Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,532)

Search Parameters:
Keywords = lumping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3792 KiB  
Article
Polarization Characteristics of a Metasurface with a Single via and a Single Lumped Resistor for Harvesting RF Energy
by Erik Madyo Putro, Satoshi Yagitani, Tomohiko Imachi and Mitsunori Ozaki
Appl. Sci. 2025, 15(15), 8561; https://doi.org/10.3390/app15158561 (registering DOI) - 1 Aug 2025
Abstract
A square patch metasurface is designed, simulated, fabricated, and experimentally tested to investigate polarization characteristics quantitatively. The metasurface consists of one layer unit cell in the form of a square patch with one via and a lumped resistor, which is used for harvesting [...] Read more.
A square patch metasurface is designed, simulated, fabricated, and experimentally tested to investigate polarization characteristics quantitatively. The metasurface consists of one layer unit cell in the form of a square patch with one via and a lumped resistor, which is used for harvesting RF (radio frequency) energy. FR4 dielectric is used as a substrate supported by a metal ground plane. Polarization-dependent properties with specific surface current patterns and voltage dip are obtained when simulating under normal incidence of a plane wave. This characteristic results from changes in surface current conditions when the polarization angle is varied. A voltage dip appears at a specific polarization angle when the surface current pattern is symmetrical. This condition occurs when the position of the lumped resistor from the center of the patch is perpendicular to the linearly polarized incident electric field. A couple of 10 × 10 arrays with different resistor positions are fabricated and tested. The experimental results are in good agreement with the simulated results. The proposed design demonstrates a symmetric unit cell structure with one via and a resistor that exhibits polarization-dependent behavior for linear polarization. An asymmetric patch design is explored through both simulation and measurement to mitigate polarization dependence by suppressing the dip behavior, albeit at the expense of reduced absorption efficiency. This study provides a complete polarization analysis for both symmetric and asymmetric patch metasurfaces with a single via and a single lumped resistor, and introduces a predictive relation between the position of the resistor relative to the center of the patch and the resulting voltage dip behavior. Full article
(This article belongs to the Special Issue Electromagnetic Waves: Applications and Challenges)
Show Figures

Figure 1

15 pages, 3152 KiB  
Article
Advanced Modeling of GaN-on-Silicon Spiral Inductors
by Simone Spataro, Giuseppina Sapone, Marcello Giuffrida and Egidio Ragonese
Electronics 2025, 14(15), 3079; https://doi.org/10.3390/electronics14153079 (registering DOI) - 31 Jul 2025
Abstract
In this paper, the accuracy of basic and advanced spiral inductor models for gallium nitride (GaN) integrated inductors is evaluated. Specifically, the experimental measurements of geometrically scaled circular spiral inductors, fabricated in a radio frequency (RF) GaN-on silicon technology, are exploited to estimate [...] Read more.
In this paper, the accuracy of basic and advanced spiral inductor models for gallium nitride (GaN) integrated inductors is evaluated. Specifically, the experimental measurements of geometrically scaled circular spiral inductors, fabricated in a radio frequency (RF) GaN-on silicon technology, are exploited to estimate the errors of two lumped geometrically scalable models, i.e., a simple π-model with seven components and an advanced model with thirteen components. The comparison is performed by using either the standard performance parameters, such as inductance (L), quality factor (Q-factor), and self-resonance frequency (SRF), or the two-port scattering parameters (S-parameters). The comparison reveals that despite a higher complexity, the developed advanced model achieves a significant reduction in SRF percentage errors in a wide range of geometrical parameters, while enabling an accurate estimation of two-port S-parameters. Indeed, the correct evaluation of both SRF and two-port S-parameters is crucial to exploit the model in an actual circuit design environment by properly setting the inductor geometrical parameters to optimize RF performance. Full article
Show Figures

