Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,562)

Search Parameters:
Keywords = lumping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 293 KB  
Article
Is Private Law Tort Adjudication a Public Good? The Case of Dissipation of Damages
by Prue Vines and Kylie Burns
Laws 2025, 14(5), 72; https://doi.org/10.3390/laws14050072 (registering DOI) - 5 Oct 2025
Abstract
Lump sum compensatory damages awarded through court adjudication are regarded as the proper result of tort personal injury litigation delivering corrective justice to worthy plaintiffs and delivering public statements of moral blameworthiness. In this article, we show that the problem of premature dissipation [...] Read more.
Lump sum compensatory damages awarded through court adjudication are regarded as the proper result of tort personal injury litigation delivering corrective justice to worthy plaintiffs and delivering public statements of moral blameworthiness. In this article, we show that the problem of premature dissipation of lump sum compensation is a problem of ‘private’ tort law and also of the public aspect of private tort law. We argue that the theoretical account that corrective justice for personal injury occurs by the delivery of lump sum damages is heavily compromised by how rarely plaintiffs are likely to receive what might be considered a full measure of damages compared to the wrong and harm suffered. In addition, the reality that those ‘reduced’ damages are delivered via confidential settlement diminishes the public aspects of tort law. We show that the premature dissipation of lump sum damages by injured plaintiffs is a wicked problem caused by many intersecting factors including aspects of tort law (common law and statutory); institutional factors; the impact of early settlement of claims; treatment of legal costs; the interaction between tort law and other systems such as social security; and factors personal to plaintiffs. Full article
13 pages, 322 KB  
Article
Observer-Based Exponential Stabilization for Time Delay Takagi–Sugeno–Lipschitz Models
by Omar Kahouli, Hamdi Gassara, Lilia El Amraoui and Mohamed Ayari
Mathematics 2025, 13(19), 3170; https://doi.org/10.3390/math13193170 - 3 Oct 2025
Abstract
This paper addresses the problem of observer-based control (OBC) for nonlinear systems with time delay (TD). A novel hybrid modeling framework for nonlinear TD systems is first introduced by synergistically combining TD Takagi–Sugeno (TDTS) fuzzy and Lipschitz approaches. The proposed methodology broadens the [...] Read more.
This paper addresses the problem of observer-based control (OBC) for nonlinear systems with time delay (TD). A novel hybrid modeling framework for nonlinear TD systems is first introduced by synergistically combining TD Takagi–Sugeno (TDTS) fuzzy and Lipschitz approaches. The proposed methodology broadens the range of representable systems by enabling Lipschitz nonlinearities to fulfill dual functions: they may describe essential dynamic behaviors of the system or represent aggregated uncertainties, depending on the specific application. The proposed TDTS–Lipschitz (TDTSL) model class features measurable premise variables while accommodating Lipschitz nonlinearities that may depend on unmeasurable system states. Then, through the construction of an appropriate Lyapunov–Krasovskii (L-K) functional, we derive sufficient conditions to ensure exponential stability of the augmented closed-loop model. Subsequently, through a decoupling methodology, these stability conditions are reformulated as a set of linear matrix inequalities (LMIs). Finally, the proposed OBC design is validated through application to a continuous stirred tank reactor (CSTR) with lumped uncertainties. Full article
(This article belongs to the Special Issue Advances in Nonlinear Analysis: Theory, Methods and Applications)
Show Figures

