Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = lunar water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2395 KiB  
Article
Lunar Regolith Improvement by Inducing Interparticle Adhesion with Capillary Forces
by Karol Brzeziński, Joanna Julia Sokołowska and Bartłomiej Przybyszewski
Materials 2025, 18(10), 2390; https://doi.org/10.3390/ma18102390 - 20 May 2025
Viewed by 1013
Abstract
This paper concerns the assessment of the lunar regolith ability to consolidate in the presence of liquid water and develop and sustain cohesion after drying. This type of cohesion originates from interparticle adhesion and can be potentially improved through grading modification. The research [...] Read more.
This paper concerns the assessment of the lunar regolith ability to consolidate in the presence of liquid water and develop and sustain cohesion after drying. This type of cohesion originates from interparticle adhesion and can be potentially improved through grading modification. The research was conducted using the lunar regolith simulant (EAC-1A) reproducing the PSD of real lunar soil delivered from the Moon. LRS was subjected to water and elevated temperature (equal to the highest temperature on the Moon) to produce specimens of consolidated material, CCR (Capillary-Consolidated Regolith) and to test flexural strength. In order to adapt to potentially small stresses, tests were performed according to the modified EN 196-1 procedure intended for Portland cement testing: specimens scaled to 20 mm × 20 mm × 80 mm (new molds with Polytetrafluoroethylene/Teflon® coatings reducing adhesion were created), supports spacing in the three-point flexural test reduced to 50 mm and apparatus adjusted to precisely apply small loads. CCR developed flexural strength exceeding 0.025 MPa. Then, analogous tests were performed using LRS subjected to grinding in a disc mill prior to consolidation. It was shown that simple mechanical grinding enabled the improvement of interparticle adhesion with capillary forces, resulting in improved flexural strength of the consolidated material (0.123 MPa). Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

36 pages, 23271 KiB  
Article
Comprehensive Evaluation of the Lunar South Pole Landing Sites Using Self-Organizing Maps for Scientific and Engineering Purposes
by Hengxi Liu, Yongzhi Wang, Shibo Wen, Sheng Zhang, Kai Zhu and Jianzhong Liu
Remote Sens. 2025, 17(9), 1579; https://doi.org/10.3390/rs17091579 - 29 Apr 2025
Viewed by 893
Abstract
The permanently shadowed regions of the lunar South Pole have become a key target for international lunar exploration due to their unique scientific value and engineering challenges. In order to effectively screen suitable landing zones near the lunar South Pole, this research proposes [...] Read more.
The permanently shadowed regions of the lunar South Pole have become a key target for international lunar exploration due to their unique scientific value and engineering challenges. In order to effectively screen suitable landing zones near the lunar South Pole, this research proposes a comprehensive evaluation method based on a self-organizing map (SOM). Using multi-source remote sensing data, the method classifies and analyzes candidate landing zones by combining scientific purposes (such as hydrogen abundance, iron oxide abundance, gravity anomalies, water ice distance analysis, and geological features) and engineering constraints (such as Sun visibility, Earth visibility, slope, and roughness). Through automatic clustering, the SOM model finds the important regions. Subsequently, it integrates with a supervised learning model, a random forest, to determine the feature importance weights in more detail. The results from the research indicate the following: the areas suitable for landing account for 9.05%, 5.95%, and 5.08% in the engineering, scientific, and synthesized perspectives, respectively. In the weighting analysis of the comprehensive data, the weights of Earth visibility, hydrogen abundance, kilometer-scale roughness, and slope data all account for more than 10%, and these are thought to be the four most important factors in the automated site selection process. Furthermore, the kilometer-scale roughness data are more important in the comprehensive weighting, which is in line with the finding that the kilometer-scale roughness data represent both surface roughness from an engineering perspective and bedrock geology from a scientific one. In this study, a local examination of typical impact craters is performed, and it is confirmed that all 10 possible landing sites suggested by earlier authors are within the appropriate landing range. The findings demonstrate that the SOM-model-based analysis approach can successfully assess lunar South Pole landing areas while taking multiple constraints into account, uncovering spatial distribution features of the region, and offering a rationale for choosing desired landing locations. Full article
(This article belongs to the Special Issue Planetary Geologic Mapping and Remote Sensing (Second Edition))
Show Figures

