Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (553)

Search Parameters:
Keywords = lysozyme activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1836 KiB  
Article
Microbial Profiling of Buffalo Mozzarella Whey and Ricotta Exhausted Whey: Insights into Potential Probiotic Subdominant Strains
by Andrea Bonfanti, Romano Silvestri, Ettore Novellino, Gian Carlo Tenore, Elisabetta Schiano, Fortuna Iannuzzo, Massimo Reverberi, Luigi Faino, Marzia Beccaccioli, Francesca Sivori, Carlo Giuseppe Rizzello and Cristina Mazzoni
Microorganisms 2025, 13(8), 1804; https://doi.org/10.3390/microorganisms13081804 (registering DOI) - 1 Aug 2025
Abstract
Buffalo mozzarella cheese whey (CW) and ricotta cheese exhausted whey (RCEW) are valuable by-products of the Mozzarella di Bufala Campana PDO production chain. This study characterized their microbial communities using an integrated culture-dependent and -independent approach. Metabarcoding analysis revealed that the dominance of [...] Read more.
Buffalo mozzarella cheese whey (CW) and ricotta cheese exhausted whey (RCEW) are valuable by-products of the Mozzarella di Bufala Campana PDO production chain. This study characterized their microbial communities using an integrated culture-dependent and -independent approach. Metabarcoding analysis revealed that the dominance of lactic acid bacteria (LAB), including Streptococcus thermophilus, Lactobacillus delbrueckii, and Lactobacillus helveticus, alongside diverse heat-resistant yeasts such as Cyberlindnera jadinii. Culture-based isolation identified subdominant lactic acid bacteria strains, not detected by sequencing, belonging to Leuconostoc mesenteroides, Enterococcus faecalis, and Enterococcus durans. These strains were further assessed for their probiotic potential. E. faecalis CW1 and E. durans RCEW2 showed tolerance to acidic pH, bile salts, and lysozyme, as well as a strong biofilm-forming capacity and antimicrobial activity against Bacillus cereus and Staphylococcus aureus. Moreover, bile salt resistance suggests potential functionality in cholesterol metabolism. These findings support the potential use of CW and RCEW as reservoirs of novel, autochthonous probiotic strains and underscore the value of regional dairy by-products in food biotechnology and gut health applications. Full article
(This article belongs to the Special Issue Microbial Fermentation, Food and Food Sustainability)
19 pages, 10865 KiB  
Article
Evaluation of Immunoprotective Activities of White Button Mushroom (Agaricus bisporus) Water Extract Against Major Pathogenic Bacteria (Aeromonas hydrophila or Vibrio fluvialis) in Goldfish (Carassius auratus)
by Shujun Sun, Jing Chen, Pan Cui, Xiaoxiao Yang, Yuhan Zheng, Zijian Ma, Yong Liu and Xiang Liu
Animals 2025, 15(15), 2257; https://doi.org/10.3390/ani15152257 - 1 Aug 2025
Abstract
The white button mushroom (Agaricus bisporus) is a widely cultivated edible and medicinal mushroom, which contains various active substances, and has application value against pathogenic bacteria in aquaculture. Firstly, A. bisporus water extract (AB-WE) was prepared. Through the detection kits, it [...] Read more.
The white button mushroom (Agaricus bisporus) is a widely cultivated edible and medicinal mushroom, which contains various active substances, and has application value against pathogenic bacteria in aquaculture. Firstly, A. bisporus water extract (AB-WE) was prepared. Through the detection kits, it was found that the polysaccharide, protein, and polyphenol components of AB-WE were 9.11%, 3.3%, and 1.5%, respectively. The 246 compounds were identified in AB-WE, and the major small-molecule components included L-Isoleucine, L-Tyrosine, L-Valine, and Linoleic acid by HPLC-Q Exactive-Orbitrap-MS. Secondly, the AB-WE was evaluated for its immunological activities through dietary administration and pathogen challenge (Aeromonas hydrophila and Vibrio fluvialis) in goldfish (Carassius auratus). The results showed that the levels of immune factors of acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LZM) increased (p < 0.05) in goldfish, and the relative percentage survival of AB-WE against A. hydrophila and V. fluvialis were 80.00% (p < 0.05) and 81.82% (p < 0.05), respectively. The AB-WE reduced the bacterial content in renal tissue, enhanced the phagocytic activity of leukocytes, and exhibited antioxidant and anti-inflammatory effects by reducing the expression of antioxidant-related factors and inflammatory factors. Through histopathological and immunofluorescence techniques, it was found that AB-WE maintained the integrity of visceral tissues and reduced renal tissue apoptosis and DNA damage. Therefore, AB-WE exhibits immunoprotective activity against A. hydrophila and V. fluvialis infections in fish, and holds promise as an immunotherapeutic agent against major pathogenic bacteria in aquaculture. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

