Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (206)

Search Parameters:
Keywords = mRNA capping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2917 KB  
Article
The Sirt1 Activator SRT1720 Mitigates Human Monocyte Activation and Improves Outcome During Gram-Negative Pneumosepsis in Mice
by Mathieu Blot, Valentine Léopold, Regina de Beer, Sandrine Florquin, Joe M. Butler, Cornelis van’t Veer, Alex F. de Vos and Tom van der Poll
Int. J. Mol. Sci. 2025, 26(19), 9309; https://doi.org/10.3390/ijms26199309 - 24 Sep 2025
Viewed by 78
Abstract
Community-acquired pneumonia (CAP) is a leading cause of death, with mortality linked to an unbalanced host response. Sirtuin (Sirt)1, a histone deacetylase, regulating metabolism and epigenetics, may be fundamental in activating the innate immune response. Sirt1 mRNA expression was significantly reduced in monocytes [...] Read more.
Community-acquired pneumonia (CAP) is a leading cause of death, with mortality linked to an unbalanced host response. Sirtuin (Sirt)1, a histone deacetylase, regulating metabolism and epigenetics, may be fundamental in activating the innate immune response. Sirt1 mRNA expression was significantly reduced in monocytes from CAP patients (n = 76) upon admission compared to healthy controls (n = 42), with levels returning to normal after 30 days. Pharmacological activation of Sirt1 with SRT1720 decreased LPS- and K. pneumoniae-induced IL-6 release in primary human monocytes and decreased NF-κB activation in THP1 cells. In a mouse K. pneumoniae pneumosepsis model, SRT1720 strongly reduced neutrophil influx and degranulation markers in bronchoalveolar lavage fluid, lowered pulmonary concentrations of IL-6 and TNF-α, and reduced lung pathology scores. Simultaneously, it reduced neutrophil content in liver tissue and plasma transaminase levels, alongside a trend toward reduced liver necrosis. Plasma IL-6 and TNF-α were significantly lower in SRT1720-treated mice at 42 h. Finally, while SRT1720 did not impact bacterial loads in the lungs, it reduced bacterial burden in blood, with a similar trend observed in liver homogenates. In conclusion, the Sirt1 activator SRT1720 exerts anti-inflammatory effects on human monocytes, reduces local and systemic inflammation and organ injury, and diminishes bacterial dissemination in murine pneumosepsis. Full article
(This article belongs to the Special Issue New Insights into the Immunopathology of Infectious Diseases)
Show Figures

Graphical abstract

25 pages, 6662 KB  
Article
In Vivo Immune Cell Responses and Long-Term Effects of Cold Atmospheric Plasma in the Upper Respiratory Tract
by Stephanie Arndt, Petra Unger, Lisa Gebhardt, Robert Schober, Mark Berneburg and Sigrid Karrer
Int. J. Mol. Sci. 2025, 26(18), 8852; https://doi.org/10.3390/ijms26188852 - 11 Sep 2025
Viewed by 324
Abstract
Cold atmospheric plasma (CAP) devices produce reactive oxygen and reactive nitrogen species, which have antimicrobial and antiviral effects, while also affecting the molecular and cellular processes in eukaryotic cells. This study investigates the effects of CAP treatment on immune responses and long-term organism [...] Read more.
Cold atmospheric plasma (CAP) devices produce reactive oxygen and reactive nitrogen species, which have antimicrobial and antiviral effects, while also affecting the molecular and cellular processes in eukaryotic cells. This study investigates the effects of CAP treatment on immune responses and long-term organism health in the upper respiratory tract (URT). Using a surface-microdischarge-based plasma intensive care (PIC) device from terraplasma medical GmbH, 129Sv/Ev wildtype mice were exposed to short (single 10 min session), long (five 10 min sessions), and recovery-phase treatments (five 10 min sessions; 7 days of recovery). Bronchoalveolar lavage fluid was examined by cytospin, fluorescence-activated cell sorting, and mRNA expression analysis. Lung tissue was analyzed for morphological changes (H&E), DNA damage (γH2AX), apoptosis (TUNEL), immune cell marker alterations (CD45, Ly-6G, CD68, CD3, MCC), and fibrosis (NE). Results showed that PIC treatment increased the number of apoptotic cells and activated immune markers, such as IFN-γ, IL-6, and TNF-α, in the lungs, especially after multiple treatments. These effects largely reversed after a 7-day regeneration period. Importantly, no DNA damage or morphological lung alterations were observed across groups. The findings suggest that PIC treatment in the URT induces transient immune activation without causing tissue damage, but caution is advised for patients with cytokine release syndrome or macrophage activation syndrome due to potential cytokine surges. Full article
(This article belongs to the Special Issue Advances and Current Challenges in Plasma Medicine)
Show Figures

