Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = lysozyme aggregates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3164 KB  
Article
Lysozyme Amyloid for Synthetic RNA Delivery
by Benjamin Beluzo, Maytham Ismail, Sergei Chuikov, Venkateshwar G. Keshamouni and Mathumai Kanapathipillai
Pharmaceutics 2025, 17(9), 1094; https://doi.org/10.3390/pharmaceutics17091094 - 22 Aug 2025
Viewed by 612
Abstract
Background/Objectives: Lysozyme-based amyloid aggregates offer a promising platform for RNA delivery due to their stability, cationic nature, biocompatibility, and ability to form well-defined structures. In this study, we evaluated their potential as drug carriers, focusing on the delivery of polyinosinic–polycytidylic acid (Poly(I:C)), [...] Read more.
Background/Objectives: Lysozyme-based amyloid aggregates offer a promising platform for RNA delivery due to their stability, cationic nature, biocompatibility, and ability to form well-defined structures. In this study, we evaluated their potential as drug carriers, focusing on the delivery of polyinosinic–polycytidylic acid (Poly(I:C)), an immunostimulatory synthetic RNA. To validate RNA delivery capability and rule out the possibility that observed effects arose from the lysozyme–Poly(I:C) complex itself, small interfering RNA (siRNA) was also used to verify that the successful delivery of intact and functional RNA was the cause of the observed effects. Methods: The aggregates were characterized by particle size, zeta potential, morphology, and RNA encapsulation efficiency. Results: In vitro studies using RAW 264.7 macrophage-like cells demonstrated that Poly(I:C)-loaded aggregates improved RNA uptake and triggered significant immune activation without inducing toxicity. To further confirm the potential of lysozyme amyloids in RNA delivery, GFP siRNA-loaded aggregates were evaluated in A549-GFP cells. A notable decrease in GFP expression, confirmed through confocal microscopy and flow cytometry, confirmed successful intracellular delivery. Conclusions: These results highlight the potential of lysozyme amyloids as non-viral vectors for RNA delivery, with promising applications in immunotherapy. Full article
Show Figures

Figure 1

16 pages, 3644 KB  
Article
Sensing Protein Structural Transitions with Microfluidic Modulation Infrared Spectroscopy
by Lathan Lucas, Phoebe S. Tsoi, Ananya Nair, Allan Chris M. Ferreon and Josephine C. Ferreon
Biosensors 2025, 15(6), 382; https://doi.org/10.3390/bios15060382 - 13 Jun 2025
Cited by 1 | Viewed by 1144
Abstract
Microfluidic modulation spectroscopy-infrared (MMS) offers a label-free, high-sensitivity approach for quantifying changes in protein secondary structures under native solution conditions. MMS subtracts the solvent backgrounds from sample signals by alternately flowing proteins and matched buffers through a microfluidic chamber, yielding clear amide I [...] Read more.
Microfluidic modulation spectroscopy-infrared (MMS) offers a label-free, high-sensitivity approach for quantifying changes in protein secondary structures under native solution conditions. MMS subtracts the solvent backgrounds from sample signals by alternately flowing proteins and matched buffers through a microfluidic chamber, yielding clear amide I spectra from microliter volumes. In this study, we validated MMS on canonical globular proteins, bovine serum albumin, mCherry, and lysozyme, demonstrating accurate detection and resolution of α-helix, β-sheet, and mixed-fold structures. Applying MMS to the intrinsically disordered protein Tau, we detected environment-driven shifts in transient conformers: both the acidic (pH 2.5) and alkaline (pH 10) conditions increased the turn/unordered structures and decreased the α-helix content relative to the neutral pH, highlighting the charge-mediated destabilization of the labile motifs. Hyperphosphorylation of Tau yielded a modest decrease in the α-helical fraction and an increase in the turn/unordered structures. Comparison of monomeric and aggregated hyperphosphorylated Tau revealed a dramatic gain in β-sheet and a loss in turn/unordered structures upon amyloid fibril formation, confirming MMS’s ability to distinguish disordered monomers from amyloids. These findings establish MMS as a robust platform for detecting protein secondary structures and monitoring aggregation pathways in both folded and disordered systems. The sensitive detection of structural transitions offers opportunities for probing misfolding mechanisms and advancing our understanding of aggregation-related diseases. Full article
(This article belongs to the Special Issue Design and Application of Microfluidic Biosensors in Biomedicine)
Show Figures

