efficient treatment of IBDs are of paramount importance. Although the molecular mechanisms underlying IBD [...] Read more.
Background: The global burden of inflammatory bowel diseases (IBDs), including ulcerative colitis and Crohn’s disease, is constantly rising. As IBDs significantly reduce patients’ quality of life, prevention and efficient treatment of IBDs are of paramount importance. Although the molecular mechanisms underlying IBD pathogenesis are still not completely understood, numerous studies indicate the essential role of oxidative stress in the progression of the diseases. Objective: The aim of this study was to investigate whether prophylactic administration of recombinant banana lectin (rBanLec) could positively affect antioxidative mechanisms in the colon and thus prevent or alleviate the severity of experimental colitis induced in C57BL/6 mice. Methods: The prophylactic potential of rBanLec, a mannose-binding lectin with immunomodulatory properties, was investigated in a model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in C57BL/6 mice. Mice received rBanLec at various doses (0.1, 1 and 10 μg/mL) before the induction of colitis. The severity of the disease was assessed by weight loss and reduction in colon length, and correlated with histopathological findings, cytokine milieu, and oxidative stress markers in the colon. Results: The obtained results revealed that pretreatment with a low dose of rBanLec (0.1 μg/mL) significantly reduced the severity of TNBS-induced colitis, as indicated by reduced weight loss, less severe histopathological damage, and a favorable anti-inflammatory cytokine milieu (increased IL-10 and TGFβ). In addition, rBanLec pretreatment improved the activity of antioxidant enzymes (SOD, CAT, and GST) and reduced markers of oxidative stress such as nitric oxide levels at the peak of the disease. In contrast, higher doses of rBanLec exacerbated inflammatory responses. Conclusions: Our findings indicate that at low doses rBanLec can alleviate the severity of colitis by modulating oxidative stress and promoting anti-inflammatory cytokine responses, positioning rBanLec as a potential candidate for treating IBDs. Full article
(This article belongs to the Section Biological Factors)
Show Figures

Figure 1

Back to TopTop