Figure 1

21 pages, 6199 KB  
Article
Structural Responses of the Net System of a Bottom-Mounted Aquaculture Farm in Waves and Currents
by Fuxiang Liu, Haitao Zhu, Guoqing Sun, Yuqin Zhang, Yanyan Wang and Gang Wang
J. Mar. Sci. Eng. 2025, 13(10), 1900; https://doi.org/10.3390/jmse13101900 - 3 Oct 2025
Abstract
This study investigates the hydrodynamics of the net system of the bottom-mounted aquaculture farms located in the Bohai Sea, addressing the growing demand for high-quality aquatic products and the limitations of coastal aquaculture. Based on the validation part, the established lumped-mass method integrated [...] Read more.
This study investigates the hydrodynamics of the net system of the bottom-mounted aquaculture farms located in the Bohai Sea, addressing the growing demand for high-quality aquatic products and the limitations of coastal aquaculture. Based on the validation part, the established lumped-mass method integrated with the finite element method ABAQUS/AQUA was employed to evaluate the structural responses of the net system with three arrangement schemes under diverse environmental loads. The hydrodynamic loads on net twines are modeled with Morison formulae. With the motivation of investigating the trade-offs between volume expansions, load distributions, and structural reliabilities, Scheme 1 refers to the baseline design enclosing the basic aquaculture volume, while Scheme 2 targets to increase the aquaculture volume and utilization rate and Scheme 3 seeks to optimize the load distributions instead. The results demonstrate that Scheme 1 provides the optimal balance of structural safety and functional efficiency. Specifically, under survival conditions, Scheme 1 reduces peak bottom tension rope loads by 14% compared to Scheme 2 and limits maximum netting displacement to 4.0 m. It is 21.3% lower than Scheme 3, of which the displacement is 5.08 m. It has been confirmed that Scheme 1 effectively minimizes collision risks, whereas the other schemes exhibit severe collisions. Scheme 1 trades off maximum volume expansion for optimal load management, minimal deformation, and the highest overall structural reliability, making it the recommended design. These findings offer valuable insights for the design and optimization of net systems in offshore aquaculture structures serviced in comparable offshore regions. Full article
(This article belongs to the Special Issue Structural Analysis and Failure Prevention in Offshore Engineering)
Show Figures

Figure 1

29 pages, 2052 KB  
Article
Comparison of Alternative Port-Hamiltonian Dynamics Extensions to the Thermodynamic Domain Toward IDA-PBC-Like Control: Application to a Heat Transfer Model
by Oleksiy Kuznyetsov
Dynamics 2025, 5(4), 42; https://doi.org/10.3390/dynamics5040042 - 1 Oct 2025
Abstract
The dynamics of port-Hamiltonian systems is based on energy balance principles (the first law of thermodynamics) embedded in the structure of the model. However, when dealing with thermodynamic subsystems, the second law (entropy production) should also be explicitly taken into account. Several frameworks [...] Read more.
The dynamics of port-Hamiltonian systems is based on energy balance principles (the first law of thermodynamics) embedded in the structure of the model. However, when dealing with thermodynamic subsystems, the second law (entropy production) should also be explicitly taken into account. Several frameworks were developed as extensions to the thermodynamic domain of port-Hamiltonian systems. In our work, we study three of them, namely irreversible port-Hamiltonian systems, entropy-based generalized Hamiltonian systems, and entropy-production-metric-based port-Hamiltonian systems, which represent alternative approaches of selecting the state variables, the storage function, simplicity of physical interpretation, etc. On the example of a simplified lumped-parameter model of a heat exchanger, we study the frameworks in terms of their implementability for an IDA-PBC-like control and the simplicity of using these frameworks for practitioners already familiar with the port-Hamiltonian systems. The comparative study demonstrated the possibility of using each of these approaches to derive IDA-PBC-like thermodynamically consistent control and provided insight into the applicability of each framework for the modeling and control of multiphysics systems with thermodynamic subsystems. Full article
Show Figures