Figure 1

4 pages, 312 KB  
Editorial
pDNA Impurities in mRNA Vaccines
by Luca Roncati, Nazha Ghaleb, Joya Ghaleb and Karl Kfoury
Microorganisms 2025, 13(9), 1975; https://doi.org/10.3390/microorganisms13091975 - 24 Aug 2025
Viewed by 1077
Abstract
Funded during the emergency phase of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, messenger RNA (mRNA) vaccines are single-stranded, 5′-capped mRNAs produced using a cell-free in vitro transcription from the corresponding plasmid DNA (pDNA) templates, encoding the viral spike (S) protein [...] Read more.
Funded during the emergency phase of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, messenger RNA (mRNA) vaccines are single-stranded, 5′-capped mRNAs produced using a cell-free in vitro transcription from the corresponding plasmid DNA (pDNA) templates, encoding the viral spike (S) protein of SARS-CoV-2 [...] Full article
Show Figures

Figure 1

15 pages, 1828 KB  
Article
Distinct Gut Microbiota Signatures Are Associated with Severity of Metabolic Dysfunction-Associated Steatotic Liver Disease in People with HIV
by Riccardo Righetti, Felice Cinque, Bertrand Lebouché, Luz Ramos Ballesteros, Jean-Pierre Routy, Marina B. Klein, Jason Szabo, Joseph Cox, Julian Falutz, Louis-Patrick Haraoui, Cecilia T. Costiniuk, Alexandra De Pokomandy, Thomas Pembroke, Marco Constante, Manuela Santos and Giada Sebastiani
Int. J. Mol. Sci. 2025, 26(17), 8165; https://doi.org/10.3390/ijms26178165 - 22 Aug 2025
Viewed by 702
Abstract
The progression of metabolic dysfunction-associated steatotic liver disease (MASLD) to severe forms, including metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis, involves metabolic dysfunction, genetics, and gut dysbiosis. People with HIV (PWH) represent a high-risk group for MASLD, but the role of gut microbiota [...] Read more.
The progression of metabolic dysfunction-associated steatotic liver disease (MASLD) to severe forms, including metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis, involves metabolic dysfunction, genetics, and gut dysbiosis. People with HIV (PWH) represent a high-risk group for MASLD, but the role of gut microbiota alterations in disease severity within this population remains poorly understood. We prospectively recruited PWH with MASLD, defined as the controlled attenuation parameter (CAP) ≥ 238 dB/m, and excluded those with viral hepatitis coinfection or alcohol abuse. Severe MASLD was defined as the presence of MASH (cytokeratin-18 ≥ 130.5 U/L) and/or significant liver fibrosis (liver stiffness ≥ 7.1 kPa). Stool samples were collected for 16S rRNA gene sequencing to characterize gut microbiota composition. Functional predictions were generated using PICRUSt. The differential abundance of bacterial taxa and predicted functions were analyzed using a generalized linear model with a negative binomial distribution. Among 34 PWH with MASLD, 18 (53%) met the criteria for severe MASLD. Microbiota profiling revealed significant differences in bacterial genera between the PWH with and without severe MASLD. Enrichment was observed in the Ruminococcus gnavus group, Negativibacillus, Holdemanella, Subdoligranulum, the Eubacterium hallii group, and Butyricicoccus, while depletion was seen in Prevotella, Alloprevotella, Dialister, Catenibacterium, the Christensenellaceae R 7 group, Clostridium sensu stricto, Olsenella, Oscillospiraceae UCG-005, Libanicoccus, and the Eubacterium siraeum group. Predicted functional pathways related to fatty acid degradation, folate biosynthesis, and amino acids metabolism did not differ between groups. MASLD severity in PWH is associated with a distinct gut microbiota signature, though not with functional pathway alterations. Microbial profiling may complement existing non-invasive biomarkers for risk stratification in this high-risk population. Full article
Show Figures