Figure 1

33 pages, 13813 KiB  
Review
Advances in Thermal Management for Liquid Hydrogen Storage: The Lunar Perspective
by Jing Li, Fulin Fan, Jingkai Xu, Heran Li, Jian Mei, Teng Fei, Chuanyu Sun, Jinhai Jiang, Rui Xue, Wenying Yang and Kai Song
Energies 2025, 18(9), 2220; https://doi.org/10.3390/en18092220 - 27 Apr 2025
Viewed by 837
Abstract
Liquid hydrogen is regarded as a key energy source and propellant for lunar bases due to its high energy density and abundance of polar water ice resources. However, its low boiling point and high latent heat of vaporization pose severe challenges for storage [...] Read more.
Liquid hydrogen is regarded as a key energy source and propellant for lunar bases due to its high energy density and abundance of polar water ice resources. However, its low boiling point and high latent heat of vaporization pose severe challenges for storage and management under the extreme lunar environment characterized by wide temperature variations, low pressure, and low gravity. This paper reviews the strategies for siting and deployment of liquid hydrogen storage systems on the Moon and the technical challenges posed by the lunar environment, with particular attention for thermal management technologies. Passive technologies include advanced insulation materials, thermal shielding, gas-cooled shielding layers, ortho-para hydrogen conversion, and passive venting, which optimize insulation performance and structural design to effectively reduce evaporation losses and maintain storage stability. Active technologies, such as cryogenic fluid mixing, thermodynamic venting, and refrigeration systems, dynamically regulate heat transfer and pressure variations within storage tanks, further enhancing storage efficiency and system reliability. In addition, this paper explores boil-off hydrogen recovery and reutilization strategies for liquid hydrogen, including hydrogen reliquefaction, mechanical, and non-mechanical compression. By recycling vaporized hydrogen, these strategies reduce resource waste and support the sustainable development of energy systems for lunar bases. In conclusion, this paper systematically evaluates passive and active thermal management technologies as well as vapor recovery strategies along with their technical adaptability, and then proposes feasible storage designs for the lunar environment. These efforts provide critical theoretical foundations and technical references for achieving safe and efficient storage of liquid hydrogen and energy self-sufficiency in lunar bases. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

19 pages, 8368 KiB  
Article
A Novel Ultrasonic Sampling Penetrator for Lunar Water Ice in the Lunar Permanent Shadow Exploration Mission
by Yinchao Wang, Zihao Yin, Chenxu Ding, Fei Liu, Weiwei Zhang, Lin Zu, Zhaozeng Gao, Guanghong Tao and Suyang Yu
Aerospace 2025, 12(4), 358; https://doi.org/10.3390/aerospace12040358 - 19 Apr 2025
Viewed by 473
Abstract
This paper presents an ultrasonic sampling penetrator with a staggered-impact mode, which has been developed for the extraction of lunar water ice. A comparison of this penetrator with existing drilling and sampling equipment reveals its effectiveness in minimizing disturbance to the in situ [...] Read more.
This paper presents an ultrasonic sampling penetrator with a staggered-impact mode, which has been developed for the extraction of lunar water ice. A comparison of this penetrator with existing drilling and sampling equipment reveals its effectiveness in minimizing disturbance to the in situ state of lunar water ice. This is due to the interleaved impact penetration sampling method, which preserves the original stratigraphic information of lunar water ice. The ultrasonic sampling penetrator utilizes a single piezoelectric stack to generate the staggered-impact motion required for the sampler. Finite element simulation methods are employed for the structural design, with modal analysis and modal degeneracy carried out. The combined utilization of harmonic response analysis and transient analysis is instrumental in attaining the staggered-impact motion. The design parameters were then used to fabricate a prototype and construct a test platform, and the design’s correctness was verified by the experimental results. In future sampling of lunar water ice at the International Lunar Research Station, the utilization of the ultrasonic sampling penetrator is recommended. Full article
Show Figures