Figure 1

18 pages, 1643 KiB  
Article
Precise Tracking Control of Unmanned Surface Vehicles for Maritime Sports Course Teaching Assistance
by Wanting Tan, Lei Liu and Jiabao Zhou
J. Mar. Sci. Eng. 2025, 13(8), 1482; https://doi.org/10.3390/jmse13081482 - 31 Jul 2025
Abstract
With the rapid advancement of maritime sports, the integration of auxiliary unmanned surface vehicles (USVs) has emerged as a promising solution to enhance the efficiency and safety of maritime education, particularly in tasks such as buoy deployment and escort operations. This paper presents [...] Read more.
With the rapid advancement of maritime sports, the integration of auxiliary unmanned surface vehicles (USVs) has emerged as a promising solution to enhance the efficiency and safety of maritime education, particularly in tasks such as buoy deployment and escort operations. This paper presents a novel high-precision trajectory tracking control algorithm designed to ensure stable navigation of the USVs along predefined competition boundaries, thereby facilitating the reliable execution of buoy placement and escort missions. First, the paper proposes an improved adaptive fractional-order nonsingular fast terminal sliding mode control (AFONFTSMC) algorithm to achieve precise trajectory tracking of the reference path. To address the challenges posed by unknown environmental disturbances and unmodeled dynamics in marine environments, a nonlinear lumped disturbance observer (NLDO) with exponential convergence properties is proposed, ensuring robust and continuous navigation performance. Additionally, an artificial potential field (APF) method is integrated to dynamically mitigate collision risks from both static and dynamic obstacles during trajectory tracking. The efficacy and practical applicability of the proposed control framework are rigorously validated through comprehensive numerical simulations. Experimental results demonstrate that the developed algorithm achieves superior trajectory tracking accuracy under complex sea conditions, thereby offering a reliable and efficient solution for maritime sports education and related applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 4147 KiB  
Article
OLTEM: Lumped Thermal and Deep Neural Model for PMSM Temperature
by Yuzhong Sheng, Xin Liu, Qi Chen, Zhenghao Zhu, Chuangxin Huang and Qiuliang Wang
AI 2025, 6(8), 173; https://doi.org/10.3390/ai6080173 - 31 Jul 2025
Abstract
Background and Objective: Temperature management is key for reliable operation of permanent magnet synchronous motors (PMSMs). The lumped-parameter thermal network (LPTN) is fast and interpretable but struggles with nonlinear behavior under high power density. We propose OLTEM, a physics-informed deep model that combines [...] Read more.
Background and Objective: Temperature management is key for reliable operation of permanent magnet synchronous motors (PMSMs). The lumped-parameter thermal network (LPTN) is fast and interpretable but struggles with nonlinear behavior under high power density. We propose OLTEM, a physics-informed deep model that combines LPTN with a thermal neural network (TNN) to improve prediction accuracy while keeping physical meaning. Methods: OLTEM embeds LPTN into a recurrent state-space formulation and learns three parameter sets: thermal conductance, inverse thermal capacitance, and power loss. Two additions are introduced: (i) a state-conditioned squeeze-and-excitation (SC-SE) attention that adapts feature weights using the current temperature state, and (ii) an enhanced power-loss sub-network that uses a deep MLP with SC-SE and non-negativity constraints. The model is trained and evaluated on the public Electric Motor Temperature dataset (Paderborn University/Kaggle). Performance is measured by mean squared error (MSE) and maximum absolute error across permanent-magnet, stator-yoke, stator-tooth, and stator-winding temperatures. Results: OLTEM tracks fast thermal transients and yields lower MSE than both the baseline TNN and a CNN–RNN model for all four components. On a held-out generalization set, MSE remains below 4.0 °C2 and the maximum absolute error is about 4.3–8.2 °C. Ablation shows that removing either SC-SE or the enhanced power-loss module degrades accuracy, confirming their complementary roles. Conclusions: By combining physics with learned attention and loss modeling, OLTEM improves PMSM temperature prediction while preserving interpretability. This approach can support motor thermal design and control; future work will study transfer to other machines and further reduce short-term errors during abrupt operating changes. Full article
Show Figures

