Tailoring Polymeric Scaffolds with Buddleja globosa Extract for Dual Antimicrobial and Biocompatible Wound Healing Applications
Abstract
:1. Introduction
2. Results
2.1. Scaffolds Manufacturing
2.2. Physical Characterization of the Scaffolds
2.3. Effect of BG-126 Scaffolds on Bacterial Proliferation and Adhesion
2.4. Inhibitory Properties of BG Scaffolds on Bacterial Biofilms
2.5. Compatibility of Scaffolds
2.6. Molecular Interactions and Content Uniformity of Scaffolds
3. Discussion
3.1. Role of Chitosan on the Antimicrobial Effect of the Scaffolds
3.2. Effect of Scaffolds on Fibroblast Viability
3.3. Effect of BG-126 on the Antimicrobial Properties and Compatibility of the Scaffolds
3.4. Physical Properties of the Scaffolds
4. Materials and Methods
4.1. Materials
4.2. Design of Experiment (DoE) to Optimize the Scaffolds’ Polymeric Content
4.3. Scaffolds Development
4.4. Physical Characterization of the Scaffolds
4.5. Antimicrobial Properties of the Scaffolds
4.6. Compatibility with Human Dermal Fibroblasts
4.7. Raman Spectroscopy
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falanga, V.; Isseroff, R.R.; Soulika, A.M.; Romanelli, M.; Margolis, D.; Kapp, S.; Granick, M.; Harding, K. Chronic Wounds. Nat. Rev. Dis. Prim. 2022, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Ceilley, R. Chronic Wound Healing: A Review of Current Management and Treatments. Adv. Ther. 2017, 34, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-R.; Chang, C.-C.; Chen, Y.-T.; Lin, W.-N.; Chen, M.-Y. Organization of Wound Healing Services: The Impact on Lowering the Diabetes Foot Amputation Rate in a Ten-Year Review and the Importance of Early Debridement. Diabetes Res. Clin. Pract. 2015, 109, 77–84. [Google Scholar] [CrossRef]
- Zhao, A.; Sun, J.; Liu, Y. Understanding Bacterial Biofilms: From Definition to Treatment Strategies. Front. Cell. Infect. Microbiol. 2023, 13, 1137947. [Google Scholar] [CrossRef] [PubMed]
- Kirketerp-Møller, K.; Jensen, P.Ø.; Fazli, M.; Madsen, K.G.; Pedersen, J.; Moser, C.; Tolker-Nielsen, T.; Høiby, N.; Givskov, M.; Bjarnsholt, T. Distribution, Organization, and Ecology of Bacteria in Chronic Wounds. J. Clin. Microbiol. 2008, 46, 2717–2722. [Google Scholar] [CrossRef]
- Gajula, B.; Munnamgi, S.; Basu, S. How Bacterial Biofilms Affect Chronic Wound Healing: A Narrative Review. IJS Glob. Health 2020, 3, e16. [Google Scholar] [CrossRef]
- Teepe, R.G.C.; Koebrugge, E.J.; Löwik, C.W.G.M.; Petit, P.L.C.; Bosboom, R.W.; Twiss, I.M.; Boxma, H.; Vermeer, B.J.; Ponec, M. Cytotoxic Effects of Topical Antimicrobial and Antiseptic Agents on Human Keratinocytes in Vitro. J. Trauma Acute Care Surg. 1993, 35, 8–19. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, Y.; Li, Y.; Shen, C.; Zhang, Y. Topical Effect of Benzalkonium Bromide on Wound Healing and Potential Cellular and Molecular Mechanisms. Int. Wound J. 2021, 18, 566–576. [Google Scholar] [CrossRef]
