Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (307)

Search Parameters:
Keywords = lyophilized extract

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 338 KiB  
Article
LC-MS Analysis of the Polyphenolic Composition and Assessment of the Antioxidant, Anti-Inflammatory and Cardioprotective Activities of Agastache mexicana and Agastache scrophulariifolia Extracts
by Mihaela-Ancuța Nechita, Alina Elena Pârvu, Ana Uifălean, Sonia Iurian, Neli-Kinga Olah, Timea Henrietta Bab, Rodica Vârban, Vlad-Ionuț Nechita, Anca Toiu, Ovidiu Oniga, Daniela Benedec, Daniela Hanganu and Ilioara Oniga
Plants 2025, 14(14), 2122; https://doi.org/10.3390/plants14142122 - 9 Jul 2025
Viewed by 366
Abstract
This study offers a detailed assessment of the polyphenolic composition and antioxidant, anti-inflammatory, and cardioprotective properties of lyophilized extracts derived from the aerial parts of Agastache mexicana and Agastache scrophulariifolia. The polyphenolic content was determined through the quantification of total polyphenols, flavonoids, [...] Read more.
This study offers a detailed assessment of the polyphenolic composition and antioxidant, anti-inflammatory, and cardioprotective properties of lyophilized extracts derived from the aerial parts of Agastache mexicana and Agastache scrophulariifolia. The polyphenolic content was determined through the quantification of total polyphenols, flavonoids, and caffeic acid derivatives, complemented by LC-MS profiling. The antioxidant activity was evaluated in vitro using DPPH and FRAP assays, while the in vivo antioxidant and anti-inflammatory effects were investigated in a rat model of turpentine-oil-induced acute inflammation. Cardioprotective potential was assessed in a separate rat model of isoprenaline-induced myocardial infarction. Phytochemical analysis revealed a complex polyphenolic profile for both species, with tilianin and rosmarinic acid identified as predominant compounds. In the DPPH assay, both extracts exhibited marked radical scavenging activity (IC50: 65.91 ± 1.21 μg/mL for A. mexicana; 68.64 ± 2.48 μg/mL for A. scrophulariifolia). In the in vivo assays, the administration of the extracts significantly decreased pro-oxidant biomarkers (TOS, OSI, MDA, NO) and enhanced antioxidant markers (TAC, SH groups). Furthermore, the extracts led to a significant reduction in serum levels of GOT, GPT, and CK-MB in rats subjected to myocardial injury, supporting their cardioprotective efficacy. Overall, the results suggest that A. mexicana and A. scrophulariifolia represent promising natural sources of polyphenolic compounds with potential therapeutic value in oxidative-stress-related inflammatory and cardiovascular disorders. Full article
36 pages, 6380 KiB  
Article
Metabolic Responses of Amaranthus caudatus Roots and Leaves to Zinc Stress
by Natalia Osmolovskaya, Tatiana Bilova, Anastasia Gurina, Anastasia Orlova, Viet D. Vu, Stanislav Sukhikh, Tatiana Zhilkina, Nadezhda Frolova, Elena Tarakhovskaya, Anastasia Kamionskaya and Andrej Frolov
Plants 2025, 14(14), 2119; https://doi.org/10.3390/plants14142119 - 9 Jul 2025
Viewed by 389
Abstract
In recent decades, heavy metal pollution has become a significant environmental stress factor. Plants are characterized by high biochemical plasticity and can adjust their metabolism to ensure survival under a changing environment. Here we report, to our knowledge, the first gas chromatography-mass spectrometry [...] Read more.
In recent decades, heavy metal pollution has become a significant environmental stress factor. Plants are characterized by high biochemical plasticity and can adjust their metabolism to ensure survival under a changing environment. Here we report, to our knowledge, the first gas chromatography-mass spectrometry (GC-MS)-based metabolomics study of Zn-induced stress responses in Amaranthus caudatus plants. The study was performed with root and leaf aqueous methanolic extracts after their lyophilization and sequential derivatization with methoxylamine hydrochloride and N-methyl-N-(trimethylsilyl)trifluoroacetamide. In total, 419 derivatives were detected in the samples, and 144 of them could be putatively annotated. The metabolic shifts in seven-week-old A. caudatus plants in response to a seven-day treatment with 300 µmol/L ZnSO4·7H2O in nutrient solution were organ-specific and more pronounced in roots. Most of the responsive metabolites were up-regulated and dominated by sugars and sugar acids. The revealed effects could be attributed to the involvement of these metabolites in osmotic regulation, antioxidant protection and Zn2+ complexation. A 59-fold up-regulation of gluconic acid in roots distinctly indicated enhanced glucose oxidation due to oxidative stress upon the Zn treatment. Gluconic acid might be further employed in Zn2+ complexation. Pronounced Zn-induced up-regulation of salicylic acid in roots and shoots suggested a key role of this hormone in stress signaling and activation of Zn stress tolerance mechanisms. Overall, our study provides the first insight into the general trends of Zn-induced biochemical rearrangements and main adaptive metabolic shifts in A. caudatus. Full article
Show Figures