Graphical abstract

24 pages, 1583 KB  
Review
Targeting Cancer Translational Plasticity: IRES-Driven Metabolism and Survival Within the Tumor Microenvironment
by Fabrizio Damiano, Benedetta Di Chiara Stanca, Laura Giannotti, Eleonora Stanca, Angela Francesca Dinoi and Luisa Siculella
Cancers 2025, 17(17), 2731; https://doi.org/10.3390/cancers17172731 - 22 Aug 2025
Viewed by 801
Abstract
The tumor microenvironment creates strong stress conditions, including hypoxia and nutrient depletion, which cause the blocking of cap-dependent translation. Under stressful conditions, cancer cells exploit the cap-independent translation mechanism mediated by internal ribosome entry site (IRES), which ensures continued protein synthesis. IRES elements [...] Read more.
The tumor microenvironment creates strong stress conditions, including hypoxia and nutrient depletion, which cause the blocking of cap-dependent translation. Under stressful conditions, cancer cells exploit the cap-independent translation mechanism mediated by internal ribosome entry site (IRES), which ensures continued protein synthesis. IRES elements located in the 5′ untranslated regions of specific mRNAs allow selective translation of key anti-apoptotic and adaptive proteins. These proteins promote cellular processes that sustain cell survival, among them metabolic reprogramming, redox balance, and epithelial-to-mesenchymal transition, thus facilitating tumor progression and therapy resistance. IRES activity is dynamically regulated by IRES trans-acting factors, such as YB-1, PTB, and hnRNPA1, which respond to cellular stress by enhancing translation of crucial mRNAs. Emerging therapeutic strategies include pharmacological IRES inhibitors, RNA-based approaches targeting ITAF interactions, and IRES-containing vectors for controlled therapeutic gene expression. A deeper understanding of translational reprogramming, IRES structural diversity, and ITAF function is essential to develop targeted interventions to overcome therapeutic resistance and eliminate persistent tumor cell populations. Full article
(This article belongs to the Special Issue Targeting the Tumor Microenvironment (Volume II))
Show Figures

Figure 1

24 pages, 1962 KB  
Review
Uncovering the Epitranscriptome: A Review on mRNA Modifications and Emerging Frontiers
by Douglas M. Ruden
Genes 2025, 16(8), 951; https://doi.org/10.3390/genes16080951 - 12 Aug 2025
Viewed by 1412
Abstract
Background/Objectives: Messenger RNA (mRNA) modifications regulate key steps in gene expression, including splicing, translation, and stability. Despite over 300 known RNA modifications, the relatively small subset occurring in mRNA remains understudied compared with tRNA and rRNA. This review aims to systematically evaluate 15 [...] Read more.
Background/Objectives: Messenger RNA (mRNA) modifications regulate key steps in gene expression, including splicing, translation, and stability. Despite over 300 known RNA modifications, the relatively small subset occurring in mRNA remains understudied compared with tRNA and rRNA. This review aims to systematically evaluate 15 known naturally occurring mRNA-specific modifications, rank them by publication frequency, and highlight emerging frontiers in epitranscriptomics, including discovering new naturally occurring mRNA modifications and environmental RNA (eRNA) epitranscriptomics. Methods: We conducted a structured literature review of PubMed-indexed publications to rank mRNA modifications by citation prevalence. Key modifications such as m6A, m5C, Ψ, and m1A were analyzed in terms of enzymatic machinery (“writers,” “erasers,” and “readers”), molecular functions, and physiological relevance. We also reviewed technological advances, with a focus on nanopore sequencing for detection of RNA modifications in native and environmental contexts. Results: The modification m6A was identified as the most studied mRNA modification, followed by Ψ, m5C, and A-to-I editing (inosine). These modifications influence diverse mRNA processes, including translation efficiency, localization, and immune evasion. Cap-specific modifications such as Cap0, Cap1, and Cap2 were also described, highlighting their role in transcript stability and innate immune regulation. Advances in nanopore sequencing have enabled direct detection of RNA modifications and offer promise for eRNA (environmental RNA) surveys. The potential for nanopore sequencing of many other of the 335 known RNA modifications in the MODOMICS database using existing nanopore technologies is also discussed. Conclusions: mRNA modifications represent a critical, yet incompletely mapped, layer of gene regulation. Continued research—especially using nanopore and machine learning technologies—will help uncover their full biological significance. Exploration of eRNA and identifying new mRNA modifications will redefine our understanding of RNA biology. Full article
Show Figures