Graphical abstract

26 pages, 2043 KB  
Article
Kinetic and Thermodynamic Study of Vacuum Residue Cracking over Cerium-Modified Metakaolinite Catalyst
by Osamah Basil Al-Ameri, Mohammed Alzuhairi, Zaidoon Shakor, Esther Bailón-García, Francisco Carrasco-Marín and Juan Amaro-Gahete
Processes 2025, 13(10), 3126; https://doi.org/10.3390/pr13103126 - 29 Sep 2025
Abstract
Catalytic upgrading of vacuum residue (VR) is critical for enhancing fuel yield and reducing waste in petroleum refining. This study explores VR cracking over a novel cerium-loaded acidified metakaolinite catalyst (MKA800–20%Ce) prepared via calcination at 800 °C, acid leaching, and wet impregnation with [...] Read more.
Catalytic upgrading of vacuum residue (VR) is critical for enhancing fuel yield and reducing waste in petroleum refining. This study explores VR cracking over a novel cerium-loaded acidified metakaolinite catalyst (MKA800–20%Ce) prepared via calcination at 800 °C, acid leaching, and wet impregnation with 20 wt.% Ce. The catalyst was characterized using FTIR, BET, XRD, TGA, and GC–MS to assess structural, textural, and thermal properties. Catalytic cracking was carried out in a fixed-bed batch reactor at 350 °C, 400 °C, and 450 °C. The MKA800@Ce20% catalyst showed excellent thermal stability and surface activity, especially at higher temperatures. At 450 °C, the catalyst yielded approximately 11.72 g of total liquid product per 20 g of VR (representing a ~61% yield), with ~3.81 g of coke (~19.1%) and the rest as gaseous products (~19.2%). GC-MS analysis revealed enhanced production of light naphtha (LN), heavy naphtha (HN), and kerosene in the 400–450 °C range, with a clear temperature-dependent shift in product distribution. Structural analysis confirmed that cerium incorporation enhanced surface acidity, redox activity, and thermal stability, promoting deeper cracking and better product selectivity. Kinetics were investigated using an eight-lump first-order model comprising 28 reactions, with kinetic parameters optimized through a genetic algorithm implemented in MATLAB. The model demonstrated strong predictive accuracy taking into account the mean relative error (MRE = 9.64%) and the mean absolute error (MAE = 0.015) [MAE: It is the absolute difference between experimental and predicted values; MAE is dimensionless (reported simply as a number, not %. MRE is relative to the experimental value; it is usually expressed as a percentage (%)] across multiple operating conditions. The above findings highlight the potential of Ce-modified kaolinite-based catalysts for efficient atmospheric pressure VR upgrading and provide validated kinetic parameters for process optimization. Full article
(This article belongs to the Special Issue Biomass Pyrolysis Characterization and Energy Utilization)
24 pages, 4130 KB  
Article
Analysis of Electromechanical Swings of a Turbogenerator Based on a Fractional-Order Circuit Model
by Jan Staszak
Energies 2025, 18(19), 5170; https://doi.org/10.3390/en18195170 - 28 Sep 2025
Abstract
This paper addresses the issue of rotor swings in a high-power synchronous generator during stable operation with a stiff power grid. The analysis of electromechanical swings was conducted using a circuit model incorporating fractional-order derivatives. Assuming that variations in the load angle under [...] Read more.
This paper addresses the issue of rotor swings in a high-power synchronous generator during stable operation with a stiff power grid. The analysis of electromechanical swings was conducted using a circuit model incorporating fractional-order derivatives. Assuming that variations in the load angle under small disturbances from a stable equilibrium are minor, a linearized differential equation describing the electrodynamic state of the synchronous machine was derived. Based on this linearized equation of motion and the identified parameters of the equivalent circuit, calculations were performed for a 200 MW turbogenerator. The results indicate that the electromechanical swings are characterized by a constant pulsation and a low damping factor. Calculations were also carried out using a lumped-parameter equivalent circuit model. Based on the obtained results, it can be stated that the fractional-order model provides a more accurate fit of the frequency characteristics compared with the classical model with the same number of rotor equivalent circuits. The relative approximation errors for the fractional-order model are, for the d-axis (one rotor equivalent circuit), relative magnitude error δm = 1.53% and relative phase error δφ = 6.32%, and for the q-axis (two rotor equivalent circuits), δm = 3.2% and δφ = 8.3%. To achieve comparable approximation accuracy for the classical model, the rotor electrical circuit must be replaced with two equivalent circuits in the d-axis and four equivalent circuits in the q-axis, yielding relative errors of δm = 2.85% and δφ = 6.51% for the d-axis, and δm = 1.86% and δφ = 5.49% for the q-axis. Full article
(This article belongs to the Special Issue Electric Machinery and Transformers III)
Show Figures