Figure 1

21 pages, 1637 KiB  
Article
Comparative Label-Based Proteomics of Venoms from Echis ocellatus, Naja nigricollis, and Bitis arietans
by Abdulbaki Alfa-Ibrahim Adio, Samuel Odo Uko, Jiddah Muhammad Lawal, Ibrahim Malami, Nafiu Lawal, Amina Jega Yusuf Jega, Bilyaminu Abubakar, Muhammad Bashir Bello, Kasimu Ghandi Ibrahim, Murtala Bello Abubakar, Abdussamad Muhammad Abdussamad, Mujtaba Sulaiman Abubakar and Mustapha Umar Imam
Proteomes 2025, 13(3), 31; https://doi.org/10.3390/proteomes13030031 - 2 Jul 2025
Viewed by 829
Abstract
Background: Snake envenomation is a major public health issue in Nigeria, primarily due to bites from Echis ocellatus, Naja nigricollis, and Bitis arietans. Understanding their venom composition is essential for effective antivenom development. This study characterizes and compares the venom proteomes [...] Read more.
Background: Snake envenomation is a major public health issue in Nigeria, primarily due to bites from Echis ocellatus, Naja nigricollis, and Bitis arietans. Understanding their venom composition is essential for effective antivenom development. This study characterizes and compares the venom proteomes of these snakes using iTRAQ-based proteomics, focusing on key toxin families and their relative abundances. Methods: Venom samples were ethically collected from adult snakes, pooled by species, lyophilized, and stored for proteomic analysis. Proteins were extracted, digested with trypsin, and labeled with iTRAQ. Peptides were analyzed via mass spectrometry, and data were processed using Mascot and IQuant for protein identification and quantification. Results: E. ocellatus and B. arietans venoms had similar profiles, rich in C-type lectins, serine proteases, and phospholipase A2s. These comprised 17%, 11%, and 5% in E. ocellatus and 47%, 10%, and 7% in B. arietans, with metalloproteinases dominating both (53% and 47%). In N. nigricollis, three-finger toxins (9%) were most abundant, followed by metalloproteinases (3%). All species shared four core protein families, with N. nigricollis also containing four uncharacterized proteins. Conclusions: This study highlights venom compositional differences, advancing snake venom biology and informing targeted antivenom development. Full article
Show Figures