24 pages, 7353 KiB  
Article
Characterization and Application of Synergistically Degraded Chitosan in Aquafeeds to Promote Immunity, Antioxidative Status, and Disease Resistance in Nile Tilapia (Oreochromis niloticus)
by Thitirat Rattanawongwiboon, Natthapong Paankhao, Wararut Buncharoen, Nantipa Pansawat, Benchawan Kumwan, Pakapon Meachasompop, Phunsin Kantha, Tanavan Pansiri, Theeranan Tangthong, Sakchai Laksee, Suwinai Paankhao, Kittipong Promsee, Mongkhon Jaroenkittaweewong, Pattra Lertsarawut, Prapansak Srisapoome, Kasinee Hemvichian and Anurak Uchuwittayakul
Polymers 2025, 17(15), 2101; https://doi.org/10.3390/polym17152101 - 31 Jul 2025
Viewed by 137
Abstract
This study investigated the immunonutritional potential of high-molecular-weight (Mw~85 kDa), non-degraded chitosan (NCS) and gamma-radiation-degraded, low-molecular-weight chitosan (RCS) incorporated into aquafeeds for Nile tilapia (Oreochromis niloticus). RCS was produced by γ-irradiation (10 kGy) in the presence of 0.25% (w/ [...] Read more.
This study investigated the immunonutritional potential of high-molecular-weight (Mw~85 kDa), non-degraded chitosan (NCS) and gamma-radiation-degraded, low-molecular-weight chitosan (RCS) incorporated into aquafeeds for Nile tilapia (Oreochromis niloticus). RCS was produced by γ-irradiation (10 kGy) in the presence of 0.25% (w/v) H2O2, yielding low-viscosity, colloidally stable nanoparticles with Mw ranging from 10 to 13 kDa. Five diets were formulated: a control, NCS at 0.50%, and RCS at 0.025%, 0.050%, and 0.075%. No adverse effects on growth were observed, confirming safety. Immune gene expression (e.g., ifng1, nfκb, tnf), antioxidant markers (e.g., reduced MDA, increased GSH and GR), and nonspecific humoral responses (lysozyme, IgM, and bactericidal activity) were significantly enhanced in the NCS-0.50, RCS-0.050, and RCS-0.075 groups. Notably, these benefits were achieved with RCS at 10-fold lower concentrations than NCS. Following challenge with Edwardsiella tarda, fish fed RCS-0.050 and RCS-0.075 diets exhibited the highest survival rates and relative percent survival, highlighting robust activation of innate and adaptive immunity alongside redox defense. These results support the use of low-Mw RCS as a biologically potent, cost-effective alternative to traditional high-Mw chitosan in functional aquafeeds. RCS-0.050 and RCS-0.075 show strong potential as immunonutritional agents to enhance fish health and disease resistance in aquaculture. Full article
(This article belongs to the Special Issue Polysaccharides: Synthesis, Properties and Applications)
Show Figures

Figure 1

21 pages, 2807 KiB  
Article
Phage Therapy Enhances Survival, Immune Response, and Metabolic Resilience in Pacific White Shrimp (Litopenaeus vannamei) Challenged with Vibrio parahaemolyticus
by Chao Zeng, Long Qi, Chao-Li Guan, Yu-Lin Chang, Yu-Yun He, Hong-Zheng Zhao, Chang Wang, Yi-Ran Zhao, Yi-Chen Dong and Guo-Fang Zhong
Fishes 2025, 10(8), 366; https://doi.org/10.3390/fishes10080366 - 30 Jul 2025
Viewed by 215
Abstract
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at [...] Read more.
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at various concentrations significantly improved shrimp survival, with the 1 ppm group demonstrating the highest survival rate. Enzymatic assays revealed that phage-treated shrimp exhibited enhanced immune enzyme activities, including acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LZM). In addition, antioxidant defenses such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and total antioxidant capacity (T-AOC) significantly improved, accompanied by reduced malondialdehyde (MDA) levels. Serum biochemical analyses demonstrated marked improvements in lipid metabolism, particularly reductions in triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL), alongside higher levels of beneficial high-density lipoprotein (HDL). Transcriptomic analysis identified 2274 differentially expressed genes (DEGs), notably enriched in pathways involving fatty acid metabolism, peroxisome functions, lysosomes, and Toll-like receptor (TLR) signaling. Specifically, phage treatment upregulated immune and metabolic regulatory genes, including Toll-like receptor 4 (TLR4), myeloid differentiation primary response protein 88 (MYD88), interleukin-1β (IL-1β), nuclear factor erythroid 2-related factor 2 (Nrf2), and peroxisome proliferator-activated receptor (PPAR), indicating activation of innate immunity and antioxidant defense pathways. These findings suggest that phage therapy induces protective immunometabolic adaptations beyond its direct antibacterial effects, thereby providing an ecologically sustainable alternative to antibiotics for managing bacterial diseases in shrimp aquaculture. Full article
(This article belongs to the Special Issue Healthy Aquaculture and Disease Control)
Show Figures