Figure 1

25 pages, 4931 KB  
Article
Optical Multi-Peakon Dynamics in the Fractional Cubic–Quintic Nonlinear Pulse Propagation Model Using a Novel Integral Approach
by Ejaz Hussain, Aljethi Reem Abdullah, Khizar Farooq and Usman Younas
Fractal Fract. 2025, 9(10), 631; https://doi.org/10.3390/fractalfract9100631 - 28 Sep 2025
Abstract
This study examines the soliton dynamics in the time-fractional cubic–quintic nonlinear non-paraxial propagation model, applicable to optical signal processing, nonlinear optics, fiber-optic communication, and biomedical laser–tissue interactions. The fractional framework exhibits a wide range of nonlinear effects, such as self-phase modulation, wave mixing, [...] Read more.
This study examines the soliton dynamics in the time-fractional cubic–quintic nonlinear non-paraxial propagation model, applicable to optical signal processing, nonlinear optics, fiber-optic communication, and biomedical laser–tissue interactions. The fractional framework exhibits a wide range of nonlinear effects, such as self-phase modulation, wave mixing, and self-focusing, arising from the balance between cubic and quintic nonlinearities. By employing the Multivariate Generalized Exponential Rational Integral Function (MGERIF) method, we derive an extensive catalog of analytic solutions, multi-peakon structures, lump solitons, kinks, and bright and dark solitary waves, while periodic and singular solutions emerge as special cases. These outcomes are systematically constructed within a single framework and visualized through 2D, 3D, and contour plots under both anomalous and normal dispersion regimes. The analysis also addresses modulation instability (MI), interpreted as a sideband amplification of continuous-wave backgrounds that generates pulse trains and breather-type structures. Our results demonstrate that cubic–quintic contributions substantially affect MI gain spectrum, broadening instability bands and permitting MI beyond the anomalous-dispersion regime. These findings directly connect the obtained solution classes to experimentally observed routes for solitary wave shaping, pulse propagation, and instability and instability-driven waveform formation in optical communication devices, photonic platforms, and laser technologies. Full article
Show Figures

Figure 1

15 pages, 1301 KB  
Article
Learning-Aided Adaptive Robust Control for Spiral Trajectory Tracking of an Underactuated AUV in Net-Cage Environments
by Zhiming Zhu, Dazhi Huang, Feifei Yang, Hongkun He, Fuyuan Liang and Andrii Voitasyk
Appl. Sci. 2025, 15(19), 10477; https://doi.org/10.3390/app151910477 - 27 Sep 2025
Abstract
High-precision spiral trajectory tracking for aquaculture net-cage inspection is hindered by uncertain hydrodynamics, strong coupling, and time-varying disturbances acting on an underactuated autonomous underwater vehicle. This paper adapts and validates a model–data-driven learning-aided adaptive robust control strategy for the specific challenge of high-precision [...] Read more.
High-precision spiral trajectory tracking for aquaculture net-cage inspection is hindered by uncertain hydrodynamics, strong coupling, and time-varying disturbances acting on an underactuated autonomous underwater vehicle. This paper adapts and validates a model–data-driven learning-aided adaptive robust control strategy for the specific challenge of high-precision spiral trajectory tracking for aquaculture net-cage inspection. At the kinematic level, a serial iterative learning feedforward compensator is combined with a line-of-sight guidance law to form a feedforward-compensated guidance scheme that exploits task repeatability and reduces systematic tracking bias. At the dynamic level, an integrated adaptive robust controller employs projection-based, rate-limited recursive least-squares identification of hydrodynamic parameters, along with a composite feedback law that combines linear error feedback, a nonlinear robust term, and fast dynamic compensation to suppress lumped uncertainties arising from estimation error and external disturbances. A Lyapunov-based analysis establishes uniform ultimate boundedness of all closed-loop error signals. Simulations that emulate net-cage inspection show faster convergence, higher tracking accuracy, and stronger robustness than classical adaptive robust control and other baselines while maintaining bounded control effort. The results indicate a practical and effective route to improving the precision and reliability of autonomous net-cage inspection. Full article
Show Figures

Figure 1

15 pages, 2120 KB  
Article
An Analytical Thermal Model for Coaxial Magnetic Gears Considering Eddy Current Losses
by Panteleimon Tzouganakis, Vasilios Gakos, Christos Papalexis, Christos Kalligeros, Antonios Tsolakis and Vasilios Spitas
Modelling 2025, 6(4), 114; https://doi.org/10.3390/modelling6040114 - 25 Sep 2025
Abstract
This work presents an analytical 2D model for estimating eddy current losses in the permanent magnets (PMs) of a coaxial magnetic gear (CMG), with a focus on loss minimization through magnet segmentation. The model is applied under various operating conditions, including different rotational [...] Read more.
This work presents an analytical 2D model for estimating eddy current losses in the permanent magnets (PMs) of a coaxial magnetic gear (CMG), with a focus on loss minimization through magnet segmentation. The model is applied under various operating conditions, including different rotational speeds, load levels, and segmentation configurations, to derive empirical expressions for eddy current losses in both the inner and outer rotors. A 1D lumped-parameter thermal model is then used to predict the steady-state temperature of the PMs, incorporating empirical correlations for the thermal convection coefficient. Both models are validated against finite element analysis (FEA) simulations. The analytical eddy current loss model exhibits excellent agreement, with a maximum error of 2%, while the thermal model shows good consistency, with a maximum temperature deviation of 5%. The results confirm that eddy current losses increase with rotational speed but can be significantly reduced through magnet segmentation. However, achieving an acceptable thermal performance at high speeds may require a large number of segments, particularly in the outer rotor, which could influence the manufacturing cost and complexity. The proposed models offer a fast and accurate tool for the design and thermal analysis of CMGs, enabling early-stage optimization with minimal computational effort. Full article
Show Figures