- Burd, A.; Kwok, C.H.; Hung, S.C.; Chan, H.S.; Gu, H.; Lam, W.K.; Huang, L. A Comparative Study of the Cytotoxicity of Silver-Based Dressings in Monolayer Cell, Tissue Explant, and Animal Models. Wound Repair Regen. 2007, 15, 94–104. [Google Scholar] [CrossRef]
- Park, S.-N.; Kim, J.K.; Suh, H. Evaluation of Antibiotic-Loaded Collagen-Hyaluronic Acid Matrix as a Skin Substitute. Biomaterials 2004, 25, 3689–3698. [Google Scholar] [CrossRef]
- Krishnan, K.A.; Thomas, S. Recent Advances on Herb-derived Constituents-incorporated Wound-dressing Materials: A Review. Polym. Adv. Technol. 2019, 30, 823–838. [Google Scholar] [CrossRef]
- Mølgaard, P.; Holler, J.G.; Asar, B.; Liberna, I.; Rosenbæk, L.B.; Jebjerg, C.P.; Jørgensen, L.; Lauritzen, J.; Guzman, A.; Adsersen, A.; et al. Antimicrobial Evaluation of Huilliche Plant Medicine Used to Treat Wounds. J. Ethnopharmacol. 2011, 138, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Letelier, M.E.; Jones, R.; López, C.; Palma, K.; Aracena, P.; Razmilic, I.; Polanco, X.; Vogel, H. Safety Profile and Wound Healing Properties of a Standardized Buddleja Globosa Hope (Matico) Extract In Sprague-Dawley Rats. Rev. Farmacol. Chile 2012, 5, 13–19. [Google Scholar]
- Mensah, A.Y.; Sampson, J.; Houghton, P.J.; Hylands, P.J.; Westbrook, J.; Dunn, M.; Hughes, M.A.; Cherry, G.W. Effects of Buddleja Globosa Leaf and Its Constituents Relevant to Wound Healing. J. Ethnopharmacol. 2001, 77, 219–226. [Google Scholar] [CrossRef]
- Zamorano-Aguilar, P.; Morales, M.; Rivillas, Y.; Lopez, J.; Rojano, B.A. Antioxidant Activity and Cytotoxic Effect of Chilean Buddleja Globosa (Matico) and Ribes Magellanicum (Zarzaparrilla) Flower Extracts. Acta Sci. Pol. Hortorum Cultus 2020, 19, 59–70. [Google Scholar] [CrossRef]
- Valliammai, A.; Selvaraj, A.; Yuvashree, U.; Aravindraja, C.; Karutha Pandian, S. SarA-Dependent Antibiofilm Activity of Thymol Enhances the Antibacterial Efficacy of Rifampicin Against Staphylococcus Aureus. Front. Microbiol. 2020, 11, 1744. [Google Scholar] [CrossRef]
- Vipin, C.; Mujeeburahiman, M.; Ashwini, P.; Arun, A.B.; Rekha, P.-D. Anti-biofilm and Cytoprotective Activities of Quercetin against Pseudomonas Aeruginosa Isolates. Lett. Appl. Microbiol. 2019, 68, 464–471. [Google Scholar] [CrossRef]
- Sousa Silveira, Z.D.; Macêdo, N.S.; Sampaio dos Santos, J.F.; Sampaio de Freitas, T.; Rodrigues dos Santos Barbosa, C.; Júnior, D.L.D.S.; Muniz, D.F.; Castro de Oliveira, L.C.; Júnior, J.P.S.; Cunha, F.A.B.D.; et al. Evaluation of the Antibacterial Activity and Efflux Pump Reversal of Thymol and Carvacrol against Staphylococcus Aureus and Their Toxicity in Drosophila Melanogaster. Molecules 2020, 25, 2103. [Google Scholar] [CrossRef]