Graphical abstract

13 pages, 1533 KB  
Article
Co-Expression of TWIK-Related Acid-Sensitive K+ Channel 1 (TASK-1/KCNK3) and Platelet-Derived Growth Factor Receptor Alpha (PDGFRα/Pdgfra) in Adult Mouse Ovary
by Byeonggyu Ahn, Eun-Jin Kim, Jin-Mok Kim, Sohi Kang, Sumi Hwang, Chang-Woon Kim, In Ae Cho, Jeong Kyu Shin, Eun-A Ko, Dong-Kun Lee and Dawon Kang
Biomedicines 2025, 13(8), 1941; https://doi.org/10.3390/biomedicines13081941 - 8 Aug 2025
Viewed by 470
Abstract
Background/Objectives: Platelet-derived growth factor receptor alpha (PDGFRα) is a receptor involved in cell growth and differentiation, with unclear roles in ovarian tissues and potential interactions with KCNK3 (potassium two-pore domain channel subfamily K member 3), a member of the two-pore domain K [...] Read more.
Background/Objectives: Platelet-derived growth factor receptor alpha (PDGFRα) is a receptor involved in cell growth and differentiation, with unclear roles in ovarian tissues and potential interactions with KCNK3 (potassium two-pore domain channel subfamily K member 3), a member of the two-pore domain K+ channel involved in cellular homeostasis. This study aims to map PDGFRα expression across mouse tissues and to explore its co-expression with KCNK3 in the ovary. Methods: We visualized PDGFRα expression using RNA-seq data from the genotype-tissue expression (GTEx) BodyMAP across 54 human tissues and Cap Analysis of Gene Expression (CAGE) data for various mouse tissues. In PDGFRαEGFP mice expressing EGFP in PDGFRα+ cells, histological and fluorescence imaging were used to assess ovarian expression. Immunohistochemistry determined the co-localization of PDGFRα and KCNK3, and qPCR quantified their mRNA levels in the ovary, oviduct, and uterus. Results: PDGFRα showed high expression in human and mouse female reproductive tissues, particularly the ovary. In the PDGFRαEGFP mouse model, PDGFRα was primarily found in the thecal layer and stromal cells, not in granulosa cells or oocytes. Immunohistochemistry indicated that 90.2 ± 8.7% of PDGFRα+ cells expressed KCNK3 in the ovarian stroma. qPCR revealed lower PDGFRα and KCNK3 expression in the ovary compared to the oviduct and uterus. Conclusions: This study shows that PDGFRα is predominantly expressed in ovarian stromal and theca cells and is highly co-localized with KCNK3, suggesting a potential role for PDGFRα+ cells in ionic regulation and their possible involvement in follicular development and ovarian physiology. Full article
(This article belongs to the Special Issue Ovarian Physiology and Reproduction)
Show Figures

Graphical abstract

19 pages, 2642 KB  
Article
Lipid Nanoparticle-Encapsulated TALEN-Encoding mRNA Inactivates Hepatitis B Virus Replication in Cultured Cells and Transgenic Mice
by Tiffany Smith, Prashika Singh, Ridhwaanah Bhana, Dylan Kairuz, Kristie Bloom, Mohube Betty Maepa, Abdullah Ely and Patrick Arbuthnot
Viruses 2025, 17(8), 1090; https://doi.org/10.3390/v17081090 - 7 Aug 2025
Viewed by 1128
Abstract
Chronic infection with the hepatitis B virus (HBV) results in over 1 million deaths annually. Although currently licensed treatments, including pegylated interferon-α and nucleoside/nucleotide analogs, can inhibit viral replication, they rarely eradicate covalently closed circular DNA (cccDNA) reservoirs. Moreover, vaccination does not offer [...] Read more.
Chronic infection with the hepatitis B virus (HBV) results in over 1 million deaths annually. Although currently licensed treatments, including pegylated interferon-α and nucleoside/nucleotide analogs, can inhibit viral replication, they rarely eradicate covalently closed circular DNA (cccDNA) reservoirs. Moreover, vaccination does not offer therapeutic benefit to already infected individuals or non-responders. Consequently, chronic infection is maintained by the persistence of cccDNA in infected hepatocytes. For this reason, novel therapeutic strategies that permanently inactivate cccDNA are a priority. Obligate heterodimeric transcription activator-like effector nucleases (TALENs) provide the precise gene-editing needed to disable cccDNA. To develop this strategy using a therapeutically relevant approach, TALEN-encoding mRNA targeting viral core and surface genes was synthesized using in vitro transcription with co-transcriptional capping. TALENs reduced hepatitis B surface antigen (HBsAg) by 80% in a liver-derived mammalian cell culture model of infection. In a stringent HBV transgenic murine model, a single dose of hepatotropic lipid nanoparticle-encapsulated TALEN mRNA lowered HBsAg by 63% and reduced viral particle equivalents by more than 99%, without evidence of toxicity. A surveyor assay demonstrated mean in vivo HBV DNA mutation rates of approximately 16% and 15% for Core and Surface TALENs, respectively. This study presents the first evidence of the therapeutic potential of TALEN-encoding mRNA to inactivate HBV replication permanently. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