Figure 1

16 pages, 4256 KiB  
Article
Physiological Stress Responses Associated with Microplastic Ingestion in the Benthic Flatfish Bothus podas
by Amanda Cohen-Sánchez, Montserrat Compa, Jessica Lombardo, Maria Magdalena Quetglas-Llabrés, Maria del Mar Ribas-Taberner, Manuel Jiménez-García, Silvia Tejada and Antoni Sureda
Toxics 2025, 13(7), 584; https://doi.org/10.3390/toxics13070584 - 13 Jul 2025
Viewed by 558
Abstract
Bothus podas (wide-eyed flounder) is a benthic flatfish likely exposed to microplastic (MP) pollution. We investigated MP ingestion and associated physiological effects in wild B. podas collected from Mallorca (Balearic Islands), Spain. Markers of oxidative stress, detoxification, and immunity were quantified in intestinal, [...] Read more.
Bothus podas (wide-eyed flounder) is a benthic flatfish likely exposed to microplastic (MP) pollution. We investigated MP ingestion and associated physiological effects in wild B. podas collected from Mallorca (Balearic Islands), Spain. Markers of oxidative stress, detoxification, and immunity were quantified in intestinal, hepatic, and splenic tissues. MPs were observed in the gastrointestinal tracts of 87.5% of the 24 specimens analyzed, with an average of 3.8 ± 0.6 items per fish. Fiber-type MPs predominated in both the gastrointestinal tract (69.6%) and sediment samples (97%). Additionally, micro-Fourier transform infrared spectroscopy analysis confirmed that the majority of ingested MPs were composed of polyethylene, polypropylene, and polyester. Fish were categorized into low (<3 items) and high (≥3 items) MP groups based on the median number of plastic items found in the gastrointestinal tract to assess sublethal impacts. In the gut, high-MP fish exhibited significantly elevated activities of detoxification enzymes: ethoxyresorufin-O-deethylase (phase I) and glutathione s-transferase (phase II), along with increased antioxidant enzyme superoxide dismutase and inflammatory myeloperoxidase. Gut catalase and malondialdehyde (MDA) were not significantly different between groups. In liver tissues, no biomarkers differed significantly with MP exposure. In the spleen, lysozyme and alkaline phosphatase activities were significantly higher in high-MP fish, while splenic MDA remained unchanged. These results indicate that gastrointestinal MP exposure triggers local oxidative stress responses and systemic immune activation in B. podas. Overall, ingestion of environmentally relevant MP levels elicited detoxification and inflammatory responses without significant increases in MDA, an indicator of oxidative damage, highlighting the physiological stress imposed by plastic pollution on benthic fish. Full article
Show Figures

Graphical abstract

24 pages, 5180 KiB  
Article
Resolvin D2 Reduces UVB Skin Pathology by Targeting Cytokines, Oxidative Stress, and NF-κB Activation
by Ingrid C. Pinto, Priscila Saito, Camilla C. A. Rodrigues, Renata M. Martinez, Cristina P. B. Melo, Maiara Piva, Clovis M. Kumagai, David L. Vale, Telma Saraiva-Santos, Allan J. C. Bussmann, Marcela M. Baracat, Sandra R. Georgetti, Fabiana T. M. C. Vicentini, Waldiceu A. Verri and Rubia Casagrande
Antioxidants 2025, 14(7), 830; https://doi.org/10.3390/antiox14070830 - 6 Jul 2025
Viewed by 584
Abstract
UVB skin pathology is initiated by reactive oxygen species (ROS), differentiating this condition from other inflammatory diseases involving first the immune cell activation by danger or pathogen molecular patterns followed by oxidative stress. Resolvin D2 (RvD2) has been found to reduce inflammation in [...] Read more.
UVB skin pathology is initiated by reactive oxygen species (ROS), differentiating this condition from other inflammatory diseases involving first the immune cell activation by danger or pathogen molecular patterns followed by oxidative stress. Resolvin D2 (RvD2) has been found to reduce inflammation in preclinical models. However, whether or not RvD2 reduces skin pathology caused by UVB irradiation is not yet known. Therefore, the efficacy of RvD2 on skin pathology triggered by UVB irradiation in female hairless mice was assessed. RvD2 (0.3, 1 or 3 ng/mouse, i.p.) was found to protect the skin against UVB inflammation, as observed in the reduction in edema (46%), myeloperoxidase activity (77%), metalloproteinase-9 activity (39%), recruitment of neutrophils/macrophages (lysozyme+ cells, 76%) and mast cells (106%), epidermal thickening (93%), sunburn cell formation (68%), collagen fiber breakdown (55%), and production of cytokines such as TNF-α (100%). Considering the relevance of oxidative stress to UVB irradiation skin pathologies, an important observation was that the skin antioxidant capacity was recovered by RvD2 according to the results that show the ferric reducing antioxidant power (68%), cationic radical scavenges (93%), catalase activity (74%), and the levels of reduced glutathione (48%). Oxidative damage was also attenuated, as observed in the reduction in superoxide anion production (69%) and lipid hydroperoxides (71%). The RvD2 mechanism involved the inhibition of NF-κB activation, as observed in the diminished degradation of IκBα (48%) coupled with a reduction in its downstream targets that are involved in inflammation and oxidative stress, such as COX-2 (66%) and gp91phox (77%) mRNA expression. In conclusion, RvD2 mitigates the inflammatory and oxidative pathologic skin aggression that is triggered by UVB. Full article
(This article belongs to the Special Issue Antioxidants for Skin Health)
Show Figures