Figure 1

23 pages, 4182 KiB  
Article
Formation of Lunar Swirls: Implication from Derived Nanophase Iron Abundance
by Wanqi Zhao, Xin Ren, Bin Liu, Yao Xiao and Dawei Liu
Remote Sens. 2025, 17(8), 1324; https://doi.org/10.3390/rs17081324 - 8 Apr 2025
Viewed by 538
Abstract
Lunar swirls are enigmatic features on the Moon’s surface, and their formation remains debated. Previous studies suggest that the distinctive spectral characteristics of lunar swirls result from the asymmetric space weathering between their bright markings (on-swirl) and dark surrounding background (off-swirl) regions. Nanophase [...] Read more.
Lunar swirls are enigmatic features on the Moon’s surface, and their formation remains debated. Previous studies suggest that the distinctive spectral characteristics of lunar swirls result from the asymmetric space weathering between their bright markings (on-swirl) and dark surrounding background (off-swirl) regions. Nanophase iron (npFe0), as the product of space weathering, directly reflects this varying degree of space weathering. In this study, we investigated the formation of lunar swirls from the perspective of the npFe0 distribution across five lunar swirls using Chang’e-1 (CE-1) Interference Imaging Spectrometer (IIM) data. Our results show that (1) on-swirl regions exhibit an obvious lower npFe0 abundance compared to their backgrounds; (2) the relationship between the npFe0 abundance in swirl dark lanes and the off-swirl regions is associated with different stages of space weathering; (3) the difference in the npFe0 abundance between on-swirl regions and off-swirl fresh craters could be due to their different weathering processes; and (4) there is a correlation between npFe0, water content, and the strength of magnetic anomalies related to lunar swirls. These findings support the view that the process of solar wind deflection leads to the preservation of swirl surfaces with reduced space weathering and provide a new perspective for comparing different swirl formation models. Full article
(This article belongs to the Special Issue Planetary Remote Sensing and Applications to Mars and Chang’E-6/7)
Show Figures

Figure 1

20 pages, 12586 KiB  
Article
Design of an Orbital Infrastructure to Guarantee Continuous Communication to the Lunar South Pole Region
by Nicolò Trabacchin and Giacomo Colombatti
Aerospace 2025, 12(4), 289; https://doi.org/10.3390/aerospace12040289 - 30 Mar 2025
Viewed by 616
Abstract
The lunar south pole has gained significant attention due to its unique scientific value and potential for supporting future human exploration. Its potential water ice reservoirs and favourable conditions for long-term habitation make it a strategic target for upcoming space missions. This has [...] Read more.
The lunar south pole has gained significant attention due to its unique scientific value and potential for supporting future human exploration. Its potential water ice reservoirs and favourable conditions for long-term habitation make it a strategic target for upcoming space missions. This has led to a continuous increase in missions towards the Moon thanks mainly to the boost provided by NASA’s Artemis programme. This study focuses on designing a satellite constellation to provide communication coverage for the lunar south pole. Among the various cislunar orbits analysed, the halo orbit families near Earth–Moon Lagrangian points L1 and L2 emerged as the most suitable ones for ensuring continuous communication while minimising the number of satellites required. These orbits, first described by Farquhar in 1966, allow spacecraft to maintain constant communication with Earth due to their unique geometric properties. The candidate orbits were initially implemented in MATLAB using the Circular Restricted Three-Body Problem (CR3BP) to analyse their main features such as stability, periodicity, and coverage time percentage. In order to develop a more detailed and realistic scenario, the obtained initial conditions were refined using a full ephemeris model, incorporating a ground station located near the Connecting Ridge Extension to evaluate communication performance depending on the minimum elevation angle of the antenna. Different multi-body constellations were propagated; however, the constellation consisting of three satellites around L2 and a single satellite around L1 turned out to be the one that best matches the coverage requirements. Full article
(This article belongs to the Special Issue Advances in Lunar Exploration)
Show Figures