11 pages, 432 KB  
Article
Impact of Capsaicinoid Supplementation in Health and Performance of Broiler Chickens Subjected to Lipopolysaccharide Challenge
by Rayanne A. Nunes, Kelly M. M. Dias, Marcio S. Duarte, Claudson O. Brito, Ricardo V. Nunes, Tiago G. Petrolli, Samuel O. Borges, Larissa P. Castro, Beatriz G. Vale and Arele A. Calderano
Animals 2025, 15(15), 2203; https://doi.org/10.3390/ani15152203 - 26 Jul 2025
Viewed by 633
Abstract
This study investigated the effects of dietary capsaicinoid (CAP) supplementation on broiler chickens subjected to an inflammatory challenge induced by lipopolysaccharide (LPS). A total of 144 Cobb500™ male broilers (Rivelli Alimentos SA, Matheus Leme, Brazil), raised from 1 to 21 days, were randomly [...] Read more.
This study investigated the effects of dietary capsaicinoid (CAP) supplementation on broiler chickens subjected to an inflammatory challenge induced by lipopolysaccharide (LPS). A total of 144 Cobb500™ male broilers (Rivelli Alimentos SA, Matheus Leme, Brazil), raised from 1 to 21 days, were randomly assigned to three treatments, with eight replicates of six birds. Treatments were a control diet (CON), a control diet with LPS administration (CON+LPS), and a control diet supplemented with 1 mg CAP/kg feed and LPS (CAP+LPS). LPS was administered intraperitoneally on days 14, 16, 18, and 20. Performance, intestinal morphometry, serum metabolites, and jejunal gene expression related to oxidative and inflammatory responses were evaluated. Slaughter was at 20 days. Data were subjected to ANOVA and means compared by Tukey’s test at 0.05 significance. CON broilers exhibited the highest feed intake and a better feed conversion ratio (p < 0.05) compared to CON+LPS. CAP+LPS broilers showed higher body weight gain than CON+LPS but lower than CON broilers (p < 0.001). CON+LPS broilers had the highest crypt depth (p = 0.002). Higher mRNA expression of superoxide dismutase and catalase (p > 0.05) was observed in CON broilers. In conclusion, supplementation with a 1 mg CAP/kg diet improves the growth performance and intestinal morphometry of LPS-challenged broiler chickens. Full article
(This article belongs to the Special Issue Plant Extracts as Feed Additives in Animal Nutrition and Health)
Show Figures

Figure 1

28 pages, 2988 KB  
Review
Circular RNAs as Targets for Developing Anticancer Therapeutics
by Jaewhoon Jeoung, Wonho Kim, Hyein Jo and Dooil Jeoung
Cells 2025, 14(14), 1106; https://doi.org/10.3390/cells14141106 - 18 Jul 2025
Cited by 1 | Viewed by 1312
Abstract
Circular RNA (CircRNA) is a single-stranded RNA arising from back splicing. CircRNAs interact with mRNA, miRNA, and proteins. These interactions regulate various life processes, including transcription, translation, cancer progression, anticancer drug resistance, and metabolism. Due to a lack of cap and poly(A) tails, [...] Read more.
Circular RNA (CircRNA) is a single-stranded RNA arising from back splicing. CircRNAs interact with mRNA, miRNA, and proteins. These interactions regulate various life processes, including transcription, translation, cancer progression, anticancer drug resistance, and metabolism. Due to a lack of cap and poly(A) tails, circRNAs show exceptional stability and resistance to RNase degradation. CircRNAs exhibit dysregulated expression patterns in various cancers and influence cancer progression. Stability and regulatory roles in cancer progression make circRNAs reliable biomarkers and targets for the development of anticancer therapeutics. The dysregulated expression of circRNAs is associated with resistance to anticancer drugs. Enhanced glycolysis by circRNAs leads to resistance to anticancer drugs. CircRNAs have been known to regulate the response to chemotherapy drugs and immune checkpoint inhibitors. Exogenous circRNAs can encode antigens that can induce both innate and adaptive immunity. CircRNA vaccines on lipid nanoparticles have been shown to enhance the sensitivity of cancer patients to immune checkpoint inhibitors. In this review, we summarize the roles and mechanisms of circRNAs in anticancer drug resistance and glycolysis. This review discusses clinical applications of circRNA vaccines to overcome anticancer drug resistance and enhance the efficacy of immune checkpoint inhibitors. The advantages and disadvantages of circRNA vaccines are also discussed. Overall, this review stresses the potential value of circRNAs as new therapeutic targets and diagnostic/prognostic biomarkers for cancer Full article
Show Figures