Figure 1

30 pages, 3914 KiB  
Article
Dietary Supplementation with Rhodotorula mucilaginosa Enhances Resistance to Aeromonas veronii Infection in Red Claw Crayfish (Cherax quadricarinatus)
by Qin Zhang, Liuqing Meng, Haoliang Lu, Luoqing Li, Qinghui Zeng, Dapeng Wang, Rui Wang, Tong Tong, Yongqiang Liu and Huizan Yang
Animals 2025, 15(13), 1912; https://doi.org/10.3390/ani15131912 - 28 Jun 2025
Viewed by 240
Abstract
The objective of this study was to evaluate the effects of dietary supplementation with different levels of Rhodotorula mucilaginosa (0.0 g/kg, 0.1 g/kg, 1.0 g/kg, and 10.0 g/kg) on resistance to Aeromonas veronii infection in red claw crayfish (Cherax quadricarinatus) (initial [...] Read more.
The objective of this study was to evaluate the effects of dietary supplementation with different levels of Rhodotorula mucilaginosa (0.0 g/kg, 0.1 g/kg, 1.0 g/kg, and 10.0 g/kg) on resistance to Aeromonas veronii infection in red claw crayfish (Cherax quadricarinatus) (initial body weight of 0.13 ± 0.06 g). The investigation combined a 56-day feeding trial with a subsequent 7-day infection challenge to assess cumulative mortality, immune and antioxidant enzyme activities, and the relative expression of immune-related genes. During the A. veronii infection test, the cumulative mortalities for the 0.1 g/kg, 1.0 g/kg, and 10.0 g/kg groups were 44.44%, 38.89%, and 38.89%, respectively, all significantly lower (p < 0.05) than that of the control group (58.33%). Compared with the control group, after infection with A. veronii, the activities of acid phosphatase, alkaline phosphatase, catalase, and superoxide dismutase in the hepatopancreas and alkaline phosphatase, lysozyme in the hemolymph of red claw crayfish in the 1.0 g/kg group significantly increased (p < 0.05). The activities of aspartate aminotransferase and alanine aminotransferase in the hemolymph of red claw crayfish in the 1.0 g/kg group significantly decreased (p < 0.05). The relative expression levels of serine protease inhibitor, crustacean hyperglycemic hormone, anti-lipopolysaccharide factor, and superoxide dismutase genes in the hepatopancreas of red claw crayfish in the 1.0 g/kg group were significantly upregulated (p < 0.05). In conclusion, R. mucilaginosa could significantly improve the antibacterial ability of red claw crayfish against A. veronii. In this experimental context, the ideal addition level of R. mucilaginosa is determined to be 1.0 g/kg. Full article
(This article belongs to the Topic Advances in Infectious and Parasitic Diseases of Animals)
Show Figures