Figure 1

16 pages, 545 KB  
Article
A Lumped Parameter Modelling Study of Leukoaraiosis Suggests Its Vascular Pathophysiology May Be Similar to Normal-Pressure Hydrocephalus
by Grant A. Bateman and Alexander R. Bateman
Brain Sci. 2025, 15(9), 1023; https://doi.org/10.3390/brainsci15091023 - 22 Sep 2025
Viewed by 209
Abstract
Introduction: Leukoaraiosis (LA) or white matter disease is a significant component of vascular dementia. There is a large overlap noted between normal-pressure hydrocephalus (NPH) and LA. A previously reported lumped parameter modelling study of NPH led to novel findings in this disease. Given [...] Read more.
Introduction: Leukoaraiosis (LA) or white matter disease is a significant component of vascular dementia. There is a large overlap noted between normal-pressure hydrocephalus (NPH) and LA. A previously reported lumped parameter modelling study of NPH led to novel findings in this disease. Given the overlap between LA and NPH, the purpose of the current study is to perform a lumped parameter study into LA to see if the vascular pathophysiology is similar to NPH. Methods: A lumped parameter model originally developed to study normal-pressure hydrocephalus was extended to investigate LA. The model was constrained by the known cerebral blood flow and cerebral blood volumes found in LA, as derived from the literature. Results: Similar to NPH, in LA, the model predicted a balanced increase in arterial and venous outflow resistance, with the resulting ischemia affecting the white matter rather than the grey matter. However, unlike NPH, in LA, the findings are irreversible, most likely due to structural venous wall changes. Conclusions: The model suggests that the vascular physiology of LA maybe similar to NPH. A common pathophysiology is discussed based on a pulsation-induced increase in the venous outflow resistance. Full article
Show Figures

Figure 1

18 pages, 939 KB  
Article
A DREM-Based Approach for the Identification of Chaotic Systems
by Carlos Aguilar-Ibanez, Miguel S. Suarez-Castanon, Belem Saldivar, José E. Valdez-Rodríguez and Eloísa García-Canseco
Entropy 2025, 27(9), 971; https://doi.org/10.3390/e27090971 - 18 Sep 2025
Viewed by 177
Abstract
A straightforward methodology for identifying certain classes of chaotic systems based on a novel version of the least-squares method, assuming they are algebraically observable and identifiable with respect to a measurable output, is introduced. This output allows us to express the original system [...] Read more.
A straightforward methodology for identifying certain classes of chaotic systems based on a novel version of the least-squares method, assuming they are algebraically observable and identifiable with respect to a measurable output, is introduced. This output allows us to express the original system as a chain of integrators, where the last term, which depends on the output and its corresponding time derivatives, lumps the system’s non-linearities. We can factorize this term into a regressor function multiplied by an unknown-parameter vector, suggesting that a high-gain observer can be used to simultaneously and approximately estimate the states of the pure integrator and the evolution of the lumped nonlinear term. This allows us to rewrite the original system as a linear regression equation. This configuration enables the above-mentioned least-squares method to recover the chaotic-system parameters. Full article
Show Figures