Figure 1

30 pages, 2301 KB  
Review
Retinoic Acid Induced 1 and Smith–Magenis Syndrome: From Genetics to Biology and Possible Therapeutic Strategies
by Jasmine Covarelli, Elisa Vinciarelli, Alessandra Mirarchi, Paolo Prontera and Cataldo Arcuri
Int. J. Mol. Sci. 2025, 26(14), 6667; https://doi.org/10.3390/ijms26146667 - 11 Jul 2025
Viewed by 844
Abstract
Haploinsufficiency disorders are genetic diseases caused by reduced gene expression, leading to developmental, metabolic, and tumorigenic abnormalities. The dosage-sensitive Retinoic Acid Induced 1 (RAI1) gene, located within the 17p11.2 region, is central to the core features of Smith––Magenis syndrome (SMS) and [...] Read more.
Haploinsufficiency disorders are genetic diseases caused by reduced gene expression, leading to developmental, metabolic, and tumorigenic abnormalities. The dosage-sensitive Retinoic Acid Induced 1 (RAI1) gene, located within the 17p11.2 region, is central to the core features of Smith––Magenis syndrome (SMS) and Potocki––Lupski syndrome (PTLS), caused by the reciprocal microdeletions and microduplications of this region, respectively. SMS and PTLS present contrasting phenotypes. SMS is characterized by severe neurobehavioral manifestations, sleep disturbances, and metabolic abnormalities, and PTLS shows milder features. Here, we detail the molecular functions of RAI1 in its wild-type and haploinsufficiency conditions (RAI1+/−), as studied in animal and cellular models. RAI1 acts as a transcription factor critical for neurodevelopment and synaptic plasticity, a chromatin remodeler within the Histone 3 Lysine 4 (H3K4) writer complex, and a regulator of faulty 5′-capped pre-mRNA degradation. Alterations of RAI1 functions lead to synaptic scaling and transcriptional dysregulation in neural networks. This review highlights key molecular mechanisms of RAI1, elucidating its role in the interplay between genetics and phenotypic features and summarizes innovative therapeutic approaches for SMS. These data provide a foundation for potential therapeutic strategies targeting RAI1, its mRNA products, or downstream pathways. Full article
(This article belongs to the Special Issue Gene Therapy Approaches in Haploinsufficiency Disorders)
Show Figures