- Bhardwaj, M.; Singh, B.R.; Sinha, D.K.; Or, V.K.; Vadhana, P.; Singh, S.V.; Saraf, A. Evaluation of Carvacrol as an Antibacterial Agent against Escherichia Coli Isolated from Different Animal Species. J. Entomol. Zool. Stud. 2019, 7, 911–914. [Google Scholar]
- Drago, F.; Gariazzo, L.; Cioni, M.; Trave, I.; Parodi, A. The Microbiome and Its Relevance in Complex Wounds. Eur. J. Dermatol. 2019, 29, 6–13. [Google Scholar] [CrossRef]
- Letelier, M.E.; Hidalgo-Castro, F.; López-Valladares, M.; Ibacache, N.; Pérez, C.; Brunner, J.; González, J.; Gutmann, R.; Lazo-Henríquez, C.; Gallardo-Garrido, C. BG126® Phytodrug Improves Urinary Tract Infection Treatment with Nitrofurantoin in Adult Women in a Double-Blind Randomized Clinical Trial. J. Herb. Med. 2017, 9, 60–67. [Google Scholar] [CrossRef]
- Araya, N.; Leiva-Soto, M.A.; Bruna, M.V.; Castro-Munoz, A.; Behrend-Keim, B.; Moraga-Espinoza, D.; Bahamondez-Canas, T.F. Formulation of Water-Soluble Buddleja Globosa Hope Extracts and Characterization of Their Antimicrobial Properties against Pseudomonas Aeruginosa. Front. Pharmacol. 2022, 13, 921511. [Google Scholar] [CrossRef] [PubMed]
- Cullen, B.; Smith, R.; McCulloch, E.; Silcock, D.; Morrison, L. Mechanism of Action of PROMOGRAN, a Protease Modulating Matrix, for the Treatment of Diabetic Foot Ulcers. Wound Repair Regen. 2002, 10, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Calori, I.R.; Braga, G.; de Jesus, P.D.C.C.; Bi, H.; Tedesco, A.C. Polymer Scaffolds as Drug Delivery Systems. Eur. Polym. J. 2020, 129, 109621. [Google Scholar] [CrossRef]
- Weinstein-Oppenheimer, C.R.; Brown, D.I.; Coloma, R.; Morales, P.; Reyna-Jeldes, M.; Díaz, M.J.; Sánchez, E.; Acevedo, C.A. Design of a Hybrid Biomaterial for Tissue Engineering: Biopolymer-Scaffold Integrated with an Autologous Hydrogel Carrying Mesenchymal Stem-Cells. Mater. Sci. Eng. C 2017, 79, 821–830. [Google Scholar] [CrossRef]
- Mao, J.S.; Liu, H.F.; Yin, Y.J.; De Yao, K. The Properties of Chitosan–Gelatin Membranes and Scaffolds Modified with Hyaluronic Acid by Different Methods. Biomaterials 2003, 24, 1621–1629. [Google Scholar] [CrossRef]
- Liu, H.; Mao, J.; Yao, K.; Yang, G.; Cui, L.; Cao, Y. A Study on a Chitosan-Gelatin-Hyaluronic Acid Scaffold as Artificial Skin in Vitro and Its Tissue Engineering Applications. J. Biomater. Sci. Polym. Ed. 2004, 15, 25–40. [Google Scholar] [CrossRef]
- Gholap, A.D.; Rojekar, S.; Kapare, H.S.; Vishwakarma, N.; Raikwar, S.; Garkal, A.; Mehta, T.A.; Jadhav, H.; Prajapati, M.K.; Annapure, U. Chitosan Scaffolds: Expanding Horizons in Biomedical Applications. Carbohydr. Polym. 2024, 323, 121394. [Google Scholar] [CrossRef]
- Sonwane, S.; Bonde, S.; Bonde, C.; Chandarana, C. Advances in Gelatin-Based Scaffolds for Tissue Engineering Applications: A Review. J. Drug Deliv. Sci. Technol. 2025, 107, 106789. [Google Scholar] [CrossRef]