Graphical abstract

17 pages, 692 KiB  
Article
Unveiling Synergistic Antioxidant Effects of Green Tea and Peppermint: Role of Polyphenol Interactions and Blend Preparation
by Elena Kurin, Marianna Hajská, Ema Kostovčíková, Kamila Dokupilová, Pavel Mučaji, Milan Nagy, Branislav Novotný and Silvia Bittner Fialová
Int. J. Mol. Sci. 2025, 26(13), 6257; https://doi.org/10.3390/ijms26136257 - 28 Jun 2025
Viewed by 351
Abstract
This study explores the antioxidant activity of green tea (Camellia sinensis, GT) and peppermint (Mentha × piperita, PM) infusions, individually and in combination, focusing on how preparation methods affect their efficacy. Antiradical and intracellular antioxidant activity was assessed using [...] Read more.
This study explores the antioxidant activity of green tea (Camellia sinensis, GT) and peppermint (Mentha × piperita, PM) infusions, individually and in combination, focusing on how preparation methods affect their efficacy. Antiradical and intracellular antioxidant activity was assessed using DPPH, ABTS, and DCF assays, alongside interaction analysis via combination index (CI) and dose reduction index (DRI). HPLC analysis determined the polyphenolic profiles of GT and PM. GT showed the strongest antioxidant activity, with the lowest IC50 values (4.81 µg/mL in DPPH, 2.70 µg/mL in ABTS, 3.71 µg/mL in DCF), indicating potent radical-scavenging potential. PM exhibited moderate antiradical capacity but similar intracellular activity (IC50 = 3.80 µg/mL). Co-maceration followed by lyophilization of GT:PM extracts led to nearly additive interactions (CI~1.0) and allowed significant dose reduction (DRI up to 4.44). In contrast, post-mixed extracts showed assay-dependent effects, including antagonism in intracellular ROS inhibition (CI = 1.83). Equimolar mixtures of model polyphenols: EGCG, quercetin, and rosmarinic acid demonstrated enhanced effects, with the strongest synergy in ternary mixtures (CI = 0.67–0.86), potentially achievable in GT:PM combinations. These findings highlight that extract preparation critically influences antioxidant efficacy, supporting co-maceration as a promising strategy for developing effective functional formulations based on plant extract combinations. Full article
Show Figures

Figure 1

18 pages, 954 KiB  
Article
Phytochemical Value and Bioactive Properties of Sweet Potato Peel Across Varieties and Drying Techniques
by Gordana Ćetković, Anja Vučetić, Teodora Cvanić, Olja Šovljanski, Aleksandra Ranitović, Biljana Lončar, Vladimir Filipović and Vanja Travičić
Processes 2025, 13(7), 2004; https://doi.org/10.3390/pr13072004 - 25 Jun 2025
Viewed by 462
Abstract
The aim of the present study was to investigate how different drying techniques (lyophilization, convective drying, and osmotic dehydration) affect the phytochemical profile, biological activities, color parameters, and antimicrobial potential of sweet potato peel from four varieties (white, pink, orange, and purple). Lyophilized [...] Read more.
The aim of the present study was to investigate how different drying techniques (lyophilization, convective drying, and osmotic dehydration) affect the phytochemical profile, biological activities, color parameters, and antimicrobial potential of sweet potato peel from four varieties (white, pink, orange, and purple). Lyophilized orange peel showed the highest carotenoid content (21.31 mg β-carotene/100 g), while osmotic dehydration resulted in the highest retention of anthocyanins in purple peel (229.58 mg cyanidin-3-glucoside/100 g). Among phenolic compounds, the most abundant were caffeic and cinnamic acids, reaching up to 434.57 mg/100 g and 430.91 mg/100 g, respectively, in white peel. Antioxidant activity was strongest in purple peel, particularly in lyophilized samples. Convective drying enhanced anti-inflammatory activity in orange peel (68.25% inhibition), and all samples demonstrated significant α-glucosidase inhibition, with values up to 96.93%. Antimicrobial effects were observed only in purple peel extracts, which showed strong antifungal activity, especially against Saccharomyces cerevisiae (inhibition zone >50 mm). These results confirm that sweet potato peel holds considerable potential as a functional ingredient and that its bioactive value can be significantly influenced by the drying method applied. Full article
(This article belongs to the Special Issue Processes in Agri-Food Technology)
Show Figures