Figure 1

25 pages, 3522 KB  
Article
Repurposing of Some Nucleoside Analogs Targeting Some Key Proteins of the Avian H5N1 Clade 2.3.4.4b to Combat the Circulating HPAI in Birds: An In Silico Approach
by Mohd Yasir Khan, Abid Ullah Shah, Nithyadevi Duraisamy, Mohammed Cherkaoui and Maged Gomaa Hemida
Viruses 2025, 17(7), 972; https://doi.org/10.3390/v17070972 - 10 Jul 2025
Viewed by 797
Abstract
(1) Background: The highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b is an emerging threat that poses a great risk to the poultry industry. A few human cases have been linked to the infection with this clade in many parts of the world, [...] Read more.
(1) Background: The highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b is an emerging threat that poses a great risk to the poultry industry. A few human cases have been linked to the infection with this clade in many parts of the world, including the USA. Unfortunately, there are no specific vaccines or antiviral drugs that could help prevent and treat the infection caused by this virus in birds. Our major objective is to identify/repurpose some (novel/known) antiviral compounds that may inhibit viral replication by targeting some key viral proteins. (2) Methods: We used state-of-the-art machine learning tools such as molecular docking and MD-simulation methods from Biovia Discovery Studio (v24.1.0.321712). The key target proteins such as hemagglutinin (HA), neuraminidase (NA), Matrix-2 protein (M2), and the cap-binding domain of PB2 (PB2/CBD) homology models were validated through structural assessment via DOPE scores, Ramachandran plots, and Verify-3D metrics, ensuring reliable structural representations, confirming their reliability for subsequent in silico approaches. These approaches include molecular docking followed by molecular dynamics simulation for 50 nanoseconds (ns), highlighting the structural stability and compactness of the docked complexes. (3) Results: Molecular docking revealed strong binding affinities for both sofosbuvir and GS441524, particularly with the NA and PB2/CBD protein targets. Among them, GS441524 exhibited superior interaction scores and a greater number of hydrogen bonds with key functional residues of NA and PB2/CBD. The MM-GBSA binding free energy calculations further supported these findings, as GS441524 displayed more favorable binding energies compared to several known standard inhibitors, including F0045S for HA, Zanamivir for NA, Rimantadine and Amantadine for M2, and PB2-39 for PB2/CBD. Additionally, 50 ns molecular dynamics simulations highlighted the structural stability and compactness of the GS441524-PB2/CBD complex, further supporting its potential as a promising antiviral candidate. Furthermore, hydrogen bond monitor analysis over the 50 ns simulation confirmed persistent and specific interactions between the ligand and proteins, suggesting that GS441524 may effectively inhibit the NA, and PB2/CBD might potentially disrupt PB2-mediated RNA synthesis. (4) Conclusions: Our findings are consistent with previous evidence supporting the antiviral activity of certain nucleoside analog inhibitors, including GS441524, against various coronaviruses. These results further support the potential repurposing of GS441524 as a promising therapeutic candidate against H5N1 avian influenza clade 2.3.4.4b. However, further functional studies are required to validate these in silico predictions and support the inhibitory action of GS441524 against the targeted proteins of H5N1, specifically clade 2.3.4.4b. Full article
(This article belongs to the Special Issue Interplay Between Influenza Virus and Host Factors)
Show Figures

Figure 1

24 pages, 13737 KB  
Article
Cold Atmospheric Plasma Improves the Therapeutic Success of Photodynamic Therapy on UV-B-Induced Squamous Cell Carcinoma in Hairless Mice
by Stephanie Arndt, Petra Unger, Irina Ivanova, Wolfgang Bäumler, Konstantin Drexler, Mark Berneburg and Sigrid Karrer
Pharmaceuticals 2025, 18(6), 907; https://doi.org/10.3390/ph18060907 - 17 Jun 2025
Viewed by 942
Abstract
Background/Objectives: Actinic keratosis (AK) occurs on sun-damaged skin and is considered a precursor to squamous cell carcinoma (SCC). Photodynamic therapy (PDT), using 5-aminolevulinic acid (ALA) and red light, is a common treatment for AK. However, its clinical efficacy for invasive tumors such as [...] Read more.
Background/Objectives: Actinic keratosis (AK) occurs on sun-damaged skin and is considered a precursor to squamous cell carcinoma (SCC). Photodynamic therapy (PDT), using 5-aminolevulinic acid (ALA) and red light, is a common treatment for AK. However, its clinical efficacy for invasive tumors such as SCC is limited by the poor penetration and distribution of the photosensitizer. Cold atmospheric plasma (CAP), a partially ionized gas, increases skin permeability and exhibits anti-cancer properties through the generation of reactive oxygen species (ROS). In a previous study, CAP showed promising synergistic effects when combined with ALA-PDT for the treatment of SCC cells in vitro. The present study investigated the effects of combining CAP with ALA-PDT on cutaneous AK and SCC induced by ultraviolet B (UV-B) irradiation in SKH1 hairless mice. Methods: We compared various application sequences (CAP-ALA–red light, ALA–red light–CAP, and ALA-CAP–red light) against conventional ALA-PDT using visual, histological, and molecular assessments of the affected skin. Results: The results demonstrated that combined treatments strongly inhibited the growth of UV-B-induced skin lesions. TUNEL staining revealed increased apoptosis following both single and combined therapies, while Ki-67 staining indicated reduced keratinocyte proliferation and diminished DNA damage in treated areas. mRNA expression analysis showed the upregulation of apoptosis-related genes (p16INK4a, p21CIP1) alongside enhanced anti-tumor immune responses (IL-6, IL-8) in the affected tissue samples. Notably, the combined treatment enhances the therapeutic effect, whereas the sequence of application does not seem to be relevant for therapeutic efficacy in vivo. Conclusions: Overall, these results suggest that CAP may enhance the anti-tumor effect of conventional ALA-PDT, supporting previous findings on SCC cells. Full article
Show Figures