- Silva, C.M.; Veiga, F.; Ribeiro, A.J.; Zerrouk, N.; Arnaud, P. Effect of Chitosan-Coated Alginate Microspheres on the Permeability of Caco-2 Cell Monolayers. Drug Dev. Ind. Pharm. 2006, 32, 1079–1088. [Google Scholar] [CrossRef]
- Tan, W.B.; Zhang, Y. Surface Modification of Gold and Quantum Dot Nanoparticles with Chitosan for Bioapplications. J. Biomed. Mater. Res. A 2005, 75A, 56–62. [Google Scholar] [CrossRef]
- VandeVord, P.J.; Matthew, H.W.T.; DeSilva, S.P.; Mayton, L.; Wu, B.; Wooley, P.H. Evaluation of the Biocompatibility of a Chitosan Scaffold in Mice. J. Biomed. Mater. Res. 2002, 59, 585–590. [Google Scholar] [CrossRef]
- Pokharkar, V.; Dhar, S.; Bhumkar, D.; Mali, V.; Bodhankar, S.; Prasad, B.L.V. Acute and Subacute Toxicity Studies of Chitosan Reduced Gold Nanoparticles: A Novel Carrier for Therapeutic Agents. J. Biomed. Nanotechnol. 2009, 5, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Semete, B.; Booysen, L.I.J.; Kalombo, L.; Venter, J.D.; Katata, L.; Ramalapa, B.; Verschoor, J.A.; Swai, H. In Vivo Uptake and Acute Immune Response to Orally Administered Chitosan and PEG Coated PLGA Nanoparticles. Toxicol. Appl. Pharmacol. 2010, 249, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Xiao, Z.; Long, H.; Ma, K.; Zhang, J.; Ren, X.; Zhang, J. Assessment of the Characteristics and Biocompatibility of Gelatin Sponge Scaffolds Prepared by Various Crosslinking Methods. Sci. Rep. 2018, 8, 1616. [Google Scholar] [CrossRef] [PubMed]
- Ke, C.-L.; Deng, F.-S.; Chuang, C.-Y.; Lin, C.-H. Antimicrobial Actions and Applications of Chitosan. Polymers 2021, 13, 904. [Google Scholar] [CrossRef]
- Matica, M.A.; Aachmann, F.L.; Tøndervik, A.; Sletta, H.; Ostafe, V. Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action. Int. J. Mol. Sci. 2019, 20, 5889. [Google Scholar] [CrossRef]
- Della Sala, F.; Longobardo, G.; Fabozzi, A.; di Gennaro, M.; Borzacchiello, A. Hyaluronic Acid-Based Wound Dressing with Antimicrobial Properties for Wound Healing Application. Appl. Sci. 2022, 12, 3091. [Google Scholar] [CrossRef]
- Zamboni, F.; Okoroafor, C.; Ryan, M.P.; Pembroke, J.T.; Strozyk, M.; Culebras, M.; Collins, M.N. On the Bacteriostatic Activity of Hyaluronic Acid Composite Films. Carbohydr. Polym. 2021, 260, 117803. [Google Scholar] [CrossRef]
- Ardizzoni, A.; Neglia, R.G.; Baschieri, M.C.; Cermelli, C.; Caratozzolo, M.; Righi, E.; Palmieri, B.; Blasi, E. Influence of Hyaluronic Acid on Bacterial and Fungal Species, Including Clinically Relevant Opportunistic Pathogens. J. Mater. Sci. Mater. Med. 2011, 22, 2329. [Google Scholar] [CrossRef]
- Politis, S.N.; Colombo, P.; Colombo, G.; Rekkas, D.M. Design of Experiments (DoE) in Pharmaceutical Development. Drug Dev. Ind. Pharm. 2017, 43, 889–901. [Google Scholar] [CrossRef] [PubMed]
- Dhoot, A.S.; Fernandes, G.J.; Naha, A.; Rathnanand, M.; Kumar, L. Design of Experiments in Pharmaceutical Development. Pharm. Chem. J. 2019, 53, 730–735. [Google Scholar] [CrossRef]