Figure 1

17 pages, 2153 KiB  
Article
Green Purification of Invertase from Ultrasonicated Sifted Baker’s Yeast by Membrane Filtration: A Comparative Study
by Serap Durakli Velioglu, Ufuk Bagci, Kadir Gurbuz Guner, Haci Ali Gulec and Hasan Murat Velioglu
Molecules 2025, 30(12), 2663; https://doi.org/10.3390/molecules30122663 - 19 Jun 2025
Viewed by 431
Abstract
This study aimed to produce invertase with characteristics comparable to commercial formulations using a low-cost raw material, employing environmentally friendly extraction and refinement methods. Sifted yeast, the residual baker’s yeast in industrial production, was used as raw material, and invertase in the yeast [...] Read more.
This study aimed to produce invertase with characteristics comparable to commercial formulations using a low-cost raw material, employing environmentally friendly extraction and refinement methods. Sifted yeast, the residual baker’s yeast in industrial production, was used as raw material, and invertase in the yeast cell was extracted by ultrasonication and purified by micro- and ultra-filtration (MF and UF) methods. Subjecting the crude enzyme extract to MF followed by UF resulted in increased activity and specific activity. Through this process, the enzyme activity increased from 153 IU/mL to 691 IU/mL. The purified enzyme was lyophilized and the production of invertase at the laboratory scale was accomplished. The obtained enzyme was found to be stable at pH 5 and within the temperature range of 30–40 °C. It retained its activity for 60 days at −18 °C, whereas a 20% loss in activity was observed at +4 °C over the same period. As a result, it was demonstrated that invertase enzyme can be produced from a low-cost raw material which is considered as waste in the industry. To pass to the commercial production stage, processing of higher amounts of raw material by preventing foaming and heating problems in ultrasonication and scale-up studies testing the permeability properties of different membrane systems at a pilot-scale are necessary. Full article
(This article belongs to the Collection Advances in Food Chemistry)
Show Figures

Graphical abstract

23 pages, 2735 KiB  
Article
A Sustainable Alternative for the Food Industry: Production of α-Amylase by Coprinus comatus Using Agro-Industrial By-Products
by Luana Cristina Paludo, Bianca Peron-Schlosser, Rúbia Martins Bernardes Ramos, Pablo Inocêncio Monteiro, Edileusa Cristina Marques Gerhardt, Leda Satie Chubatsu and Michele Rigon Spier
Processes 2025, 13(6), 1815; https://doi.org/10.3390/pr13061815 - 7 Jun 2025
Viewed by 730
Abstract
The demand for sustainable, low-cost bioprocesses has encouraged the development of alternative enzyme production strategies. This study investigated the purification and characterization of a crude enzymatic extract (CEE) rich in α-amylase from Coprinus comatus, using wheat milling by-products as substrate. The CEE [...] Read more.
The demand for sustainable, low-cost bioprocesses has encouraged the development of alternative enzyme production strategies. This study investigated the purification and characterization of a crude enzymatic extract (CEE) rich in α-amylase from Coprinus comatus, using wheat milling by-products as substrate. The CEE was obtained by submerged culture, followed by biomass removal, centrifugation, and ultrafiltration to yield a partially purified enzyme (PE). CEE and PE were evaluated for chemical composition, antioxidant and antibacterial activity, toxicity (Artemia salina assay), and enzymatic performance. Toxicity assays confirmed that CEE was non-toxic. Antioxidant activity reached 213.34 µmol TE·gDE−1 (DPPH assay), with a total phenolic content of 8.01 mg GAE·gDE−1. No antibacterial activity was detected. CEE hydrolyzed 96.31% of starch in 180 min, releasing 10.85 g·L−1 glucose, while PE achieved 98% hydrolysis and released 14.5 g·L−1. Optimal α-amylase activity occurred at 50 °C and pH 5.5 (CEE) or 5.0 (PE). Calcium ions improved the enzymatic activity and thermal stability. CEE retained over 60% activity after 721 days under refrigeration (4 °C) or freezing (0 °C). Although lyophilization enhanced enzyme concentration, it increased production costs. SDS-PAGE revealed bands of ~67 kDa (α-amylase) and ~35 kDa (glucoamylase). These findings support the use of CEE as a sustainable, low-cost biocatalyst for industrial use. Full article
(This article belongs to the Special Issue New Advances in Green Extraction Technology for Natural Products)
Show Figures