Figure 1

19 pages, 4067 KiB  
Article
Improving Lunar Soil Simulant for Plant Cultivation: Earthworm-Mediated Organic Waste Integration and Plant-Microbe Interactions
by Zhongfu Wang, Sihan Hou, Boyang Liao, Zhikai Yao, Yuting Zhu, Hong Liu and Jiajie Feng
Plants 2025, 14(7), 1046; https://doi.org/10.3390/plants14071046 - 27 Mar 2025
Viewed by 676
Abstract
Long-term human residence on the Moon is an inevitable trend in lunar exploration, necessitating the development of Bioregenerative Life Support Systems (BLSSs). In BLSSs, plant cultivation serves as the core functional unit, requiring substantial amounts of cultivation substrates. Lunar soil has potential as [...] Read more.
Long-term human residence on the Moon is an inevitable trend in lunar exploration, necessitating the development of Bioregenerative Life Support Systems (BLSSs). In BLSSs, plant cultivation serves as the core functional unit, requiring substantial amounts of cultivation substrates. Lunar soil has potential as a cultivation substrate, but its suitability for plant growth must be improved to meet life-support requirements. As a fine-grained, organics-free, in situ resource, lunar soil’s high compaction significantly restricts crops’ root access to oxygen, water, and nutrients. While the addition of organic solid waste—a byproduct of BLSSs—could alleviate compaction, issues such as salinization, incomplete decomposition, and the presence of pathogens pose risks to crop health. In this study, we introduced earthworms into wheat cultivation systems to gradually digest, transfer (as vermicompost), and mix solid waste with a lunar soil simulant substrate. We set five experimental groups: a positive control group using vermiculite (named as V) as the optimal growth substrate, a negative control group using pure lunar soil simulant (LS), and three treatment groups using lunar soil simulant with solid waste and 15 (LS+15ew), 30 (LS+30ew), and 45 (LS+45ew) earthworms added. Our results demonstrated significant improvements in both compaction (e.g., bulk density, hydraulic conductivity) and salinization (e.g., salinity, electrical conductivity), likely due to the improved soil aggregate structures, which increased the porosity and ion adsorption capacity of the soil. Additionally, the microbial community within the substrate shifted toward a cooperative pattern dominated by significantly enriched plant probiotics. Consequently, the cultivated wheat achieved approximately 80% of the growth parameters (including production) compared to the control group grown in vermiculite with nutrient solution (representing ideal cultivation conditions), indicating sufficient nutrient supply from the mineralized waste. We can conclude that the earthworms “complementarily” improved the lunar soil simulant and organic waste by addressing compaction and salinization, respectively, leading to comprehensive improvements in key parameters, including the microbial environment. This study proposes a conceptual framework for improving lunar soil for crop cultivation, and it innovatively introduces earthworms as a preliminary yet effective solution. These findings provide a feasible and inspiring foundation for future lunar agriculture. Full article
Show Figures