Figure 1

31 pages, 5399 KiB  
Review
Non-Bovine Milk as Functional Foods with Focus on Their Antioxidant and Anti-Inflammatory Bioactivities
by Yan Li, Qingshan Ma, Mengmeng Li, Wenqiang Liu, Yihong Liu, Menghan Wang, Changfa Wang and Muhammad Zahoor Khan
Antioxidants 2025, 14(7), 801; https://doi.org/10.3390/antiox14070801 - 27 Jun 2025
Viewed by 611
Abstract
The growing interest in functional foods has directed scientific attention toward alternative milk sources, particularly camel and donkey milk, which have been traditionally consumed for their purported health benefits across diverse cultures. These milk sources possess unique nutritional profiles and bioactive compositions that [...] Read more.
The growing interest in functional foods has directed scientific attention toward alternative milk sources, particularly camel and donkey milk, which have been traditionally consumed for their purported health benefits across diverse cultures. These milk sources possess unique nutritional profiles and bioactive compositions that differ substantially from conventional bovine milk. This review examines the current scientific understanding of the anti-inflammatory and antioxidant bioactivities of camel and donkey milk, exploring their bioactive constituents and therapeutic potential. Camel and donkey milk demonstrate notable antioxidant and anti-inflammatory properties that may exceed those of conventional milk sources. Key bioactive compounds include lactoferrin, lysozyme, immunoglobulins, bioactive peptides, vitamins C and E, and polyunsaturated fatty acids. Mechanistic studies reveal that milk from donkeys and camels suppresses inflammatory pathways through NF-κB inhibition, cytokine modulation (reducing IL-6, IL-1β, and TNF-α while enhancing IL-10), and antioxidant pathway activation via Nrf2-ARE signaling. Donkey milk exhibits particularly high lysozyme content and demonstrates significant immunomodulatory effects, while camel milk shows remarkable therapeutic potential in diabetes management, nephroprotection, and hepatoprotection. Preclinical studies demonstrate efficacy in treating oxidative stress-related disorders, inflammatory conditions, metabolic dysfunction, and tissue injury models. Altogether, the published data show that camel and donkey milk represent promising functional foods with significant antioxidant and anti-inflammatory bioactivities mediated through multiple molecular pathways. Their unique bioactive profiles offer therapeutic potential for various health conditions, warranting further clinical investigation and development as nutraceutical interventions. Full article
(This article belongs to the Special Issue Potential Health Benefits of Dietary Antioxidants)
Show Figures

Figure 1

18 pages, 3115 KiB  
Article
Comparative Analysis of Different Body Composition, Mucus Biochemical Indices, and Body Color in Five Strains of Larimichthys crocea
by Hongjin Deng, Quanyou Guo, Banghong Wei, Jiehui Zhong, Mengyao Zheng, Yao Zheng, Na Lin and Shengyang Zheng
Fishes 2025, 10(7), 305; https://doi.org/10.3390/fishes10070305 - 25 Jun 2025
Viewed by 280
Abstract
The large yellow croaker, or Larimichthys crocea, is highly prized for its golden color and nutritional content. The purpose of this study was to investigate the differences in body composition, mucus biochemical indices and body color in five strains of large yellow [...] Read more.
The large yellow croaker, or Larimichthys crocea, is highly prized for its golden color and nutritional content. The purpose of this study was to investigate the differences in body composition, mucus biochemical indices and body color in five strains of large yellow croakers (body weight: 347.01 ± 5.86 g). To conduct genetic diversity analyses of the populations, a total of 50 tailfin samples were randomly chosen from the following populations of large yellow croakers: wild (LYC1), Dai-qu population (LYC2), Yongdai 1 (LYC3), Min-yuedong population (LYC4), and Fufa 1 (LYC5). The findings demonstrated that the LYC3 group’s pigment contents, crude protein, crude lipid, and chromatic values were comparable to those of the LYC1 group (p > 0.05). There was no significant difference between the LYC1 and LYC5 groups’ mucus superoxide dismutase (SOD) and catalase (CAT) activities (p > 0.05). The alkaline phosphatases (ALP), acid phosphatases (ACP), and lysozyme (LYS) activities of the mucus in the LYC1 group were not significantly different from the LYC3 group (p > 0.05). The back skin mRNA expressions of tyrosinase (tyr), tyrosinase-related protein 1 (tyrp1), dopachrome tautomerase (dct), microphtalmia-associated transcription factor (mitf), and melanocortin 1 receptor (mc1r) were significantly up-regulated in the LYC2 and LYC4 groups compared to the LYC1, LYC3, and LYC5 groups (p < 0.05). Forkhead box d3 (foxd3), paired box 3 (pax3), purine nucleoside phosphorylase 4a (pnp4a), aristaless-like homeobox 4a (alx4a), cAMP dependent protein kinase (pka), anaplastic lymphoma kinase (alk), leukocyte receptor tyrosine kinase (ltk), and colony stimulating factor (fms) were among the mRNA expressions of the abdominal skin in the LYC1, LYC3, and LYC5 groups significantly higher than those in the LYC2 and LYC4 groups (p < 0.05). In conclusion, the LYC3 group’s crude protein, crude lipid, carotenoid, and lutein contents were most similar to those of the large yellow croaker found in the wild. Furthermore, the molecular mechanism underlying the variations in body color among the various strains of large yellow croakers was supplied for additional research. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Figure 1