Graphical abstract

19 pages, 3638 KiB  
Article
Bergamot and Olive Extracts as Beer Ingredients: Impact on Cell Viability, Reactive Oxygen Species, and RNA Expression of Antioxidant Enzymes
by Maria Laura Matrella, Bruna Amenta, Francesco Canino, Angela Maffia, Tiziana Cocco, Mariateresa Russo and Adele Muscolo
Foods 2025, 14(12), 2012; https://doi.org/10.3390/foods14122012 - 6 Jun 2025
Viewed by 493
Abstract
This study explores the incorporation of bergamot juice and olive extract as functional ingredients in craft beer and their effects on antioxidant activity and cellular oxidative stress. Lyophilized beer samples were applied to human fibroblast cells at concentrations of 0.31 and 0.62 µg/µL [...] Read more.
This study explores the incorporation of bergamot juice and olive extract as functional ingredients in craft beer and their effects on antioxidant activity and cellular oxidative stress. Lyophilized beer samples were applied to human fibroblast cells at concentrations of 0.31 and 0.62 µg/µL for 24 and 48 h. Cell viability, reactive oxygen species (ROS) levels, and antioxidant gene expression were evaluated. Beers enriched with bergamot (Heraclea) and olive extract (Elais) significantly reduced ROS levels compared to base beers (Blanche and Weiss), particularly at lower concentrations and shorter exposure times. However, prolonged treatment showed variable effects, suggesting possible concentration- and time-dependent pro-oxidant behavior. Gene expression analysis revealed the upregulation of the antioxidant enzyme SOD2 in all samples except Elais under oxidative stress, indicating differential cellular responses. These findings suggest that functional beers enriched with plant extracts may offer antioxidant benefits and support cellular defense mechanisms, representing a promising direction in wellness-oriented brewing. Full article
(This article belongs to the Special Issue Health Benefits of Bioactive Compounds from Vegetable Sources)
Show Figures

Figure 1

20 pages, 11829 KiB  
Article
Tailoring Polymeric Scaffolds with Buddleja globosa Extract for Dual Antimicrobial and Biocompatible Wound Healing Applications
by Ricardo Ceriani, Daniel A. Cherif-Pino, Pamela Pérez-Basáez, Marcela Escobar, Patricio Leyton, Caroline R. Weinstein-Oppenheimer, Daniel F. Moraga-Espinoza and Tania F. Bahamondez-Canas
Molecules 2025, 30(11), 2428; https://doi.org/10.3390/molecules30112428 - 31 May 2025
Viewed by 596
Abstract
Integrating traditional herbal extracts into modern biomaterials offers a promising route for advanced wound care. A standardized Buddleja globosa Hope extract (BG-126), recognized for its therapeutic value, was incorporated into polymeric scaffolds with variable composition to explore their potential in promoting wound healing [...] Read more.
Integrating traditional herbal extracts into modern biomaterials offers a promising route for advanced wound care. A standardized Buddleja globosa Hope extract (BG-126), recognized for its therapeutic value, was incorporated into polymeric scaffolds with variable composition to explore their potential in promoting wound healing and controlling infections. This work aimed to identify the polymeric composition of a scaffold with BG-126 that maximizes its compatibility and antimicrobial properties. Scaffolds were developed by lyophilization using a Box–Behnken design (BBD) with chitosan, hyaluronic acid, and gelatin content as study factors. Thirteen scaffold formulations were tested for their antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa, including biofilm forms, as well as for their biocompatibility with normal human fibroblasts. Structural and physical properties, such as the moisture content and swelling capacity, were evaluated. The best-performing scaffold was analyzed using Raman spectroscopy. The chitosan content was strongly associated with antimicrobial efficacy, while gelatin enhanced fibroblast compatibility (R2 ≥ 0.9). No correlations were identified between the polymeric content and biofilm inhibition or physical properties. BG-126-loaded scaffolds reduced planktonic and biofilm proliferation and improved fibroblast compatibility compared to the control scaffold (without BG-126). The results support the rational design of botanical-loaded scaffolds with targeted properties for wound healing. Full article
Show Figures