Figure 1

40 pages, 14878 KiB  
Article
Selection of Landing Sites for the Chang’E-7 Mission Using Multi-Source Remote Sensing Data
by Fei Zhao, Pingping Lu, Tingyu Meng, Yanan Dang, Yao Gao, Zihan Xu, Robert Wang and Yirong Wu
Remote Sens. 2025, 17(7), 1121; https://doi.org/10.3390/rs17071121 - 21 Mar 2025
Cited by 1 | Viewed by 1755
Abstract
The Chinese Chang’E-7 (CE-7) mission is planned to land in the lunar south polar region, and then deploy a mini-flying probe to fly into the cold trap to detect the water ice. The selection of a landing site is crucial for ensuring both [...] Read more.
The Chinese Chang’E-7 (CE-7) mission is planned to land in the lunar south polar region, and then deploy a mini-flying probe to fly into the cold trap to detect the water ice. The selection of a landing site is crucial for ensuring both a safe landing and the successful achievement of its scientific objectives. This study presents a method for landing site selection in the challenging environment of the lunar south pole, utilizing multi-source remote sensing data. First, the likelihood of water ice in all cold traps within 85°S is assessed and prioritized using neutron spectrometer and hyperspectral data, with the most promising cold traps selected for sampling by CE-7’s mini-flying probe. Slope and illumination data are then used to screen feasible landing sites in the south polar region. Feasible landing sites near cold traps are aggregated into larger landing regions. Finally, high-resolution illumination maps, along with optical and radar images, are employed to refine the selection and identify the optimal landing sites. Six potential landing sites around the de Gerlache crater, an unnamed cold trap at (167.10°E, 88.71°S), Faustini crater, and Shackleton crater are proposed. It would be beneficial for CE-7 to prioritize mapping these sites post-launch using its high-resolution optical camera and radar for further detailed landing site investigation and evaluation. Full article
(This article belongs to the Special Issue Remote Sensing and Photogrammetry Applied to Deep Space Exploration)
Show Figures

Figure 1

13 pages, 2926 KiB  
Article
Detecting Lunar Subsurface Water Ice Using FMCW Ground Penetrating Radar: Numerical Analysis with Realistic Permittivity Variations
by Shunya Takekura, Hideaki Miyamoto and Makito Kobayashi
Remote Sens. 2025, 17(6), 1050; https://doi.org/10.3390/rs17061050 - 17 Mar 2025
Viewed by 1186
Abstract
This study investigates the detectability of a putative layer of regolith containing water ice in the lunar polar regions using ground penetrating radar (GPR). Numerical simulations include realistic variations in the relative permittivity of the lunar regolith, considering both density and, for the [...] Read more.
This study investigates the detectability of a putative layer of regolith containing water ice in the lunar polar regions using ground penetrating radar (GPR). Numerical simulations include realistic variations in the relative permittivity of the lunar regolith, considering both density and, for the first time, the effects of temperature on permittivity profiles. We follow the case of previous theoretical studies of water migration, which suggest that water ice accumulates at depths ranging from a few centimeters to tens of centimeters, appropriate depths to explore using GPR. In particular, frequency-modulated continuous wave (FMCW) radar is well-suited for this purpose due to its high range resolution and robust signal-to-noise ratio. This study evaluates two scenarios for the presence of lunar water ice: (1) a layer of regolith containing water ice at a depth of 5 cm, with a thickness of 5 cm, and (2) a layer of regolith containing water ice at a depth of 20 cm, with a thickness of 10 cm. Our computational results show that FMCW GPR, equipped with a dynamic range of 90 dB, is capable of detecting reflections from the interfaces of these layers, even under conditions of low water ice content and using antennas with low directivity. In addition, optimized antenna offsets improve the resolution of the upper and lower interfaces, particularly when applied to the surface of ancient crater ejecta. This study highlights the critical importance of understanding subsurface density and temperature structures for the accurate detection of water-ice-bearing regolith layers. Full article
Show Figures

Figure 1

9 pages, 963 KiB  
Article
Reconcentrating the Ionic Liquid EMIM-HSO4 Using Direct Contact Membrane Distillation
by Mark J. Wong, Viral Sagar and Joan G. Lynam
Molecules 2025, 30(2), 211; https://doi.org/10.3390/molecules30020211 - 7 Jan 2025
Viewed by 790
Abstract
Adequate water supplies are crucial for missions to the Moon, since water is essential for astronauts’ health. Ionic liquids (ILs) have been investigated for processing metal oxides, the main components of lunar regolith, to separate oxygen and metals. The IL must be diluted [...] Read more.
Adequate water supplies are crucial for missions to the Moon, since water is essential for astronauts’ health. Ionic liquids (ILs) have been investigated for processing metal oxides, the main components of lunar regolith, to separate oxygen and metals. The IL must be diluted in the process. Recycling this diluted IL post-processing is important to reduce the materials required in resupply missions. In addition, water will be needed in lunar greenhouses for growing food and aiding in sustaining a habitable environment. Direct contact membrane distillation (DCMD) is a new technology for water purification that was examined in this study for its feasibility to concentrate IL. Hydrophobic membranes composed of polytetrafluoroethylene (PTFE) and polyvinylidene (PVDF) were found to hold promise in separating solutes from water to concentrate a diluted IL solution and to recover water. A bench-scale DCMD system was employed to test this method at temperatures of 50 °C, 65 °C, and 80 °C. Hence, the benefits and limitations of DCMD with PTFE and PVDF membranes were explored for the aqueous IL 1-ethyl-3 methylimidazolium hydrogen sulfate for DCMD performed at different temperatures. Full article
Show Figures