- Dellaquila, A.; Campodoni, E.; Tampieri, A.; Sandri, M. Overcoming the Design Challenge in 3D Biomimetic Hybrid Scaffolds for Bone and Osteochondral Regeneration by Factorial Design. Front. Bioeng. Biotechnol. 2020, 8, 743. [Google Scholar] [CrossRef] [PubMed]
- Shirzad, M.; Zolfagharian, A.; Matbouei, A.; Bodaghi, M. Design, Evaluation, and Optimization of 3D Printed Truss Scaffolds for Bone Tissue Engineering. J. Mech. Behav. Biomed. Mater. 2021, 120, 104594. [Google Scholar] [CrossRef]
- Tao, Y.; Qian, L.-H.; Xie, J. Effect of Chitosan on Membrane Permeability and Cell Morphology of Pseudomonas Aeruginosa and Staphyloccocus Aureus. Carbohydr. Polym. 2011, 86, 969–974. [Google Scholar] [CrossRef]
- Fazli, M.; Bjarnsholt, T.; Kirketerp-Møller, K.; Jørgensen, B.; Andersen, A.S.; Krogfelt, K.A.; Givskov, M.; Tolker-Nielsen, T. Nonrandom Distribution of Pseudomonas Aeruginosa and Staphylococcus Aureus in Chronic Wounds. J. Clin. Microbiol. 2009, 47, 4084–4089. [Google Scholar] [CrossRef] [PubMed]
- Wolcott, R.D.; Rumbaugh, K.P.; James, G.; Schultz, G.; Phillips, P.; Yang, Q.; Watters, C.; Stewart, P.S.; Dowd, S.E. Biofilm Maturity Studies Indicate Sharp Debridement Opens a Time- Dependent Therapeutic Window. J. Wound Care 2010, 19, 320–328. [Google Scholar] [CrossRef]
- Gjødsbøl, K.; Christensen, J.J.; Karlsmark, T.; Jørgensen, B.; Klein, B.M.; Krogfelt, K.A. Multiple Bacterial Species Reside in Chronic Wounds: A Longitudinal Study. Int. Wound J. 2006, 3, 225–231. [Google Scholar] [CrossRef]
- Watters, C.; DeLeon, K.; Trivedi, U.; Griswold, J.A.; Lyte, M.; Hampel, K.J.; Wargo, M.J.; Rumbaugh, K.P. Pseudomonas Aeruginosa Biofilms Perturb Wound Resolution and Antibiotic Tolerance in Diabetic Mice. Med. Microbiol. Immunol. 2013, 202, 131–141. [Google Scholar] [CrossRef]
- Zhao, G.; Hochwalt, P.C.; Usui, M.L.; Underwood, R.A.; Singh, P.K.; James, G.A.; Stewart, P.S.; Fleckman, P.; Olerud, J.E. Delayed Wound Healing in Diabetic (Db/Db) Mice with Pseudomonas Aeruginosa Biofilm Challenge: A Model for the Study of Chronic Wounds. Wound Repair Regen. 2010, 18, 467–477. [Google Scholar] [CrossRef]
- Omura, Y.; Shigemoto, M.; Akiyama, T.; Saimoto, H.; Shigemasa, Y.; Nakamura, I.; Tsuchido, T. Antimicrobial Activity of Chitosan with Different Degrees of Acetylation and Molecular Weights. Biocontrol Sci. 2003, 8, 25–30. [Google Scholar] [CrossRef]
- Másson, M. The Quantitative Molecular Weight-Antimicrobial Activity Relationship for Chitosan Polymers, Oligomers, and Derivatives. Carbohydr. Polym. 2024, 337, 122159. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ying, Y.; Liu, Y.; Zhang, H.; Huang, J. Preparation of Chitosan/Poly Vinyl Alcohol Films and Their Inhibition of Biofilm Formation against Pseudomonas Aeruginosa PAO1. Int. J. Biol. Macromol. 2018, 118, 2131–2137. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, Y.; Zhu, J.; Huang, J.; Zhang, H. Inhibition of Bacterial Adhesion and Biofilm Formation of Sulfonated Chitosan against Pseudomonas Aeruginosa. Carbohydr. Polym. 2019, 206, 412–419. [Google Scholar] [CrossRef]