Figure 1

24 pages, 9135 KiB  
Review
Technological Innovations and Circular Economy in the Valorization of Agri-Food By-Products: Advances, Challenges and Perspectives
by Carlos A. Ligarda-Samanez, Mary L. Huamán-Carrión, Wilber Cesar Calsina-Ponce, Germán De la Cruz, Dante Fermín Calderón Huamaní, Domingo J. Cabel-Moscoso, Antonina J. Garcia-Espinoza, Reynaldo Sucari-León, Yolanda Aroquipa-Durán, Jenny C. Muñoz-Saenz, Mauricio Muñoz-Melgarejo and Enoc E. Jilaja-Carita
Foods 2025, 14(11), 1950; https://doi.org/10.3390/foods14111950 - 30 May 2025
Viewed by 1189
Abstract
The valorization of agri-food by-products is a critical pathway toward building sustainable food systems, reducing waste, and advancing the circular economy. This review aims to identify recent advances, key challenges, and future perspectives in this field. We conducted a critical and systematic synthesis [...] Read more.
The valorization of agri-food by-products is a critical pathway toward building sustainable food systems, reducing waste, and advancing the circular economy. This review aims to identify recent advances, key challenges, and future perspectives in this field. We conducted a critical and systematic synthesis of 159 peer-reviewed studies (2019–2025) selected based on quality and thematic relevance from leading international databases. The analysis focuses on emerging technologies such as ultrasound-assisted extraction, microencapsulation, spray drying, lyophilization, deep eutectic solvents, and colloidal systems, emphasizing their efficiency in recovering bioactive compounds from agro-industrial by-products. Significant challenges include industrial scalability, economic feasibility, regulatory compliance, and consumer acceptance. This paper also discusses current applications in functional foods and nutraceuticals, outlining promising directions for the sector. Although challenges remain, the findings offer valuable insights for researchers, industry, and policymakers aiming to foster sustainable innovation and implement strategies aligned with circular economy principles. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Graphical abstract

27 pages, 3219 KiB  
Article
The Valorization of Rapeseed Meal as Hydrolyzed and Lyophilized Extract to Improve the Antioxidant Properties of Refined Rapeseed Oil During Frying and Fried French Fries
by Dobrochna Rabiej-Kozioł and Aleksandra Szydłowska-Czerniak
Foods 2025, 14(9), 1444; https://doi.org/10.3390/foods14091444 - 22 Apr 2025
Cited by 2 | Viewed by 587
Abstract
In the present study, methanolic extracts from rapeseed meal, an oil industry by-product, were treated with alkaline hydrolysis, acid hydrolysis, and lyophilization to enhance their antioxidant features. Antioxidant activity (AA) of the prepared rapeseed meal extracts was determined using three modified spectrophotometric methods: [...] Read more.
In the present study, methanolic extracts from rapeseed meal, an oil industry by-product, were treated with alkaline hydrolysis, acid hydrolysis, and lyophilization to enhance their antioxidant features. Antioxidant activity (AA) of the prepared rapeseed meal extracts was determined using three modified spectrophotometric methods: 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) methods. The effect of acid-hydrolyzed and lyophilized rapeseed meal extract (HLRME) at 200 ppm on the antioxidant properties of refined rapeseed oil heating at 180 °C for 24 h and French fries fried in it was estimated. Moreover, the total phenolic content (TPC) in rapeseed meal extracts, enriched rapeseed oils before and after the thermo-degradation processes, and fried French fries was analyzed. The addition of HLRME affected the oxidation stability of refined rapeseed oil heated for 8 h daily for 3 days at 180 °C by preventing an increase in the peroxide values (PV), anisidine values (p-AnV), TOTOX and INTOX indexes, conjugated dienes (K232), and total polar material (TPM). However, thermal degradation generated similar amounts of conjugated trienes (K268) in non-supplemented and supplemented rapeseed oils. Fortified rapeseed oils after each heating cycle and French fries fried in them revealed higher antioxidant properties than those prepared in refined rapeseed oils without HLRME. Results from the present study suggest that HLRME, as a potential source of natural antioxidants from oil industry by-products, can prevent the degradation of refined rapeseed oil and help improve the quality of French fries. Full article
Show Figures