Graphical abstract

23 pages, 7175 KiB  
Article
Integrated Analysis of Water Ice Detection in Erlanger Crater, Lunar North Pole: Insights from Chandrayaan-1 Mini-SAR and Chandrayaan-2 DFSAR Data
by Chandani Sahu, Shashi Kumar, Himanshu Govil and Shovan Lal Chattoraj
Remote Sens. 2025, 17(1), 31; https://doi.org/10.3390/rs17010031 - 26 Dec 2024
Cited by 1 | Viewed by 1288
Abstract
The characterization of the lunar surface and subsurface through the utilization of synthetic aperture radar data has assumed a pivotal role in the domain of lunar exploration science. This investigation concentrated on the polarimetric analysis aimed at identifying water ice within a specific [...] Read more.
The characterization of the lunar surface and subsurface through the utilization of synthetic aperture radar data has assumed a pivotal role in the domain of lunar exploration science. This investigation concentrated on the polarimetric analysis aimed at identifying water ice within a specific crater, designated Erlanger, located at the lunar north pole, which is fundamentally a region that is perpetually shaded from solar illumination. The area that is perpetually shaded on the moon is defined as that region that is never exposed to sunlight due to the moon’s slightly tilted rotational axis. These permanently shaded regions serve as cold traps for water molecules. To ascertain the presence of water ice within the designated study area, we conducted an analysis of two datasets from the Chandrayaan mission: Mini-SAR data from Chandrayaan-1 and Dual-Frequency Synthetic Aperture Radar (DFSAR) data from Chandrayaan-2. The polarimetric analysis of the Erlanger Crater, located in a permanently shadowed region of the lunar north pole, utilizes data from the Dual-Frequency Synthetic Aperture Radar (DFSAR) and the Mini-SAR. This study focuses exclusively on the L-band DFSAR data due to the unavailability of S-band data for the Erlanger Crater. The crater, identified by the PSR ID NP_869610_0287570, is of particular interest for its potential water ice deposits. The analysis employs three decomposition models—m-delta, m-chi, and m-alpha—derived from the Mini-SAR data, along with the H-A-Alpha model known as an Eigenvector and Eigenvalue model, applied to the DFSAR data. The H-A-Alpha helps in assessing the entropy and anisotropy of the lunar surface. The results reveal a correlation between the hybrid polarimetric models (m-delta, m-chi, and m-alpha) and fully polarimetric parameters (entropy, anisotropy, and alpha), suggesting that volume scattering predominates inside the crater walls, while surface and double bounce scattering are more prevalent in the right side of the crater wall and surrounding areas. Additionally, the analysis of the circular polarization ratio (CPR) from both datasets suggests the presence of water ice within and around the crater, as values greater than 1 were observed. This finding aligns with other studies indicating that the high CPR values are indicative of ice deposits in the lunar polar regions. The polarimetric analysis of the Erlanger Crater contributes to the understanding of lunar polar regions and highlights the potential for future exploration and resource utilization on the Moon. Full article
(This article belongs to the Special Issue New Approaches in High-Resolution SAR Imaging)
Show Figures