- desJardins-Park, H.E.; Foster, D.S.; Longaker, M.T. Fibroblasts and Wound Healing: An Update. Regen. Med. 2018, 13, 491–495. [Google Scholar] [CrossRef]
- Wong, T.; McGrath, J.A.; Navsaria, H. The Role of Fibroblasts in Tissue Engineering and Regeneration. Br. J. Dermatol. 2007, 156, 1149–1155. [Google Scholar] [CrossRef]
- Ghafari, R.; Jonoobi, M.; Naijian, F.; Ashori, A.; Mekonnen, T.H.; Taheri, A.R. Fabrication and Characterization of Bilayer Scaffolds—Nanocellulosic Cryogels—For Skin Tissue Engineering by Co-Culturing of Fibroblasts and Keratinocytes. Int. J. Biol. Macromol. 2022, 223, 100–107. [Google Scholar] [CrossRef]
- Gong, X.; Liang, Z.; Yang, Y.; Liu, H.; Ji, J.; Fan, Y. A Resazurin-Based, Nondestructive Assay for Monitoring Cell Proliferation during a Scaffold-Based 3D Culture Process. Regen. Biomater. 2020, 7, 271–281. [Google Scholar] [CrossRef]
- Ratanavaraporn, J.; Damrongsakkul, S.; Sanchavanakit, N.; Banaprasert, T.; Kanokpanont, S. Comparison of Gelatin and Collagen Scaffolds for Fibroblast Cell Culture. J. Met. Mater. Miner. 2006, 16, 31–37. [Google Scholar]
- Barton, A.J.; Sagers, R.D.; Pitt, W.G. Bacterial Adhesion to Orthopedic Implant Polymers. J. Biomed. Mater. Res. 1996, 30, 403–410. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Park, S.; Santosh, S.S.; Ganeshalingam, A.; Thiripuranathar, G.; Sathiyaseelan, A.; Vijayasarathy, S.; Swaminathan, A.; Priya, V.V.; Wang, M.-H. Application of Hyaluronic Acid in Tissue Engineering, Regenerative Medicine, and Nanomedicine: A Review. Int. J. Biol. Macromol. 2022, 222, 2744–2760. [Google Scholar] [CrossRef] [PubMed]
- Avila, J.G.; de Liverant, J.G.; Martınez, A.; Martınez, G.; Munoz, J.L.; Arciniegas, A.; de Vivar, A.R. Mode of Action of Buddleja Cordata Verbascoside against Staphylococcus Aureus. J. Ethnopharmacol. 1999, 66, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Lauzardo, A.N.; Bautista-Baños, S.; Velázquez-del Valle, M.G.; Méndez-Montealvo, M.G.; Sánchez-Rivera, M.M.; Bello-Pérez, L.A. Antifungal Effects of Chitosan with Different Molecular Weights on in Vitro Development of Rhizopus Stolonifer (Ehrenb.:Fr.) Vuill. Carbohydr. Polym. 2008, 73, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Hosseinnejad, M.; Jafari, S.M. Evaluation of Different Factors Affecting Antimicrobial Properties of Chitosan. Int. J. Biol. Macromol. 2016, 85, 467–475. [Google Scholar] [CrossRef]