Figure 1

15 pages, 1485 KB  
Article
Novel Delivery of Cyclic-Diguanylate Monophosphate Utilizing Amyloid Depots
by Maytham Ismail, Benjamin Beluzo, Sergei Chuikov, Venkateshwar G. Keshamouni and Mathumai Kanapathipillai
Pharmaceutics 2025, 17(5), 668; https://doi.org/10.3390/pharmaceutics17050668 - 19 May 2025
Viewed by 757
Abstract
Background: Recently, cyclic diguanylate monophosphate (c-di-GMP) drug delivery has garnered interest due to its potential in cancer immune modulation. In this pilot study, we developed a novel c-di-GMP formulation based on peptide amyloids. The amyloid depots were formed by combining an amyloidogenic prone [...] Read more.
Background: Recently, cyclic diguanylate monophosphate (c-di-GMP) drug delivery has garnered interest due to its potential in cancer immune modulation. In this pilot study, we developed a novel c-di-GMP formulation based on peptide amyloids. The amyloid depots were formed by combining an amyloidogenic prone 12 amino acid peptide sequence of receptor-interacting protein kinase 3 (RIP3) with cationic lipid ALC-0315, or using lysozyme proteins. Both RIP3 and lysozyme proteins have intrinsic physiological functions. This is the first time intrinsic peptides/protein-based amyloids have been explored for c-di-GMP delivery. The main goal was to evaluate how these amyloid depots could enhance c-di-GMP drug delivery and modulate responses in RAW 264.7 macrophage-like cells. Methods: Physicochemical characterization and cellular assays were utilized to characterize the amyloid structures and assess the efficacy. Results: Our results show that amyloid aggregates significantly improve the therapeutic efficacy of c-di-GMP. When RAW 264.7 cells were treated with c-di-GMP amyloids, we observed at least a 1.5-fold change in IL-6 expression, nitric oxide (NO) production, and reactive oxygen species (ROS) production compared to treatment with 5x free c-di-GMP treatment, which suggests that this system holds promise for enhanced therapeutic effects. Conclusions: Overall, these findings emphasize the potential of amyloid-based delivery systems as a promising approach for c-di-GMP delivery, warranting further investigations into their potential in therapeutic applications. Full article
(This article belongs to the Special Issue Advances in Delivery of Peptides and Proteins)
Show Figures

Graphical abstract

16 pages, 3009 KB  
Article
Destabilising Effect of Class B CpG Adjuvants on Different Proteins and Vaccine Candidates
by Kawkab Kanjo, Rakesh Lothe, Gaurav Nagar, Meghraj Rajurkar, Harish Rao, Saurabh Batwal, Umesh Shaligram and Raghavan Varadarajan
Vaccines 2025, 13(4), 395; https://doi.org/10.3390/vaccines13040395 - 8 Apr 2025
Cited by 1 | Viewed by 876
Abstract
Background: Adjuvants function by enhancing the breadth, durability, and magnitude of the immune response, but little is known about their impact on vaccine stability. CpG is a widely used adjuvant that is included in several recently approved COVID-19 vaccines using Spike protein, RBD, [...] Read more.
Background: Adjuvants function by enhancing the breadth, durability, and magnitude of the immune response, but little is known about their impact on vaccine stability. CpG is a widely used adjuvant that is included in several recently approved COVID-19 vaccines using Spike protein, RBD, or whole inactivated virus. Methods: Here, we investigate the in vitro stability of the Receptor-Binding Domain (RBD) of the SARS-CoV-2 Spike protein, as well as a number of other proteins formulated with a class B CpG adjuvant. Results: We show that RBD, BSA, and lysozyme proteins are less thermally stable, more aggregation-prone, and more protease-sensitive in the presence of CpG than without it, and that these effects are enhanced with prolonged incubation. For RBD, the effects of CpG are pH-independent but dependent on the salt concentration, with relative destabilisation decreasing with an increasing salt concentration, indicative of an electrostatic component to the interaction between CpG and the protein. The reduced thermal and proteolytic stability found in the presence of CpG is indicative of a preferential interaction of CpG with the unfolded state of the protein relative to its native state. It remains to be determined if these in vitro characteristics are unique to CpG or are also shared by other non-CpG commercial adjuvants, if they are antigen-dependent, and if and how they correlate with the in vivo immunogenicity of an adjuvanted vaccine. Conclusions: It is demonstrated that the CpG adjuvant is critical to enhancing immunogenicity and is a key reason for the success of multiple licensed commercial vaccines. Nonetheless, our work suggests that careful and systematic in vitro formulation studies may be warranted for the development of suitable, stable formulations of CpG-adjuvanted vaccine candidates. Full article
(This article belongs to the Special Issue Advances in Vaccine Adjuvants)
Show Figures