Graphical abstract

17 pages, 7060 KiB  
Article
Impact of Pre-Extraction Methods on Apple Blossom Microbiome Analysis
by Nikhil N. Patel, Jonathan R. Gaiero, Muhammad Sulman, Paul Moote, Darlene Nesbitt, Antonet M. Svircev and Walid Ellouze
Microorganisms 2025, 13(4), 923; https://doi.org/10.3390/microorganisms13040923 - 16 Apr 2025
Viewed by 565
Abstract
This study examines the effect of pre-extraction methods, namely, sonication, grinding, and lyophilization, and the use of peptide nucleic acid (PNA) blockers on the DNA recovery, diversity, and taxonomic resolution of bacterial and fungal communities in apple blossoms. Sonication was the most successful [...] Read more.
This study examines the effect of pre-extraction methods, namely, sonication, grinding, and lyophilization, and the use of peptide nucleic acid (PNA) blockers on the DNA recovery, diversity, and taxonomic resolution of bacterial and fungal communities in apple blossoms. Sonication was the most successful in recovering bacterial 16S and fungal ITS reads across all the collection points and plots. Lyophilization and grinding led to a significant reduction in fungal read counts, while PNA enhanced the recovery of bacterial 16S reads. Sonication improved the efficiency of DNA extraction and yielded greater diversity in the recovered microbial community. Sonicated samples showed greater sensitivity to temporal shifts in microbial community composition. Communities in sonicated samples contained a larger number of bacterial genera, such as Bacillus, Staphylococcus, and Erwinia, and fungal genera, including Didymellaceae and Cladosporium. In contrast, lyophilization and grinding led to a reduction in detected taxa. The indicator species analysis determined that 35 bacterial and 21 fungal genera were closely related to sonication, whereas no other pre-extraction method had any associated genera. Our findings suggest that sonication is the most appropriate pre-extraction method for analyzing blossom-associated microbiomes, and that the use of PNA blockers can improve the recovery of bacteria and minimize contamination by host DNA. Full article
Show Figures

Figure 1

17 pages, 1168 KiB  
Article
Promising Role of Fruitless Wolfberry Bud Tea in Combating Nakaseomyces glabratus Resistance
by Liping Zhang, Zhiyan Ma, Xuezhang Zhou, Ziping Zhang and Tao Wu
Pathogens 2025, 14(4), 351; https://doi.org/10.3390/pathogens14040351 - 4 Apr 2025
Viewed by 601
Abstract
The rising antifungal resistance in Nakaseomyces glabratus, especially to azole drugs like fluconazole, itraconazole, and voriconazole, presents a significant clinical challenge. Plant-derived compounds with synergistic antifungal effects offer a promising solution. Fruitless wolfberry bud tea, rich in flavonoids from a Lycium barbarum [...] Read more.
The rising antifungal resistance in Nakaseomyces glabratus, especially to azole drugs like fluconazole, itraconazole, and voriconazole, presents a significant clinical challenge. Plant-derived compounds with synergistic antifungal effects offer a promising solution. Fruitless wolfberry bud tea, rich in flavonoids from a Lycium barbarum L. hybrid, shows potential but is underexplored in antifungal therapies. This study assessed FWE’s antifungal efficacy alone and with azoles against resistant N. glabratus isolates, exploring mechanisms like efflux pump inhibition and gene expression changes. A total of 52 clinical isolates were tested. Fruitless wolfberry bud tea was methanol-extracted (FWE) and lyophilized. Antifungal susceptibility was evaluated using broth microdilution, and synergistic effects were analyzed with checkerboard assays. Growth inhibition, rhodamine 6G efflux, and qRT-PCR for resistance-related genes were conducted. FWE demonstrated inhibitory activity with MICs ranging from 16 to 32 μg/mL. When combined with ITR or VRC, synergistic or additive effects were observed, reducing MICs by 2–8-fold. FWE + VRC exhibited synergy (FICI ≤ 0.5) in 50% of isolates, while FWE + ITR showed synergy in 37.5%. Efflux pump activity, measured by rhodamine 6G, significantly decreased in combination groups (11.4–14.6%) compared to monotherapy (17.3–17.5%). qRT-PCR indicated downregulation of CgCDR1, CgERG11, and CgPDR1 in FWE-treated Cg 1 isolate, with greater suppression in combination groups. FWE might boost the bacteriostatic impact of azole antifungal drugs by blocking efflux pumps and altering the expression of resistance genes. This study identifies FWE as a potent adjuvant to overcome cross-resistance, supporting its inclusion in antifungal strategies. Further research to identify bioactive compounds in FWE and in vivo validation is necessary for clinical application. Full article
(This article belongs to the Section Fungal Pathogens)
Show Figures