Figure 1

23 pages, 4845 KiB  
Article
A Transfer Matrix Method to Dynamic Calculation and Optimal Design of Flanged Pipelines
by Zhiming Yang, Yingbo Diao, Jingfeng Gong and Kai Gao
J. Mar. Sci. Eng. 2025, 13(8), 1459; https://doi.org/10.3390/jmse13081459 - 30 Jul 2025
Viewed by 30
Abstract
To study the dynamic characteristics of the fluid-filled ship piping system with flanges and to optimize the design, and based on the transfer matrix methods (TMMs), this paper proposes two modeling methods for flat-welded flanges and weld-neck flanges. Method 1 employs a lumped [...] Read more.
To study the dynamic characteristics of the fluid-filled ship piping system with flanges and to optimize the design, and based on the transfer matrix methods (TMMs), this paper proposes two modeling methods for flat-welded flanges and weld-neck flanges. Method 1 employs a lumped mass equivalent flange. Method 2, based on the finite element and analogy ideas, equates the flange to pipe sections with a larger wall thickness. By comparing with the finite element method (FEM) results, it is found that for both flat-weld flanges and weld-neck flanges, the accuracy of Method 2 proposed in this paper is superior to that of Method 1. Meanwhile, experimental verification is carried out, and the experimental results are generally consistent with those obtained using Method 2. Furthermore, the multi-objective particle swarm optimization (MOPSO) algorithm is further introduced for the dynamic design of a branch pipeline system. The goal is to avoid resonance by adjusting the natural frequency of the system. Through the comparison of the FEM results, it has been confirmed that this optimization method is both efficient and accurate in optimizing the natural frequency. The method proposed in this paper has a specific reference value for engineering practice. Full article
(This article belongs to the Special Issue Advances in Ships and Marine Structures—Edition II)
Show Figures

Figure 1

12 pages, 5121 KiB  
Article
Design of an Energy Selective Surface Employing Dual-Resonant Circuit Topology
by Honglin Zhang, Jihong Zhang, Song Zha, Huan Jiang, Tao Zhou, Chenxi Liu and Peiguo Liu
Electronics 2025, 14(15), 3029; https://doi.org/10.3390/electronics14153029 - 30 Jul 2025
Viewed by 66
Abstract
A dual-polarization energy selective surface (ESS) with low insertion loss (IL) and high shielding effectiveness (SE) based on a dual-resonant equivalent circuit topology was proposed for high-intensity radiation field (HIRF) protection in this paper. The design principle was elucidated through an equivalent circuit [...] Read more.
A dual-polarization energy selective surface (ESS) with low insertion loss (IL) and high shielding effectiveness (SE) based on a dual-resonant equivalent circuit topology was proposed for high-intensity radiation field (HIRF) protection in this paper. The design principle was elucidated through an equivalent circuit model and translated into a physical ESS implementation. It consists of two resonant rings, vertically arranged and loaded with diodes, along with two lumped capacitors. Simulation and measurement results demonstrate that the IL is less than 3 dB when in the OFF state in a working frequency band, and the SE exceeds 20 dB when in the ON state. Moreover, the ESS’s dual-polarization, low cost, and easy-to-design characteristics hold great promise for broad applications in protecting communication and radar systems in complex electromagnetic environments. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

20 pages, 3844 KiB  
Article
Study on the Fast Transient Process of Primary Equipment Operation in UHV Fixed Series Capacitors Based on PEEC Method
by Baojiang Tian, Kai Xu, Yingying Wang, Pei Guo, Chao Xiao, Wei Han, Yiran Dong and Jingang Wang
Sensors 2025, 25(15), 4662; https://doi.org/10.3390/s25154662 - 27 Jul 2025
Viewed by 294
Abstract
This manuscript proposes a fast transient simulation method based on PEEC to model overvoltage caused by spark gap and disconnecting switch operations in UHV series compensation (FSC). It proposes a simulation method based on the Partial Element Equivalent Circuit (PEEC) for modeling the [...] Read more.
This manuscript proposes a fast transient simulation method based on PEEC to model overvoltage caused by spark gap and disconnecting switch operations in UHV series compensation (FSC). It proposes a simulation method based on the Partial Element Equivalent Circuit (PEEC) for modeling the fast transient processes associated with the operation of primary equipment in UHV FSC. Initially, a multi-conductor system model for both primary and secondary equipment on the cascade platform is developed. Then, the lumped components′ modeling of primary equipment and secondary equipment is added on the basis of multi-conductor model. Through simulation, the rapid transient overvoltage of primary equipment and the electromagnetic disturbance of the secondary system are analyzed. The simulation results provide insights into the distribution of fast transient overvoltage and the transient electromagnetic disturbance along the bus, from the low-voltage bus to the high-potential platform, under various primary equipment operating conditions. These findings provide a basis for theoretical analysis of the layout of sensor devices on platform and the design of electromagnetic shielding for interference-prone systems on platform. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