Figure 1

17 pages, 10474 KB  
Article
Cholinium-Based Ionic Liquids Modulate Protein Stability: A Comparative Study of Enzymes and Albumins
by Artashes A. Khachatrian, Timur A. Mukhametzyanov, Ramazan Z. Salikhov, Alexandra E. Klimova, Dmitry G. Yakhvarov, Bulat F. Garifullin, Olga S. Terenteva, Pavel L. Padnya, Ivan I. Stoikov and Boris N. Solomonov
Molecules 2025, 30(7), 1574; https://doi.org/10.3390/molecules30071574 - 31 Mar 2025
Cited by 1 | Viewed by 1064
Abstract
This work aims to assess the intermolecular interaction of choline ionic liquids (ILs) (choline malonate ([Ch][Mal]), choline succinate ([Ch][Suc]), and choline valinate ([Ch][Val]) with two enzymes (lysozyme and α-chymotrypsin). We evaluated the state of the tertiary protein structure using circular dichroism (CD) spectrometry [...] Read more.
This work aims to assess the intermolecular interaction of choline ionic liquids (ILs) (choline malonate ([Ch][Mal]), choline succinate ([Ch][Suc]), and choline valinate ([Ch][Val]) with two enzymes (lysozyme and α-chymotrypsin). We evaluated the state of the tertiary protein structure using circular dichroism (CD) spectrometry and quantified the binding parameters of the binding of the ionic liquids to the enzymes by fluorescence spectroscopy. The binding energies of the enzymes and the localization of ions on them were estimated using the molecular docking. We then analyzed the relationship between the enzymes’ thermostability and their tendency towards aggregation in the enzyme/ionic liquid systems. The obtained results were compared with previous data on albumins to identify similarities and differences between the behavior of enzymes and albumins in ionic liquid solutions. Despite the comparable values of the binding constants, the effect of ionic liquids on the thermostability of enzymes was the opposite of their effect on albumins. In addition, although these ionic liquids promoted aggregation in both enzymes and albumins, this effect was much more pronounced for albumins. Full article
Show Figures

Graphical abstract

16 pages, 8969 KB  
Article
The Contrasting Effect of Sodium Alginate on Lysozyme and Albumin Denaturation and Fibril Formation
by Diliara R. Khaibrakhmanova, Polina R. Kuzivanova, Bulat R. Gainutdinov, Timur I. Magsumov, Alena A. Nikiforova and Igor A. Sedov
Biophysica 2024, 4(4), 651-666; https://doi.org/10.3390/biophysica4040043 - 12 Dec 2024
Cited by 2 | Viewed by 1656
Abstract
The effect of sodium alginate on the denaturation and aggregation behavior of bovine serum albumin and hen egg-white lysozyme was studied. Large amounts of polysaccharide increase the thermal stability of albumin due to the weak binding interactions. At the same time, sodium alginate [...] Read more.
The effect of sodium alginate on the denaturation and aggregation behavior of bovine serum albumin and hen egg-white lysozyme was studied. Large amounts of polysaccharide increase the thermal stability of albumin due to the weak binding interactions. At the same time, sodium alginate can reduce the quantity of amyloid fibrils formed by albumin under denaturing conditions, which is a consequence of the stabilization of the native protein form by glycan binding. In the case of lysozyme, the polysaccharide has no influence on the thermal stability of the protein in 2 M guanidinium hydrochloride. However, the inhibition of fibril formation with an increase in the lag time was observed, which is explained by the binding of sodium alginate to lysozyme fibrils, but not to the protein monomer. The molecular nature of the binding interactions between alginate and the studied proteins was elucidated using molecular docking and known experimental structures of glycan–protein complexes. Full article
(This article belongs to the Collection Feature Papers in Biophysics)
Show Figures