Figure 1

15 pages, 3987 KB  
Article
Evolutionary Origins and Functional Diversification of 2′-O-Methyltransferases: Insights from Phylogenetic and Structural Analysis
by Sai-Nan Wang, Xiao-Xia Liu, Ling-Jie Lei, Qiang Wang, Zhu-Qing Shao and Yang Liu
Int. J. Mol. Sci. 2025, 26(11), 5260; https://doi.org/10.3390/ijms26115260 - 30 May 2025
Viewed by 731
Abstract
Ribose 2′-O-methylation (Nm), a key RNA modification, is catalyzed by diverse 2′-O-methyltransferases (2′-O-MTases), yet the evolutionary trajectories of these enzymes remain poorly studied. Here, with a comprehensive collection of functionally validated 2′-O-MTases, we classified them into 11 families based on the distinct methyltransferase [...] Read more.
Ribose 2′-O-methylation (Nm), a key RNA modification, is catalyzed by diverse 2′-O-methyltransferases (2′-O-MTases), yet the evolutionary trajectories of these enzymes remain poorly studied. Here, with a comprehensive collection of functionally validated 2′-O-MTases, we classified them into 11 families based on the distinct methyltransferase (MTase) domains. Homology searches across 198 species identified 6746 proteins, revealing the widespread distribution of 2′-O-MTases across the Tree of Life. Eight MTase domains (e.g., FtsJ, SpoU-methylase) existed both in eukaryotes and prokaryotes, indicating their ancient origin in the Last Universal Common Ancestor (LUCA). In contrast, the AdoMet-MTase, TRM13, and Trm56 domains are lineage-specific. Copy number expansion of most 2′-O-MTase families occurred as life evolved from prokaryotes to eukaryotes, where they might engage in more complex regulation of cell differentiation and development. Domain composition, Ka/Ks ratio, and domain structural analyses showed that purifying selection conserved catalytic domains across most families, despite the frequent integration of auxiliary domains. Notably, the FtsJ family diverged into three deeply separated lineages via remodeling the catalytic pocket, with each lineage specializing in the methylation of mRNA caps, rRNA, or tRNA. These findings illuminate the evolutionary trajectory of 2′-O-MTases, highlighting their ancient multiple origins and functional diversification. Full article
(This article belongs to the Special Issue Structural Dynamics of Macromolecules)
Show Figures

Figure 1

19 pages, 6943 KB  
Article
A Comparative Transcriptomic Analysis of miRNAs and Their Target Genes During the Formation of Melanin in Apis mellifera
by Xiangjie Zhu, Yuanmingyue Tian, Mingjie Cao, Chenyu Zhu, Jiaqi Shang, Jiaqi Sun, Yiming Liu, Bingfeng Zhou, Shujing Zhou and Xinjian Xu
Agriculture 2025, 15(9), 992; https://doi.org/10.3390/agriculture15090992 - 3 May 2025
Viewed by 611
Abstract
Melanin is an important component of the body color of honeybees, and its formation changes with the age of a capped brood of bees. However, up to now, the regulatory mechanism of melanin formation in honeybees remains unclear. To analyze the differential expression [...] Read more.
Melanin is an important component of the body color of honeybees, and its formation changes with the age of a capped brood of bees. However, up to now, the regulatory mechanism of melanin formation in honeybees remains unclear. To analyze the differential expression profile of microRNAs (miRNAs) in worker bees of Apis mellifera and to reveal the regulatory roles of differentially expressed miRNAs (DEmiRNAs) and mRNAs in the formation process of melanin during the capped brood stage, we used sRNA-seq technology and related software to analyze samples from four key developmental stages during the capped brood stage, when body color develops in Apis mellifera, namely, mature larvae (L0), pre-pupae (PP3), early pupae (P6) and mid-pupae (P9). A total of 1291 miRNAs were identified by bioinformatics. Three comparison groups were analyzed: L0 vs. PP3, PP3 vs. P6, and P6 vs. P9. A total of 171, 94, and 19 DEmiRNAs were identified in these groups, respectively, which regulate 1481, 690, and 182 differentially expressed target mRNAs (target DEmRNAs). The functional analysis of target DEmRNAs indicated that DEmiRNAs might regulate the formation of capped brood melanin in honeybees by activating expression changes in key genes in signaling pathways, such as the Wnt signaling pathway, melanogenesis, and the Toll and Imd signaling pathway, through activating miR-315-x, miR-8, ple, yellow family genes, wnt1, etc. Our research provides a theoretical basis for future analysis of the regulatory role of miRNAs in the formation of melanin in honeybees. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

Back to TopTop