34 pages, 3350 KiB  
Article
Distributed Robust Predefined-Time Sliding Mode Control for AUV-USV Heterogeneous Multi-Agent Systems Based on Memory Event-Triggered Mechanism Under Input Saturation
by Haitao Liu, Luchuan Li, Xuehong Tian and Qingqun Mai
J. Mar. Sci. Eng. 2025, 13(8), 1428; https://doi.org/10.3390/jmse13081428 - 27 Jul 2025
Viewed by 165
Abstract
This paper studies the distributed robust predefined-time sliding mode control (DRPSC) problem for high-order heterogeneous multi-agent systems under input saturation while considering external disturbances and model uncertainties. Firstly, a distributed predefined-time state observer (PTSO) is designed for each agent to achieve individual estimation [...] Read more.
This paper studies the distributed robust predefined-time sliding mode control (DRPSC) problem for high-order heterogeneous multi-agent systems under input saturation while considering external disturbances and model uncertainties. Firstly, a distributed predefined-time state observer (PTSO) is designed for each agent to achieve individual estimation of the state information of the virtual leader within a predefined time, and the observer does not need to count on the global information of the system. Secondly, a predefined-time auxiliary dynamic system (PTADS) is developed to solve the actuator’s input saturation problem. Thirdly, a distributed predefined-time sliding mode controller (PTSMC) is proposed, which ensures that the error converges to a small region near zero within a predefined time and combines H control to deal with the lumped uncertainty disturbances in the system to improve the robustness of the system. In addition, a memory event-triggered mechanism (METM) is designed to reduce the communication frequency of the underactuated AUV-USV multi-agent system and reduce the consumption of communication resources. Finally, Lyapunov theory is employed to prove that the closed-loop system is predefined-time stable, and the simulation results demonstrate that the proposed method is effective. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
Show Figures

Figure 1

32 pages, 6134 KiB  
Article
Nonlinear Dynamic Modeling and Analysis of Drill Strings Under Stick–Slip Vibrations in Rotary Drilling Systems
by Mohamed Zinelabidine Doghmane
Energies 2025, 18(14), 3860; https://doi.org/10.3390/en18143860 - 20 Jul 2025
Viewed by 284
Abstract
This paper presents a comprehensive study of torsional stick–slip vibrations in rotary drilling systems through a comparison between two lumped parameter models with differing complexity: a simple two-degree-of-freedom (2-DOF) model and a complex high-degree-of-freedom (high-DOF) model. The two models are developed under identical [...] Read more.
This paper presents a comprehensive study of torsional stick–slip vibrations in rotary drilling systems through a comparison between two lumped parameter models with differing complexity: a simple two-degree-of-freedom (2-DOF) model and a complex high-degree-of-freedom (high-DOF) model. The two models are developed under identical boundary conditions and consider an identical nonlinear friction torque dynamic involving the Stribeck effect and dry friction phenomena. The high-DOF model is calculated with the Finite Element Method (FEM) to enable accurate simulation of the dynamic behavior of the drill string and accurate representation of wave propagation, energy build-up, and torque response. Field data obtained from an Algerian oil well with Measurement While Drilling (MWD) equipment are used to guide modeling and determine simulations. According to the findings, the FEM-based high-DOF model demonstrates better performance in simulating basic stick–slip dynamics, such as drill bit velocity oscillation, nonlinear friction torque formation, and transient bit-to-surface contacts. On the other hand, the 2-DOF model is not able to represent these effects accurately and can lead to inappropriate control actions and mitigation of vibration severity. This study highlights the importance of robust model fidelity in building reliable real-time rotary drilling control systems. From the performance difference measurement between low-resolution and high-resolution models, the findings offer valuable insights to optimize drilling efficiency further, minimize non-productive time (NPT), and improve the rate of penetration (ROP). This contribution points to the need for using high-fidelity models, such as FEM-based models, in facilitating smart and adaptive well control strategies in modern petroleum drilling engineering. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