Figure 1

19 pages, 16179 KiB  
Article
Carbon Nanotube Reinforced Lunar-Based Geopolymer: Curing Conditions
by Janell Prater and Young Hoon Kim
J. Compos. Sci. 2024, 8(12), 492; https://doi.org/10.3390/jcs8120492 - 25 Nov 2024
Cited by 1 | Viewed by 1302
Abstract
Current space exploration focuses on returning to the Moon to expand space exploration capacity by improving technology. The long-term presence of humans and robots on the Moon requires the development of durable habitats for space missions. In recent decades, in situ resource utilization [...] Read more.
Current space exploration focuses on returning to the Moon to expand space exploration capacity by improving technology. The long-term presence of humans and robots on the Moon requires the development of durable habitats for space missions. In recent decades, in situ resource utilization (ISRU) for construction materials has been recognized as a viable option. However, the addition of nanomaterials, which exhibit a high strength-to-weight ratio, has not been incorporated with the ISRU framework in space missions. This paper investigates the impact of carbon nanotubes (CNTs) on lunar simulant-based geopolymers’ compressive strength and water retention. The evaluation of water retention indicates another potential in water recapturing capability. In this study, CNTs can enhance the mechanical properties of lunar simulant-based geopolymer. Two lunar simulants were used, representing the Highland and Mare regions of the Moon. Experimental variables included CNT concentration, four curing regimes (ambient curing, two oven-curing methods, and microwave radiation), and dispersion time in aqueous solutions. Results showed that CNTs can positively influence both strength gain and water retention during curing regimes, but the extent of influence appears to be dependent on simulant type and curing regime. The Highland simulant consistently outperformed the Mare simulant in oven-curing regimes from a strength perspective, regardless of CNT presence. The strength benefits of CNTs were more pronounced at ambient curing temperatures. Even under poor curing conditions—where water availability may be limited at temperatures of 80 °C—CNTs aid in retaining water within the geopolymer matrix, leading to improved strength compared to counterparts. Under the same conditions, a higher concentration of CNTs further confirmed their role in water retention during geopolymerization, with consistently greater water retention observed in samples containing CNTs. Additionally, microwave radiation was explored as an alternative to conventional oven drying, showing potential for reducing curing duration. Finally, the findings suggest that combining CNTs and microwave radiation could enhance water recovery and reuse, contributing to the development of high-strength infrastructure materials on the Moon with reduced energy and cost requirements. Full article
(This article belongs to the Special Issue Novel Cement and Concrete Materials)
Show Figures

Figure 1

23 pages, 6340 KiB  
Review
A Review of Lidar Technology in China’s Lunar Exploration Program
by Genghua Huang and Weiming Xu
Remote Sens. 2024, 16(23), 4354; https://doi.org/10.3390/rs16234354 - 22 Nov 2024
Viewed by 2082
Abstract
Lidar technology plays a pivotal role in lunar exploration, particularly in terrain mapping, 3D topographic surveying, and velocity measurement, which are crucial for guidance, navigation, and control. This paper reviews the current global research and applications of lidar technology in lunar missions, noting [...] Read more.
Lidar technology plays a pivotal role in lunar exploration, particularly in terrain mapping, 3D topographic surveying, and velocity measurement, which are crucial for guidance, navigation, and control. This paper reviews the current global research and applications of lidar technology in lunar missions, noting that existing efforts are primarily focused on 3D terrain mapping and velocity measurement. The paper also discusses the detailed system design and key results of the laser altimeter, laser ranging sensor, laser 3D imaging sensor, and laser velocity sensor used in the Chang’E lunar missions. By comparing and analyzing similar foreign technologies, this paper identifies future development directions for lunar laser payloads. The evolution towards multi-beam single-photon detection technology aims to enhance the point cloud density and detection efficiency. This manuscript advocates that China actively advance new technologies and conduct space application research in areas such as multi-beam single-photon 3D terrain mapping, lunar surface water ice measurement, and material composition analysis, to elevate the use of laser pay-loads in lunar and space exploration. Full article
(This article belongs to the Special Issue Laser and Optical Remote Sensing for Planetary Exploration)
Show Figures