- Bernal-Mercado, A.T.; Juarez, J.; Valdez, M.A.; Ayala-Zavala, J.F.; Del-Toro-Sánchez, C.L.; Encinas-Basurto, D. Hydrophobic Chitosan Nanoparticles Loaded with Carvacrol against Pseudomonas Aeruginosa Biofilms. Molecules 2022, 27, 699. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.; Teixeira-Santos, R.; Gomes, L.C.; Faria, S.I.; Valcarcel, J.; Vázquez, J.A.; Cerqueira, M.A.; Pastrana, L.; Bourbon, A.I.; Mergulhão, F.J. Development of Chitosan-Based Surfaces to Prevent Single-and Dual-Species Biofilms of Staphylococcus Aureus and Pseudomonas Aeruginosa. Molecules 2021, 26, 4378. [Google Scholar] [CrossRef]
- Nagahama, H.; Maeda, H.; Kashiki, T.; Jayakumar, R.; Furuike, T.; Tamura, H. Preparation and Characterization of Novel Chitosan/Gelatin Membranes Using Chitosan Hydrogel. Carbohydr. Polym. 2009, 76, 255–260. [Google Scholar] [CrossRef]
- Mandal, B.B.; Kundu, S.C. Cell Proliferation and Migration in Silk Fibroin 3D Scaffolds. Biomaterials 2009, 30, 2956–2965. [Google Scholar] [CrossRef]
- Zając, A.; Hanuza, J.; Wandas, M.; Dymińska, L. Determination of N-Acetylation Degree in Chitosan Using Raman Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 134, 114–120. [Google Scholar] [CrossRef]
- Uyeki, S.C.; Pacheco, C.M.; Simeral, M.L.; Hafner, J.H. The Raman Active Vibrations of Flavone and Quercetin: The Impact of Conformers and Hydrogen Bonding on Fingerprint Modes. J. Phys. Chem. A 2023, 127, 1387–1394. [Google Scholar] [CrossRef]
- Poungchawanwong, S.; Klaypradit, W.; Li, Q.; Wang, J.; Hou, H. Interaction Effect of Phenolic Compounds on Alaska Pollock Skin Gelatin and Associated Changes. LWT 2020, 133, 110018. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, Z. Effects of Gelatin-Polyphenol and Gelatin–Genipin Cross-Linking on the Structure of Gelatin Hydrogels. Int. J. Food Prop. 2017, 20, S2822–S2832. [Google Scholar] [CrossRef]
- Rambhia, K.J.; Ma, P.X. Controlled Drug Release for Tissue Engineering. J. Control. Release 2015, 219, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Beg, S.; Akhter, S. Box–Behnken Designs and Their Applications in Pharmaceutical Product Development. In Design of Experiments for Pharmaceutical Product Development: Volume I: Basics and Fundamental Principles; Springer: Berlin/Heidelberg, Germany, 2021; pp. 77–85. [Google Scholar] [CrossRef]
- Enrione, J.; Díaz-Calderón, P.; Weinstein-Oppenheimer, C.R.; Sánchez, E.; Fuentes, M.A.; Brown, D.I.; Herrera, H.; Acevedo, C.A. Designing a Gelatin/Chitosan/Hyaluronic Acid Biopolymer Using a Thermophysical Approach for Use in Tissue Engineering. Bioprocess. Biosyst. Eng. 2013, 36, 1947–1956. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Berg, S.; Saxena, N.; Shaik, M.; Pradhan, C. Generation of Ground Truth Images to Validate Micro-CT Image-Processing Pipelines. Lead. Edge 2018, 37, 412–420. [Google Scholar] [CrossRef]
- Herigstad, B.; Hamilton, M.; Heersink, J. How to Optimize the Drop Plate Method for Enumerating Bacteria. J. Microbiol. Methods 2001, 44, 121–129. [Google Scholar] [CrossRef]