13 pages, 5281 KiB  
Article
Flexible Receiver Antenna Prepared Based on Conformal Printing and Its Wearable System
by Qian Zhu, Wenjie Zhang, Wencheng Zhu, Chao Wu and Jianping Shi
Sensors 2025, 25(14), 4488; https://doi.org/10.3390/s25144488 - 18 Jul 2025
Viewed by 381
Abstract
Microwave energy is ideal for wearable devices due to its stable wireless power transfer capabilities. However, rigid receiving antennas in conventional RF energy harvesters compromise wearability. This study presents a wearable system using a flexible dual-band antenna (915 MHz/2.45 GHz) fabricated via conformal [...] Read more.
Microwave energy is ideal for wearable devices due to its stable wireless power transfer capabilities. However, rigid receiving antennas in conventional RF energy harvesters compromise wearability. This study presents a wearable system using a flexible dual-band antenna (915 MHz/2.45 GHz) fabricated via conformal 3D printing on arm-mimicking curvatures, minimizing bending-induced performance loss. A hybrid microstrip–lumped element rectifier circuit enhances energy conversion efficiency. Tested with commercial 915 MHz transmitters and Wi-Fi routers, the system consistently delivers 3.27–3.31 V within an operational range, enabling continuous power supply for real-time physiological monitoring (e.g., pulse detection) and data transmission. This work demonstrates a practical solution for sustainable energy harvesting in flexible wearables. Full article
(This article belongs to the Special Issue Wearable Sensors in Medical Diagnostics and Rehabilitation)
Show Figures

Graphical abstract

17 pages, 7805 KiB  
Article
Visualization of Distributed Plasticity in Concrete Piles Using OpenSeesPy
by Juan-Carlos Pantoja, Joaquim Tinoco, Jhon Paul Smith-Pardo, Gustavo Boada-Parra and José Matos
Appl. Sci. 2025, 15(14), 8004; https://doi.org/10.3390/app15148004 - 18 Jul 2025
Viewed by 364
Abstract
Lumped plasticity models available in commercial software offer a limited resolution of damage distribution along structural members. This study presents an open-source workflow that combines force-based fiber elements in OpenSeesPy with automated 3D post-processing for visualizing distributed plasticity in reinforced concrete piles. A [...] Read more.
Lumped plasticity models available in commercial software offer a limited resolution of damage distribution along structural members. This study presents an open-source workflow that combines force-based fiber elements in OpenSeesPy with automated 3D post-processing for visualizing distributed plasticity in reinforced concrete piles. A 60 cm diameter pile subjected to monotonic lateral loading is analyzed using both SAP2000’s default plastic hinges and OpenSeesPy fiber sections (Concrete02/Steel02). Although the fiber model incurs a runtime approximately 2.5 times greater, it captures the gradual spread of yielding and deterioration with improved fidelity. The presented workflow includes Python routines for interactive stress–strain visualization, facilitating the identification of critical sections and verification of strain limits. This approach offers a computationally feasible alternative for performance-based analysis with enhanced insight into member-level behavior. Because the entire workflow—from model definition through post-processing—is fully scripted in Python, any change to geometry, materials, or loading can be re-run in seconds, dramatically reducing the time taken to execute sensitivity analyses. Full article
Show Figures