Figure 1

22 pages, 3839 KB  
Article
Exploring the Origins of Association of Poly(acrylic acid) Polyelectrolyte with Lysozyme in Aqueous Environment through Molecular Simulations and Experiments
by Maria Arnittali, Sokratis N. Tegopoulos, Apostolos Kyritsis, Vagelis Harmandaris, Aristeidis Papagiannopoulos and Anastassia N. Rissanou
Polymers 2024, 16(18), 2565; https://doi.org/10.3390/polym16182565 - 11 Sep 2024
Cited by 2 | Viewed by 2071
Abstract
This study provides a detailed picture of how a protein (lysozyme) complexes with a poly(acrylic acid) polyelectrolyte (PAA) in water at the atomic level using a combination of all-atom molecular dynamics simulations and experiments. The effect of PAA and temperature on the protein’s [...] Read more.
This study provides a detailed picture of how a protein (lysozyme) complexes with a poly(acrylic acid) polyelectrolyte (PAA) in water at the atomic level using a combination of all-atom molecular dynamics simulations and experiments. The effect of PAA and temperature on the protein’s structure is explored. The simulations reveal that a lysozyme’s structure is relatively stable except from local conformational changes induced by the presence of PAA and temperature increase. The effect of a specific thermal treatment on the complexation process is investigated, revealing both structural and energetic changes. Certain types of secondary structures (i.e., α-helix) are found to undergo a partially irreversible shift upon thermal treatment, which aligns qualitatively with experimental observations. This uncovers the origins of thermally induced aggregation of lysozyme with PAA and points to new PAA/lysozyme bonds that are formed and potentially enhance the stability in the complexes. As the temperature changes, distinct amino acids are found to exhibit the closest proximity to PAA, resulting into different PAA/lysozyme interactions; consequently, a different complexation pathway is followed. Energy calculations reveal the dominant role of electrostatic interactions. This detailed information can be useful for designing new biopolymer/protein materials and understanding protein function under immobilization of polyelectrolytes and upon mild denaturation processes. Full article
(This article belongs to the Special Issue Polymers, Biomolecules and Nanocomposites: Computational Perspectives)
Show Figures

Graphical abstract

13 pages, 2427 KB  
Article
Application of PLGA-PEG-PLGA Nanoparticles to Percutaneous Immunotherapy for Food Allergy
by Ryuse Sakurai, Hanae Iwata, Masaki Gotoh, Hiroyuki Ogino, Issei Takeuchi, Kimiko Makino, Fumio Itoh and Akiyoshi Saitoh
Molecules 2024, 29(17), 4123; https://doi.org/10.3390/molecules29174123 - 30 Aug 2024
Viewed by 5035
Abstract
Compared with oral or injection administration, percutaneous immunotherapy presents a promising treatment modality for food allergies, providing low invasiveness and safety. This study investigated the efficacy of percutaneous immunotherapy using hen egg lysozyme (HEL)-loaded PLGA-PEG-PLGA nanoparticles (NPs), as an antigen model protein derived [...] Read more.
Compared with oral or injection administration, percutaneous immunotherapy presents a promising treatment modality for food allergies, providing low invasiveness and safety. This study investigated the efficacy of percutaneous immunotherapy using hen egg lysozyme (HEL)-loaded PLGA-PEG-PLGA nanoparticles (NPs), as an antigen model protein derived from egg white, compared with that of HEL-loaded chitosan hydroxypropyltrimonium chloride (CS)-modified PLGA NPs used in previous research. The intradermal retention of HEL in excised mouse skin was measured using Franz cells, which revealed a 2.1-fold higher retention with PLGA-PEG-PLGA NPs than that with CS-modified PLGA NPs. Observation of skin penetration pathways using fluorescein-4-isothiocyanate (FITC)-labeled HEL demonstrated successful delivery of HEL deep into the hair follicles with PLGA-PEG-PLGA NPs. These findings suggest that after NPs delivery into the skin, PEG prevents protein adhesion and NPs aggregation, facilitating stable delivery deep into the skin. Subsequently, in vivo percutaneous administration experiments in mice, with concurrent iontophoresis, demonstrated a significant increase in serum IgG1 antibody production with PLGA-PEG-PLGA NPs compared with that with CS-PLGA NPs after eight weeks of administration. Furthermore, serum IgE production in each NP administration group significantly decreased compared with that by subcutaneous administration of HEL solution. These results suggest that the combination of PLGA-PEG-PLGA NPs and iontophoresis is an effective percutaneous immunotherapy for food allergies. Full article
(This article belongs to the Special Issue Applications of Nanoparticles in Catalysis, Sensing, and Biomedicine)
Show Figures