22 pages, 7947 KiB  
Article
The Fusion Gene BPI-LY, Encoding Human Bactericidal/Permeability-Increasing Protein Core Fragments and Lysozyme, Enhanced the Resistance of Transgenic Tomato Plants to Bacterial Wilt
by Lei Ni, Yue Zhang, Yafei Qin, Mei Wang, Daodao Tang, Liantian Chen, Xing Ding, Yilin Zheng, Yu Pan, Jinhua Li and Xingguo Zhang
Plants 2025, 14(13), 1897; https://doi.org/10.3390/plants14131897 - 20 Jun 2025
Viewed by 382
Abstract
Tomato bacterial wilt, caused by Ralstonia solanacearum (G), is one of the most devastating plant diseases. Developing effective resistance against this pathogen remains a major challenge in plant disease management. In this study, we constructed a fusion gene BPI-LY by combining [...] Read more.
Tomato bacterial wilt, caused by Ralstonia solanacearum (G), is one of the most devastating plant diseases. Developing effective resistance against this pathogen remains a major challenge in plant disease management. In this study, we constructed a fusion gene BPI-LY by combining the gene encoding the lipophilic functional domains of human bactericidal/permeability-increasing protein (BPI) with the gene of human lysozyme (LY). The recombinant gene BPI-LY was heterologously expressed in yeast and tomato. Preliminary in vitro assays in yeast demonstrated that BPI enhances LY’s antibacterial activity against G bacteria. Furthermore, overexpression of BPI-LY in tomato delayed onset of the disease in the transgenic lines and lowered the degree of tissue damage and the number of bacteria present in the stems relative to those in the wild-type plant. Additionally, the expression levels of the SlSOD, SlPOD, SlPAL, SlPR5, SlPR10, and SlPR-NP24 genes were indirectly upregulated in the transgenic plants following R. solanacearum inoculation. Collectively, these findings demonstrate that BPI-LY enhances the resistance of transgenic tomato against bacterial wilt caused by R. solanacearum. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

37 pages, 18599 KiB  
Article
Diclofenac Immune-Mediated Hepatitis: Identification of Innate and Adaptive Immune Responses at Clinically Relevant Doses
by Jürgen Borlak and Reinhard Spanel
Int. J. Mol. Sci. 2025, 26(12), 5899; https://doi.org/10.3390/ijms26125899 - 19 Jun 2025
Viewed by 621
Abstract
Diclofenac is an effective medication for pain and inflammation. However, its use has been linked to hepatitis. To gain insight into diclofenac’s ability to cause hepatitis, we investigated the regulation of major effectors of the immune system following daily treatment of minipigs at [...] Read more.
Diclofenac is an effective medication for pain and inflammation. However, its use has been linked to hepatitis. To gain insight into diclofenac’s ability to cause hepatitis, we investigated the regulation of major effectors of the immune system following daily treatment of minipigs at 3 and 15 mg/kg for 28 days. Histopathology evidenced lobular inflammation, and through a combination of immunogenomics and immunopathology, we detected marked innate and adaptive immune responses. We identified 109 significantly regulated genes linked to neutrophil, monocyte, Kupffer cell, and lymphocyte responses and 32 code for cytokine- and interferon-γ-signaling. In support of wound repair, immunopathology evidenced manifest upregulation of macrophage migration inhibitory factor and CD74. Furthermore, the strong expression of IgG and IgM underscored humoral immune responses. Diclofenac caused an activation of the complement system, especially the C1 inhibitor of the classical pathway and C3 with critical functions in liver regeneration. The marked expression of complement factor B and H of the alternate pathway modulated B-cell responses. Likely, the upregulation of factor H protected hepatocytes from injury by limiting complement-mediated damage of inflamed cells. Additionally, diclofenac treatment elicited marked hepatic expression of lysozyme and KLF6. The latter earmarks M1-polarized Kupffer cells. We observed an extraordinary induction of calprotectin/S100A9 and of the monocyte/macrophage CD163 scavenger receptor, and therefore, we detected innate immune sensing of damaged cells. Lastly, we noted an unprecedented induction of the acute phase reactant SAA1 and DEC-205, which recognize apoptotic and necrotic cells. Together, our results offer mechanistic insights into immune-mediated liver injury patterns following diclofenac treatment. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