Figure 1

15 pages, 2522 KiB  
Article
Use of Sorbitan to Extract Capsaicinoids and Bioactive Compounds: Condition Optimization Study
by Andrea de J. Campos-Badillo, Edén A. Luna-Zapién, Juan A. Ascacio-Valdés, Jolanta E. Marszalek, Rafael Minjares-Fuentes, Armando Quintero-Ramos and Jorge A. Meza-Velázquez
AppliedChem 2025, 5(2), 7; https://doi.org/10.3390/appliedchem5020007 - 24 Mar 2025
Viewed by 767
Abstract
Capsaicinoids obtained from lyophilized serrano chili by sorbitan monooleate solutions were investigated. Sorbitan monooleate was as effective as methanol in extracting capsaicin and dihydrocapsaicin (DHC). Subsequently, a Box–Behnken design was used to optimize capsaicin, DHC, and polyphenol extraction, as well as to evaluate [...] Read more.
Capsaicinoids obtained from lyophilized serrano chili by sorbitan monooleate solutions were investigated. Sorbitan monooleate was as effective as methanol in extracting capsaicin and dihydrocapsaicin (DHC). Subsequently, a Box–Behnken design was used to optimize capsaicin, DHC, and polyphenol extraction, as well as to evaluate the antioxidant capacity of dehydrated serrano chili. Particle size (PS) (20–60 mesh), processing temperature (55–75 °C), and sorbitan concentration (1.5–2.5%) were selected as independent variables. The statistical analysis showed that the quadratic models adequately describe the response of the concentration of capsaicin and DHC, but not with polyphenols and antioxidant capacity. The highest extraction of capsaicin (~620 mg/100 g dw) and DHC (~520 mg/100 g dw) was achieved with the combination of sorbitan at 2%, temperature at 65 °C, and PS from 40 mesh. Experimental and predicted values were closely consistent. Meanwhile, extracts with the highest antioxidant potential (~7510 and ~5820 µM of Trolox Eq/100 g dw for ABTS and FRAP, respectively) were those extracted in sorbitan and PS from 40 mesh. In contrast, the highest values of polyphenols (~171 mg gallic acid Eq/100 g dw) were found in the extracts prepared at 75 °C. These results suggest that sorbitan monooleate solutions can be an effective, non-toxic, and environmentally responsible way to obtain capsaicinoids and bioactive compounds from dehydrated serrano chili. Full article
Show Figures

Graphical abstract

14 pages, 1489 KiB  
Article
Protocols for Extraction of miRNA from Extracellular Vesicles of Lyophilized Human Saliva Samples
by Valquiria Quinelato, Carlos Fernando Mourão, Thalita Alves Barreto Santos, Patrícia Cataldo de Felipe Cordeiro, Leticia Ladeira Bonato, Miria Gomes Pereira, Jose Albuquerque Calasans-Maia, Jose Mauro Granjeiro, Tomoyuki Kawase and Priscila Ladeira Casado
Int. J. Mol. Sci. 2025, 26(7), 2891; https://doi.org/10.3390/ijms26072891 - 22 Mar 2025
Cited by 1 | Viewed by 882
Abstract
Extracellular vesicles (EVs) are emerging as crucial biomarkers in molecular diagnostics, providing early detection of disease progression. Although ultracentrifugation remains the gold standard for vesicle isolation from biofluids, it has limitations in scalability and accessibility. This study presents lyophilization as an innovative method [...] Read more.
Extracellular vesicles (EVs) are emerging as crucial biomarkers in molecular diagnostics, providing early detection of disease progression. Although ultracentrifugation remains the gold standard for vesicle isolation from biofluids, it has limitations in scalability and accessibility. This study presents lyophilization as an innovative method for preserving EVs and isolating microRNAs from saliva, utilizing its proven ability to maintain biological activity and prevent unwanted chemical reactions. We assessed five different sample preparation protocols combined with a dual-purification strategy. Structural and molecular integrity analyses revealed that lyophilized samples retained essential EV characteristics, including CD63/CD9 membrane localization. QELS analysis and electron microscopy confirmed distinct vesicle populations in both ultracentrifuged (30–50 nm and 320–360 nm) and lyophilized samples (50–70 nm and 360–380 nm). Importantly, lyophilized samples exhibited higher total RNA concentrations (p < 0.0001) while preserving key microRNA signatures (miR-16, miR-21, miR-33a, and miR-146b) with high fidelity. The efficacy of lyophilization is linked to its ability to systematically reduce solvent content through sublimation while maintaining vesicle integrity and molecular cargo. This method offers a practical, scalable alternative for EV isolation with significant implications for biomarker-based diagnostics. Full article
Show Figures

Figure 1

Back to TopTop