Graphical abstract

37 pages, 9501 KB  
Article
Towards Enhanced Tunability of Aqueous Biphasic Systems: Furthering the Grasp of Fluorinated Ionic Liquids in the Purification of Proteins
by Sara F. Carvalho, Margarida H. Custódio, Ana B. Pereiro and João M. M. Araújo
Int. J. Mol. Sci. 2024, 25(11), 5766; https://doi.org/10.3390/ijms25115766 - 25 May 2024
Cited by 2 | Viewed by 1761
Abstract
This work unfolds functionalized ABSs composed of FILs ([C2C1Im][C4F9SO3] and [N1112(OH)][C4F9SO3]), mere fluoro-containing ILs ([C2C1Im][CF3SO [...] Read more.
This work unfolds functionalized ABSs composed of FILs ([C2C1Im][C4F9SO3] and [N1112(OH)][C4F9SO3]), mere fluoro-containing ILs ([C2C1Im][CF3SO3] and [C4C1Im][CF3SO3]), known globular protein stabilizers (sucrose and [N1112(OH)][C4F9SO3]), low-molecular-weight carbohydrate (glucose), and even high-charge density salt (K3PO4). The ternary phase diagrams were determined, stressing that FILs highly increased the ability for ABS formation. The functionalized ABSs (FILs vs. mere fluoro-containing ILs) were used to extract lysozyme (Lys). The ABSs’ biphasic regions were screened in terms of protein biocompatibility, analyzing the impact of ABS phase-forming components in Lys by UV-VIS spectrophotometry, CD spectroscopy, fluorescence spectroscopy, DSC, and enzyme assay. Lys partition behavior was characterized in terms of extraction efficiency (% EE). The structure, stability, and function of Lys were maintained or improved throughout the extraction step, as evaluated by CD spectroscopy, DSC, enzyme assay, and SDS-PAGE. Overall, FIL-based ABSs are more versatile and amenable to being tuned by the adequate choice of the phase-forming components and selecting the enriched phase. Binding studies between Lys and ABS phase-forming components were attained by MST, demonstrating the strong interaction between Lys and FILs aggregates. Two of the FIL-based ABSs (30 %wt [C2C1Im][C4F9SO3] + 2 %wt K3PO4 and 30 %wt [C2C1Im][C4F9SO3] + 25 %wt sucrose) allowed the simultaneous purification of Lys and BSA in a single ABS extraction step with high yield (extraction efficiency up to 100%) for both proteins. The purity of both recovered proteins was validated by SDS-PAGE analysis. Even with a high-charge density salt, the FIL-based ABSs developed in this work seem more amenable to be tuned. Lys and BSA were purified through selective partition to opposite phases in a single FIL-based ABS extraction step. FIL-based ABSs are proposed as an improved extraction step for proteins, based on their biocompatibility, customizable properties, and selectivity. Full article
Show Figures