19 pages, 545 KiB  
Article
Blood Orange (Citrus sinensis L. Osbeck) Juice By-Product Extract as a Functional Feed Additive: Effects on Growth Performance, Digestive Enzyme Activity, Antioxidant Status, Immune Parameters, and Disease Resistance Against Vibrio harveyi in Juvenile Black Rockfish (Sebastes schlegelii)
by Ahyeong Yun, Hwa Yong Oh, Tae Hoon Lee, Da Ye Kang, Ki-Tae Kim, Hyun-Soo Kim and Hee Sung Kim
Antioxidants 2025, 14(6), 745; https://doi.org/10.3390/antiox14060745 - 17 Jun 2025
Viewed by 510
Abstract
This study evaluated the antibacterial activity and residual functional compounds of blood orange (Citrus sinensis L. Osbeck) juice by-product extract (BJBE). The effects of dietary BJBE on growth performance, digestive enzyme activity, antioxidant status, immune parameters, and disease resistance against Vibrio harveyi [...] Read more.
This study evaluated the antibacterial activity and residual functional compounds of blood orange (Citrus sinensis L. Osbeck) juice by-product extract (BJBE). The effects of dietary BJBE on growth performance, digestive enzyme activity, antioxidant status, immune parameters, and disease resistance against Vibrio harveyi were examined in juvenile black rockfish (Sebastes schlegelii). In total, 630 juvenile rockfish were randomly assigned to 21 rectangular tanks (50 L) for a feeding trial, with 30 fish per tank in triplicate. Seven isonitrogenous and isolipidic experimental diets were formulated with BJBE at 0 (control, BJBE0), 0.1 (BJBE0.1), 0.2 (BJBE0.2), 0.3 (BJBE0.3), 0.5 (BJBE0.5), 0.7 (BJBE0.7), and 1.0 (BJBE1) g kg−1. A disk diffusion assay confirmed BJBE’s strong antibacterial efficacy against V. harveyi. After an 8-week feeding trial, fish fed BJBE0.7 and BJBE1 exhibited significantly a greater final weight, weight gain, and specific growth rate compared with those fed BJBE0. Feed efficiency was significantly higher in fish fed BJBE0.7 than in those fed BJBE0. The protein efficiency ratio was significantly higher in fish fed BJBE0.3, BJBE0.5, BJBE0.7, and BJBE1 relative to those fed BJBE0. Intestinal amylase activity was significantly higher in fish fed BJBE0.7 and BJBE1 compared with those fed BJBE0, and trypsin activity was significantly higher in BJBE0.7-fed fish than in BJBE0-fed fish. In comparison to the BJBE0 diet, the plasma superoxide dismutase, catalase, and glutathione levels of fish fed BJBE0.7 and BJBE1 diets were significantly higher. Lysozyme activity and immunoglobulin M level in fish fed BJBE0.7 and BJBE1 were significantly higher than that in fish fed BJBE0. After a challenge with V. harveyi, disease resistance was significantly higher in fish fed BJBE0.5, BJBE0.7, and BJBE1 compared with those fed BJBE0. Overall, 0.7–1.0 g kg−1 is proposed as the optimal dietary BJBE inclusion level for enhancing growth performance, digestive enzyme activity, antioxidant status, immune parameters, and disease resistance against V. harveyi infection in juvenile black rockfish. Full article
(This article belongs to the Special Issue Antioxidant Properties in Novel Feed Ingredients for Fish)
Show Figures

Figure 1

17 pages, 962 KiB  
Article
Specific Heat-Killed Lactic Acid Bacteria Enhance Mucosal Aminopeptidase N Activity in the Small Intestine of Aged Mice
by Takeshi Tsuruta, Mami Wakisaka, Takumi Watanabe, Aoi Nishijima, Akihito Ikeda, Mao Teraoka, Tianyang Wang, Kuiyi Chen and Naoki Nishino
Int. J. Mol. Sci. 2025, 26(12), 5742; https://doi.org/10.3390/ijms26125742 - 15 Jun 2025
Viewed by 557
Abstract
Aminopeptidase N (APN), an enzyme expressed in the small intestinal mucosa, is involved in dietary protein digestion. Previous studies have shown that oral administration of fermented milk containing lactic acid bacteria (LAB) enhances mucosal APN activity in young mice. This study aimed to [...] Read more.
Aminopeptidase N (APN), an enzyme expressed in the small intestinal mucosa, is involved in dietary protein digestion. Previous studies have shown that oral administration of fermented milk containing lactic acid bacteria (LAB) enhances mucosal APN activity in young mice. This study aimed to investigate whether LAB strains stimulate mucosal APN activity in aged mice and to evaluate its relevance to age-related changes in body composition. The underlying molecular mechanisms were also explored in vitro. Experiment 1: Aged C57BL/6J mice were fed diets supplemented with heat-killed LAB strains—Enterococcus faecalis OU-23 (EF), Leuconostoc mesenteroides OU-03 (LM), or Lactiplantibacillus plantarum SNK12 (LP). Compared to the aged Control group, the ileal APN activity was significantly higher in the LP group. LP administration also elevated serum Gla-osteocalcin levels and decreased serum CTX-1 levels. Experiment 2: IEC-6 cells were co-cultured with LP that had been treated with RNase, DNase, or lysozyme. APN activity was significantly lower in cells co-cultured with DNase- or lysozyme-treated LP compared to those co-cultured with untreated LP. A specific LAB strain may enhance mucosal APN activity in the aged intestine, potentially contributing to improved bone metabolism. This effect may be mediated by bacterial DNA and peptidoglycan. Full article
Show Figures