Figure 1

25 pages, 16689 KB  
Article
In-Depth Understanding of the Impact of Material Properties on the Performance of Jet Milling of Active Pharmaceutical Ingredients
by Viktor Bultereys, Kensaku Matsunami, Laure Descamps, Roel Mertens, Alain Collas and Ashish Kumar
Pharmaceutics 2025, 17(9), 1197; https://doi.org/10.3390/pharmaceutics17091197 - 15 Sep 2025
Viewed by 467
Abstract
Background/Objectives: Among different milling techniques, spiral air jet milling can produce finer particles without the use of solvents or additives, thereby improving the bioavailability and content uniformity of the final dosage form. However, milling can complicate downstream processability of active pharmaceutical ingredients (APIs) [...] Read more.
Background/Objectives: Among different milling techniques, spiral air jet milling can produce finer particles without the use of solvents or additives, thereby improving the bioavailability and content uniformity of the final dosage form. However, milling can complicate downstream processability of active pharmaceutical ingredients (APIs) due to reduced bulk powder flowability and post-milling lump formation. Process settings are often optimized only for particle size reduction, without sufficient consideration of manufacturability, largely because of limited API availability and a lack of knowledge about influential material properties. This study aimed to investigate the impact of material properties and process settings on milling performance and downstream manufacturability. Methods: Four APIs, examined in a total of eight grades, were characterized for their bulk mechanical properties and compression energy parameters using a compaction simulator. These grades were subjected to milling experiments within a design-of-experiments framework. Statistical analyses were performed, and population balance models (PBMs) were developed and calibrated for each experiment to link material properties and process settings to milling outcomes. Results: A higher gas flow rate was identified as the most significant contributor to particle size reduction. The influence of mechanical properties, particularly Young’s modulus and Poisson’s ratio, was evident and correlated with unmilled particle sizes. PBM analyses showed that a higher gas feed rate decreased the critical particle size for breakage, while intrinsic mechanical properties affected the breakage rate function. Conclusions: By integrating material properties and process settings into PBM analyses, specific breakage mechanisms could be identified. These findings provide a framework for optimizing jet milling not only for particle size reduction but also for downstream processability of APIs. Full article
(This article belongs to the Special Issue Advances in Analysis and Modeling of Solid Drug Product)
Show Figures

Graphical abstract

19 pages, 2136 KB  
Article
Two-Sheath Loop Short Circuit Defects Detection in High-Voltage Cable Systems Using Sheath Current Phasors
by Weihua Yuan, Jing Tu, Yongheng Ai, Zhanran Xia, Ruoxin Song, Jianfeng He, Xinyun Gao, Minghong Jiang, Bin Yang, Bo Li and Hang Wang
Energies 2025, 18(18), 4868; https://doi.org/10.3390/en18184868 - 12 Sep 2025
Viewed by 255
Abstract
The joint is the weak point of HV (high voltage) cable insulation systems; creep discharge between insulation layers of the cable joint, due to moisture intrusion, is one of the main defects leading to single-phase grounding. Carbonization on the insulation interface after creep [...] Read more.
The joint is the weak point of HV (high voltage) cable insulation systems; creep discharge between insulation layers of the cable joint, due to moisture intrusion, is one of the main defects leading to single-phase grounding. Carbonization on the insulation interface after creep discharge would lead to a short-circuit defect in the sheath loops and result in abnormal sheath current. In this study, a novel diagnostic criterion using the phasor difference of sheath currents at both ends of the same circuit is proposed. The coupling effect between the sheath and the conductor under defect conditions is considered, and the original lumped parameter model of the cable circuit is optimized. The cable parameters are further corrected using a genetic algorithm. The diagnostic criterion comprehensively accounts for the adverse effects of unequal cable segment lengths, load current fluctuations, grounding impedance, and phase voltage variations. When the phase angle fluctuation of the phasor difference is within 10° and the defect impedance is below 100 Ω, the defective joint can be accurately diagnosed by this method. The conclusion has been validated through PSCAD simulations, with a diagnostic accuracy above 97%. Even under 20 dB noise interference, the error increase remains within 2%. Full article
Show Figures