Graphical abstract

16 pages, 4615 KB  
Article
The Effect of Lysozyme on the Aggregation and Charging of Oxidized Carbon Nanohorn (CNHox) in Aqueous Solution
by Zhengjian Tian, Maolin Li, Takuya Sugimoto and Motoyoshi Kobayashi
Appl. Sci. 2024, 14(6), 2645; https://doi.org/10.3390/app14062645 - 21 Mar 2024
Cited by 3 | Viewed by 1641
Abstract
To clarify the effect of proteins on the charging and aggregation–dispersion characteristics of oxidized carbon nanohorn (CNHox), we measured the electrophoretic mobility and stability ratios as a function of concentrations of a model protein, lysozyme (LSZ), and KCl. The zeta potential from the [...] Read more.
To clarify the effect of proteins on the charging and aggregation–dispersion characteristics of oxidized carbon nanohorn (CNHox), we measured the electrophoretic mobility and stability ratios as a function of concentrations of a model protein, lysozyme (LSZ), and KCl. The zeta potential from the electrophoretic mobility of CNHox was neutralized and reversed by the addition of oppositely charged LSZ. Electrical and hydrophobic interactions between CNHox and LSZ can be attributed to the adsorption and charge reversal of CNHox. The stability ratio of CNHox in the presence or absence of LSZ showed Derjaguin–Landau and Verwey–Overbeek (DLVO) theory-like behavior. That is, the slow aggregation regime, fast aggregation regime, and critical coagulation concentration (CCC) were identified. At the isoelectric point, only the fast aggregation regime was shown. The existence of patch-charge attraction due to the charge heterogeneity on the surface was inferred to have happened due to the enhanced aggregation of CNHox at high LSZ dosage and low electrolyte concentration. The relationship between critical coagulation ionic strength and surface charge density at low LSZ dosage showed that the aggregation of CNHox is in line with the DLVO theory. An obvious decrement in the Hamaker constant at high LSZ dosage can probably be found due to an increased interaction of LSZ-covered parts. Full article
(This article belongs to the Special Issue Advances in the Improvement of Colloidal Systems’ Stability)
Show Figures

Figure 1

17 pages, 3516 KB  
Article
Water-Soluble Star Polymer as a Potential Photoactivated Nanotool for Lysozyme Degradation
by Lidia Mezzina, Angelo Nicosia, Laura Barone, Fabiana Vento and Placido Giuseppe Mineo
Polymers 2024, 16(2), 301; https://doi.org/10.3390/polym16020301 - 22 Jan 2024
Cited by 1 | Viewed by 1756
Abstract
The development of nanotools for chemical sensing and macromolecular modifications is a new challenge in the biomedical field, with emphasis on artificial peptidases designed to cleave peptide bonds at specific sites. In this landscape, metal porphyrins are attractive due to their ability to [...] Read more.
The development of nanotools for chemical sensing and macromolecular modifications is a new challenge in the biomedical field, with emphasis on artificial peptidases designed to cleave peptide bonds at specific sites. In this landscape, metal porphyrins are attractive due to their ability to form stable complexes with amino acids and to generate reactive oxygen species when irradiated by light of appropriate wavelengths. The issues of hydrophobic behavior and aggregation in aqueous environments of porphyrins can be solved by using its PEGylated derivatives. This work proposes the design of an artificial photo-protease agent based on a PEGylated mercury porphyrin, able to form a stable complex with l-Tryptophan, an amino acid present also in the lysozyme structure (a well-known protein model). The sensing and photodegradation features of PEGylated mercury porphyrin were exploited to detect and degrade both l-Trp and lysozyme using ROS, generated under green (532 nm) and red (650 nm) light lasers. The obtained system (Star3600_Hg) and its behavior as a photo-protease agent were studied by means of several spectroscopies (UV-Vis, fluorescence and circular dichroism), and MALDI-TOF mass spectrometry, showing the cleavage of lysozyme and the appearance of several short-chain residues. The approach of this study paves the way for potential applications in theranostics and targeted bio-medical therapies. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