Graphical abstract

22 pages, 3244 KiB  
Article
Anti-Inflammatory Function Analysis of Lacticaseibacillus rhamnosus CP-1 Strain Based on Whole-Genome Sequencing
by Hanyu Chu, Lijie Zhou, Yanzhen Mao, Ren Liu, Jiaojiao Han, Xiurong Su and Jun Zhou
BioTech 2025, 14(2), 47; https://doi.org/10.3390/biotech14020047 - 7 Jun 2025
Viewed by 1133
Abstract
Lacticaseibacillus rhamnosus (L. rhamnosus) is a safe probiotic with no side effects, providing benefits such as gut microbiota regulation and immune enhancement, making it highly valuable with strong potential. However, strains from different sources have unique traits, and whole-genome sequencing (WGS) [...] Read more.
Lacticaseibacillus rhamnosus (L. rhamnosus) is a safe probiotic with no side effects, providing benefits such as gut microbiota regulation and immune enhancement, making it highly valuable with strong potential. However, strains from different sources have unique traits, and whole-genome sequencing (WGS) helps analyse these differences. In this study, we used WGS to examine L. rhamnosus strains from mice with fish oil-treated smoking-induced pneumonia to better understand their biological functions and explore possible anti-inflammatory mechanisms. Methods: We isolated a strain, Lacticaseibacillus rhamnosus CP-1 (L. rhamnosus CP-1), from mice intestines where fish oil alleviated smoking-induced pneumonia. Identification of probiotic-related genes by WGS and characterised the strain’s probiotic properties. Results: L. rhamnosus CP-1 has a single circular chromosome (2,989,570 bp, 46.76% GC content) and no plasmids. COG, GO, and KEGG databases revealed genes linked to carbohydrate metabolism. The CAZy database identified GH25 lysozyme and PL8 polysaccharide lyase genes. KEGG highlighted an antimicrobial peptide ABC transporter permease, while TCDB noted the ABC-type antimicrobial peptide transporter (the main active transport component). KEGG also showed 10 genes for terpenoid skeleton biosynthesis and 5 for keto-glycan unit biosynthesis. Additionally, L. rhamnosus CP-1 carries metabolic regulators and bacteriocin-related genes. Conclusions: Whole-genome sequencing analysis revealed that L. rhamnosus CP-1 has carbohydrate utilisation and potential anti-inflammatory effects at the molecular level. Potential functional genes include carbohydrate transport and hydrolase, antimicrobial peptide ABC transporter and its osmotic enzyme components, bacteriocin immune protein, terpenoid skeleton, and keto-glycan synthesis. Full article
(This article belongs to the Section Computational Biology)
Show Figures

Figure 1

17 pages, 2493 KiB  
Article
Food-Derived Compounds Extend the Shelf Life of Frozen Human Milk
by Justin E. Silpe, Karla Damian-Medina and Bonnie L. Bassler
Foods 2025, 14(12), 2018; https://doi.org/10.3390/foods14122018 - 7 Jun 2025
Viewed by 962
Abstract
Breastmilk is known to provide optimal nutrition for infant growth and development. A cross-sectional analysis of nationally representative US data from 2016 to 2021 revealed that >90% of lactating mothers reported using breast pumps to express milk. We conducted a survey of n [...] Read more.
Breastmilk is known to provide optimal nutrition for infant growth and development. A cross-sectional analysis of nationally representative US data from 2016 to 2021 revealed that >90% of lactating mothers reported using breast pumps to express milk. We conducted a survey of n = 1049 lactating or recently lactating individuals from a US nationally representative population to explore breastmilk storage practices among this group. The data revealed that 83% of respondents store breastmilk in their homes, with 68% using freezers to do so for >1 month. The lowest available temperature in most household freezers is −20 °C, a temperature that is inadequate to maintain human milk’s emulsified structure, leading to separation, degradation of fats, loss of key vitamins, and changes in palatability. We developed a first-of-its-kind high-throughput screening platform to identify food-derived compounds and combinations of compounds that, when added to human breastmilk, preserve fat content, retain antioxidant capacity, and reduce production of rancid-associated free fatty acids during extended freezer storage. Our screening identified pectin (0.5% w/v) and ascorbic acid (100 μg/mL) as optimal preservation agents. Compared to untreated controls, this formulation reduced glycerol production by approximately 60% and maintained antioxidant capacity after 6 months of storage at −20 °C. Lysozyme and protease activity were maintained at >75% of the levels in fresh breastmilk. This formulation represents a lead for the development of safe and affordable frozen breastmilk shelf-life extenders for at-home use to increase the longevity of stored breastmilk. Full article
Show Figures

Graphical abstract

Back to TopTop