Figure 1

22 pages, 4003 KB  
Article
Numerical Modelling of Rock Fragmentation in Landslide Propagation: A Test Case
by Claudia Zito, Massimo Mangifesta, Mirko Francioni, Luigi Guerriero, Diego Di Martire, Domenico Calcaterra, Corrado Cencetti, Antonio Pasculli and Nicola Sciarra
Geosciences 2025, 15(9), 354; https://doi.org/10.3390/geosciences15090354 - 7 Sep 2025
Viewed by 411
Abstract
Landslides and rockfalls can negatively impact human activities and cause radical changes to the surrounding environment. For example, they can destroy entire buildings and roadway infrastructure, block waterways and create sudden dams, resulting in upstream flooding and increased flood risk downstream. In extreme [...] Read more.
Landslides and rockfalls can negatively impact human activities and cause radical changes to the surrounding environment. For example, they can destroy entire buildings and roadway infrastructure, block waterways and create sudden dams, resulting in upstream flooding and increased flood risk downstream. In extreme cases, they can even cause loss of life. External factors such as weathering, vegetation and mechanical stress alterations play a decisive role in their evolution. These actions can reduce strength, which can have an adverse impact on the slope’s ability to withstand failure. For rockfalls, this process also affects fragmentation, creating variations in the size, shape and volume of detached blocks, which influences propagation and impact on the slope. In this context, the Morino-Rendinara landslide is a clear example of rockfall propagation influenced by fragmentation. In this case, fragmentation results from tectonic stresses acting on the materials as well as specific climatic conditions affecting rock mass properties. This study explores how different fragmentation scales influence both velocity and landslide propagation along the slope. Using numerical models, based on lumped mass approach and stochastic analyses, various scenarios of rock material fracturing were examined and their impact on runout was assessed. Different scenarios were defined, varying only the fragmentation degree and different random seed sets at the beginning of simulations, carried out using the Rock-GIS tool. The results suggest that rock masses with high fracturing show reduced cohesion along joints and cracks, which significantly lowers their shear strength and makes them more prone to failure. Increased fragmentation further decreases the bonding between rock blocks, thereby accelerating landslide propagation. Conversely, less fragmented rocks retain higher resistance, which limits the extent of movement. These processes are influenced by uncertainties related to the distribution and impact of different alteration grades, resulting from variable tectonic stresses and/or atmospheric weathering. Therefore, a stochastic distribution model was developed to integrate the results of all simulations and to reconstruct both the landslide propagation and the evolution of its deposits. This study emphasizes the critical role of fragmentation and the volume involved in rockfalls and their runout behaviour. Furthermore, the method provides a framework for enhancing risk assessment in complex geological environments and for developing mitigation strategies, particularly regarding runout distance and block size. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

17 pages, 1927 KB  
Article
Structure-from-Motion Photogrammetry for Density Determination of Lump Charcoal as a Reliable Alternative to Archimedes’ Method
by Alessio Mencarelli, Marco Martini, Rosa Greco, Stefano Ippoliti and Stefano Grigolato
Sustainability 2025, 17(17), 7991; https://doi.org/10.3390/su17177991 - 4 Sep 2025
Viewed by 953
Abstract
Lump charcoal is used in various applications, with combustion performance reliant on physical properties including apparent density. Currently, apparent density is measured by liquid displacement using Archimedes’ principle, which can yield inconsistent results for porous, irregular materials. This study investigates structure-from-motion (SfM) photogrammetry [...] Read more.
Lump charcoal is used in various applications, with combustion performance reliant on physical properties including apparent density. Currently, apparent density is measured by liquid displacement using Archimedes’ principle, which can yield inconsistent results for porous, irregular materials. This study investigates structure-from-motion (SfM) photogrammetry as a non-destructive alternative for estimating the apparent density of lump charcoal. Ninety fragments from 15 commercial samples were analyzed. Mass was measured using an analytical balance, and volume was estimated independently via Archimedes’ method and photogrammetry. Apparent density was calculated as the ratio of mass to volume. Results showed strong agreement between the two methods. Mean density values ranged from 284.2 to 751.6 kg/m3 for photogrammetry and from 267.2 to 765.7 kg/m3 for Archimedes. No significant differences were found (Wilcoxon test, p > 0.05), and a strong correlation was observed (Spearman’s ρ = 0.94, p < 0.001). Photogrammetry also demonstrated low estimation errors, with a mean absolute error of 38.8 kg/m3, a percentage error of 9.9%, and a root mean squared error of 50.2 kg/m3. Beyond methodological innovation, this approach strengthens sustainability by supporting accurate fuel properties control, allowing better use of the resource and maximizes combustion efficiency. In this way, it contributes to United Nations Sustainable Development Goal 7 (SDG7) on affordable, reliable, and sustainable energy. Full article
Show Figures

Figure 1

Back to TopTop