17 pages, 3189 KB  
Article
pH-Dependent HEWL-AuNPs Interactions: Optical Study
by Elena A. Molkova, Vladimir I. Pustovoy, Evgenia V. Stepanova, Irina V. Gorudko, Maxim E. Astashev, Alexander V. Simakin, Ruslan M. Sarimov and Sergey V. Gudkov
Molecules 2024, 29(1), 82; https://doi.org/10.3390/molecules29010082 - 22 Dec 2023
Cited by 5 | Viewed by 1557
Abstract
Optical methods (spectroscopy, spectrofluorometry, dynamic light scattering, and refractometry) were used to study the change in the state of hen egg-white lysozyme (HEWL), protein molecules, and gold nanoparticles (AuNPs) in aqueous colloids with changes in pH, and the interaction of protein molecules with [...] Read more.
Optical methods (spectroscopy, spectrofluorometry, dynamic light scattering, and refractometry) were used to study the change in the state of hen egg-white lysozyme (HEWL), protein molecules, and gold nanoparticles (AuNPs) in aqueous colloids with changes in pH, and the interaction of protein molecules with nanoparticles was also studied. It was shown that changing pH may be the easiest way to control the protein corona on gold nanoparticles. In a colloid of nanoparticles, both in the presence and absence of protein, aggregation–deaggregation, and in a protein colloid, monomerization–dimerization–aggregation are the main processes when pH is changed. A specific point at pH 7.5, where a transition of the colloidal system from one state to another is observed, has been found using all the optical methods mentioned. It has been shown that gold nanoparticles can stabilize HEWL protein molecules at alkaline pH while maintaining enzymatic activity, which can be used in practice. The data obtained in this manuscript allow for the state of HEWL colloids and gold nanoparticles to be monitored using one or two simple and accessible optical methods. Full article
Show Figures

Figure 1

20 pages, 2707 KB  
Article
Antioxidant Effects and Probiotic Properties of Latilactobacillus sakei MS103 Isolated from Sweet Pickled Garlic
by Heng Li, Changlin Chen, Yuanxin Li, Zhengqiang Li, Chen Li and Chang Luan
Foods 2023, 12(23), 4276; https://doi.org/10.3390/foods12234276 - 27 Nov 2023
Cited by 10 | Viewed by 3269
Abstract
Fermented vegetable-based foods, renowned for their unique flavors and human health benefits, contain probiotic organisms with reported in vitro antioxidative effects. This study investigates the probiotic properties of Latilactobacillus sakei MS103 (L. sakei MS103) and its antioxidant activities using an in vitro [...] Read more.
Fermented vegetable-based foods, renowned for their unique flavors and human health benefits, contain probiotic organisms with reported in vitro antioxidative effects. This study investigates the probiotic properties of Latilactobacillus sakei MS103 (L. sakei MS103) and its antioxidant activities using an in vitro oxidative stress model based on the hydrogen peroxide (H2O2)-induced oxidative damage of RAW 264.7 cells. L. sakei MS103 exhibited tolerance to extreme conditions (bile salts, low pH, lysozyme, H2O2), antibiotic sensitivity, and auto-aggregation ability. Moreover, L. sakei MS103 co-aggregated with pathogenic Porphyromonas gingivalis cells, inhibited P. gingivalis-induced biofilm formation, and exhibited robust hydrophobic and electrostatic properties that enabled it to strongly bind to gingival epithelial cells and HT-29 cells for enhanced antioxidant effects. Additionally, L. sakei MS103 exhibited other antioxidant properties, including ion-chelating capability and the ability to effectively scavenge superoxide anion free radicals, hydroxyl, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid, and 2,2-diphenyl-1-picrylhydrazyl. Furthermore, the addition of live or heat-killed L. sakei MS103 cells to H2O2-exposed RAW 264.7 cells alleviated oxidative stress, as reflected by reduced malondialdehyde levels, increased glutathione levels, and the up-regulated expression of four antioxidant-related genes (gshR2, gshR4, Gpx, and npx). These findings highlight L. sakei MS103 as a potential probiotic capable of inhibiting activities of P. gingivalis pathogenic bacteria and mitigating oxidative stress. Full article
(This article belongs to the Special Issue Lactic Acid Bacteria and Fermentation in Food Enrichment)
Show Figures