Figure 1

11 pages, 3758 KiB  
Article
One-Step Preparation of Both Micron and Nanoparticles
by Zihao Guo, Zhiyuan Zhang, Yunchen Cao, Chunyi Chen, Juan Wang, Haoran Yang, Wenbin Song, Yiyang Peng and Xiaowei Hu
Polymers 2024, 16(22), 3120; https://doi.org/10.3390/polym16223120 - 7 Nov 2024
Viewed by 1043
Abstract
The complex materials comprised of both micron and nanometer-sized particles (MNPs) present special properties different from conventional single-size particles due to their special size effect. In this study, the MNPs could be simultaneously synthesized in a one-pot medium by soap-free emulsion polymerization, without [...] Read more.
The complex materials comprised of both micron and nanometer-sized particles (MNPs) present special properties different from conventional single-size particles due to their special size effect. In this study, the MNPs could be simultaneously synthesized in a one-pot medium by soap-free emulsion polymerization, without harsh preparation conditions and material waste. In the whole process, the amphipathic siloxane oligomers would migrate to the mixed monomer droplet surface to reduce the surface energy of the system and further complete hydrolysis–condensation to obtain the SiO2 shell at the water–oil interface. On the one hand, the mixed monomers inside the above shell would migrate outward driven by the capillary force generated at the shell mesopore and be further initiated by the water-soluble initiator potassium persulfate (KPS), resulting in the formation of bowl-shaped micron particles with “lunar surface” structure. On the other hand, the residual mixed monomers dissolve in water and could be polymerized by initiating free radicals in the water phase to obtain popcorn-like nano-sized particles. The above two particles are clearly displayed in the SEM photos, and the DLS characterization further shows that the sizes of two particles are concentrated at 1.4 μm and 130 nm, respectively. Interestingly, the uniformity of obtained particles has a great relationship with the added amount of BA, and the perfect MNPs would appear when the St/BA feed mass ratio is 1:2. Moreover, the MNPs exhibit film-forming property, and the SiO2 component is evenly distributed in the formed coating. Thus, this study is not only beneficial to the theoretical research of soap-free emulsion polymerization but also to the application of multifunctional coatings. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

23 pages, 20937 KiB  
Article
Lunarminer Framework for Nature-Inspired Swarm Robotics in Lunar Water Ice Extraction
by Joven Tan, Noune Melkoumian, David Harvey and Rini Akmeliawati
Biomimetics 2024, 9(11), 680; https://doi.org/10.3390/biomimetics9110680 - 7 Nov 2024
Viewed by 2285
Abstract
The Lunarminer framework explores the use of biomimetic swarm robotics, inspired by the division of labor in leafcutter ants and the synchronized flashing of fireflies, to enhance lunar water ice extraction. Simulations of water ice extraction within Shackleton Crater showed that the framework [...] Read more.
The Lunarminer framework explores the use of biomimetic swarm robotics, inspired by the division of labor in leafcutter ants and the synchronized flashing of fireflies, to enhance lunar water ice extraction. Simulations of water ice extraction within Shackleton Crater showed that the framework may improve task allocation, by reducing the extraction time by up to 40% and energy consumption by 31% in scenarios with high ore block quantities. This system, capable of producing up to 181 L of water per day from excavated regolith with a conversion efficiency of 0.8, may allow for supporting up to eighteen crew members. It has demonstrated robust fault tolerance and sustained operational efficiency, even for a 20% robot failure rate. The framework may help to address key challenges in lunar resource extraction, particularly in the permanently shadowed regions. To refine the proposed strategies, it is recommended that further studies be conducted on their large-scale applications in space mining operations at the Extraterrestrial Environmental Simulation (EXTERRES) laboratory at the University of Adelaide. Full article
(This article belongs to the Special Issue Recent Advances in Robotics and Biomimetics)
Show Figures

Figure 1

Back to TopTop