- Peeters, E.; Nelis, H.J.; Coenye, T. Comparison of Multiple Methods for Quantification of Microbial Biofilms Grown in Microtiter Plates. J. Microbiol. Methods 2008, 72, 157–165. [Google Scholar] [CrossRef]
- Gilbert, D.F.; Friedrich, O. Cell Viability Assays; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 1493969595. [Google Scholar]
Scaffold | Pattern | Chitosan (mL) | Hyaluronic Acid (mL) | Gelatin (mL) |
---|---|---|---|---|
S1* a | 000 | 3.8 | 1.9 | 13.3 |
S1 b | 000 | 3.8 | 1.9 | 13.3 |
S2 c | −−0 | 1.9 | 0.95 | 13.3 |
S3 | +−0 | 5.7 | 0.95 | 13.3 |
S4 | 0+− | 3.8 | 2.85 | 10.45 |
S5 | ++0 | 5.7 | 2.85 | 13.3 |
S6 | 0−− | 3.8 | 0.95 | 10.45 |
S7 | −0− | 1.9 | 1.9 | 10.45 |
S8 | −0+ | 1.9 | 1.9 | 16.15 |
S9 | −+0 | 1.9 | 2.85 | 13.3 |
S10 | 0−+ | 3.8 | 0.95 | 16.15 |
S11 | 0++ | 3.8 | 2.85 | 16.15 |
S12 | 000 | 3.8 | 1.9 | 13.3 |
S13 | 000 | 3.8 | 1.9 | 13.3 |
Scaffold | Mean Pore Diameter (µm) | Pore Diameter Range (µm) |
---|---|---|
S1* | 81 | 16–229 |
S1 | 112 | 29–220 |
S2 | 154 | 74–216 |
S3 | 116 | 58–185 |
S4 | 152 | 84–219 |
S5 | 132 | 34–290 |
S6 | 140 | 56–314 |
S7 | 85 | 13–161 |
S8 | 121 | 10–283 |
S9 | 100 | 17–154 |
S10 | 93 | 5–266 |
S11 | 70 | 18–160 |
S12 | 116 | 17–160 |
S13 | 78 | 17–160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceriani, R.; Cherif-Pino, D.A.; Pérez-Basáez, P.; Escobar, M.; Leyton, P.; Weinstein-Oppenheimer, C.R.; Moraga-Espinoza, D.F.; Bahamondez-Canas, T.F. Tailoring Polymeric Scaffolds with Buddleja globosa Extract for Dual Antimicrobial and Biocompatible Wound Healing Applications. Molecules 2025, 30, 2428. https://doi.org/10.3390/molecules30112428
Ceriani R, Cherif-Pino DA, Pérez-Basáez P, Escobar M, Leyton P, Weinstein-Oppenheimer CR, Moraga-Espinoza DF, Bahamondez-Canas TF. Tailoring Polymeric Scaffolds with Buddleja globosa Extract for Dual Antimicrobial and Biocompatible Wound Healing Applications. Molecules. 2025; 30(11):2428. https://doi.org/10.3390/molecules30112428
Chicago/Turabian StyleCeriani, Ricardo, Daniel A. Cherif-Pino, Pamela Pérez-Basáez, Marcela Escobar, Patricio Leyton, Caroline R. Weinstein-Oppenheimer, Daniel F. Moraga-Espinoza, and Tania F. Bahamondez-Canas. 2025. "Tailoring Polymeric Scaffolds with Buddleja globosa Extract for Dual Antimicrobial and Biocompatible Wound Healing Applications" Molecules 30, no. 11: 2428. https://doi.org/10.3390/molecules30112428
APA StyleCeriani, R., Cherif-Pino, D. A., Pérez-Basáez, P., Escobar, M., Leyton, P., Weinstein-Oppenheimer, C. R., Moraga-Espinoza, D. F., & Bahamondez-Canas, T. F. (2025). Tailoring Polymeric Scaffolds with Buddleja globosa Extract for Dual Antimicrobial and Biocompatible Wound Healing Applications. Molecules, 30(11), 2428. https://doi.org/10.3390/molecules30112428