Figure 1

12 pages, 4822 KB  
Article
Sulfated Polysaccharides as a Fighter with Protein Non-Physiological Aggregation: The Role of Polysaccharide Flexibility and Charge Density
by Olga N. Makshakova, Liliya R. Bogdanova, Dzhigangir A. Faizullin, Elena A. Ermakova and Yuriy F. Zuev
Int. J. Mol. Sci. 2023, 24(22), 16223; https://doi.org/10.3390/ijms242216223 - 12 Nov 2023
Cited by 3 | Viewed by 1871
Abstract
Proteins can lose native functionality due to non-physiological aggregation. In this work, we have shown the power of sulfated polysaccharides as a natural assistant to restore damaged protein structures. Protein aggregates enriched by cross-β structures are a characteristic of amyloid fibrils related to [...] Read more.
Proteins can lose native functionality due to non-physiological aggregation. In this work, we have shown the power of sulfated polysaccharides as a natural assistant to restore damaged protein structures. Protein aggregates enriched by cross-β structures are a characteristic of amyloid fibrils related to different health disorders. Our recent studies demonstrated that model fibrils of hen egg white lysozyme (HEWL) can be disaggregated and renatured by some negatively charged polysaccharides. In the current work, using the same model protein system and FTIR spectroscopy, we studied the role of conformation and charge distribution along the polysaccharide chain in the protein secondary structure conversion. The effects of three carrageenans (κ, ι, and λ) possessing from one to three sulfate groups per disaccharide unit were shown to be different. κ-Carrageenan was able to fully eliminate cross-β structures and complete the renaturation process. ι-Carrageenan only initiated the formation of native-like β-structures in HEWL, retaining most of the cross-β structures. In contrast, λ-carrageenan even increased the content of amyloid cross-β structures. Furthermore, κ-carrageenan in rigid helical conformation loses its capability to restore protein native structures, largely increasing the amount of amyloid cross-β structures. Our findings create a platform for the design of novel natural chaperons to counteract protein unfolding. Full article
Show Figures

Figure 1

13 pages, 7704 KB  
Article
Solvent-Induced Lag Phase during the Formation of Lysozyme Amyloid Fibrils Triggered by Sodium Dodecyl Sulfate: Biophysical Experimental and In Silico Study of Solvent Effects
by Gabriel Zazeri, Ana Paula Ribeiro Povinelli, Nathália Mariana Pavan, Alan M. Jones and Valdecir Farias Ximenes
Molecules 2023, 28(19), 6891; https://doi.org/10.3390/molecules28196891 - 30 Sep 2023
Cited by 16 | Viewed by 2128
Abstract
Amyloid aggregates arise from either the partial or complete loss of the native protein structure or the inability of proteins to attain their native conformation. These aggregates have been linked to several diseases, including Alzheimer’s, Parkinson’s, and lysozyme amyloidosis. A comprehensive dataset was [...] Read more.
Amyloid aggregates arise from either the partial or complete loss of the native protein structure or the inability of proteins to attain their native conformation. These aggregates have been linked to several diseases, including Alzheimer’s, Parkinson’s, and lysozyme amyloidosis. A comprehensive dataset was recently reported, demonstrating the critical role of the protein’s surrounding environment in amyloid formation. In this study, we investigated the formation of lysozyme amyloid fibrils induced by sodium dodecyl sulfate (SDS) and the effect of solvents in the medium. Experimental data obtained through fluorescence spectroscopy revealed a notable lag phase in amyloid formation when acetone solution was present. This finding suggested that the presence of acetone in the reaction medium created an unfavorable microenvironment for amyloid fibril formation and impeded the organization of the denatured protein into the fibril form. The in silico data provided insights into the molecular mechanism of the interaction between acetone molecules and the lysozyme protofibril, once acetone presented the best experimental results. It was observed that the lysozyme protofibril became highly unstable in the presence of acetone, leading to the complete loss of its β-sheet conformation and resulting in an open structure. Furthermore, the solvation layer of the protofibril in acetone solution was significantly reduced compared to that in other solvents, resulting in fewer hydrogen bonds. Consequently, the presence of acetone facilitated the exposure of the hydrophobic portion of the protofibril, precluding the amyloid fibril formation. In summary, our study underscores the pivotal role the surrounding environment plays in influencing amyloid formation. Full article
(This article belongs to the Special Issue Exploring Non-bonded Interactions in Macromolecular Chemistry)
Show Figures

Graphical abstract

Back to TopTop