Figure 1

18 pages, 4285 KiB  
Article
Application of a Phase-Change Material Heat Exchanger to Improve the Efficiency of Heat Pumps at Partial Loads
by Koharu Tani, Sayaka Kindaichi, Keita Kawasaki and Daisaku Nishina
Energies 2025, 18(14), 3694; https://doi.org/10.3390/en18143694 - 12 Jul 2025
Viewed by 328
Abstract
Inverter-equipped heat pumps allow for increased energy efficiency. However, air conditioning (AC) systems often operate at low load ratios below where inverter control is effective, which reduces their energy efficiency. We developed an AC system that increases the apparent load ratio of the [...] Read more.
Inverter-equipped heat pumps allow for increased energy efficiency. However, air conditioning (AC) systems often operate at low load ratios below where inverter control is effective, which reduces their energy efficiency. We developed an AC system that increases the apparent load ratio of the heat pump by using a phase-change material (PCM). Cooling and heating experiments were conducted with a PCM heat exchanger, which comprised aluminum plates and fins filled with paraffinic PCM. The result indicated a high heat transfer coefficient of >70 W/(m2·K). A simplified numerical model of the PCM heat exchanger as a lumped constant system was created based on the experiment. The calculations generally reproduced the experimental results, with root mean squared errors of 0.39 K for cooling and 0.84 K for heating, confirming their accuracy. Simulations were then conducted to evaluate the energy performance of the proposed system for the cooling season. While low load operation accounted for 39% of the total AC time for a non-PCM system, it was reduced to 2.7% for the proposed system. The proposed system demonstrated load ratios of 50–60% for most of the season, achieving an energy reduction of 11.4% owing to the improved efficiency at partial load ratios. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

13 pages, 2392 KiB  
Proceeding Paper
A Numerical Parametric Study of the Dynamic Factor in the Rope of a DC-Motor-Driven Hoisting Mechanism
by Rosen Mitrev, Venelin Jivkov and Nikolay Nikolov
Eng. Proc. 2025, 100(1), 33; https://doi.org/10.3390/engproc2025100033 - 11 Jul 2025
Viewed by 156
Abstract
This paper presents a numerical parametric study of a dynamic lumped-parameter model of a hoisting mechanism driven by a DC electric motor. The analysis focuses on two operating scenarios: hoisting with an initially tight rope and hoisting with an initially slack rope. The [...] Read more.
This paper presents a numerical parametric study of a dynamic lumped-parameter model of a hoisting mechanism driven by a DC electric motor. The analysis focuses on two operating scenarios: hoisting with an initially tight rope and hoisting with an initially slack rope. The model considers the inertial, elastic, and damping characteristics of the mechanical system, as well as the motor’s dynamic behavior. Systematic simulations are used to evaluate the influence of key design parameters on the rope’s dynamic factor. Sensitivity analysis is carried out by varying each parameter within a ±20% range, and Monte Carlo simulations are employed to compute Pearson correlation coefficients and perform multiple linear regression. The results indicate that the slack rope scenario produces significantly higher peak dynamic loads than those observed in the tight rope scenario, emphasizing its importance for structural sizing and safety. The findings enhance our understanding of parameter influence and support more robust hoisting system design in transient conditions. Full article
Show Figures

Figure 1

18 pages, 2600 KiB  
Article
Structural Characterization of Micronized Lignocellulose Date Pits as Affected by Water Sonication Followed by Alcoholic Fractionations
by Khalid Al-Harrasi, Nasser Al-Habsi, Mohamed A. Al-Kindi, Linghong Shi, Hafiz A. R. Suleria, Muthupandian Ashokkumar and Mohammad Shafiur Rahman
Int. J. Mol. Sci. 2025, 26(14), 6644; https://doi.org/10.3390/ijms26146644 - 11 Jul 2025
Viewed by 239
Abstract
Date pits are considered waste, and micronized date pit powder could be developed for use in foods and bio-products. In this study, micronized date pit powders were extracted by alcoholic sedimentation after ultrasound treatment. The control was considered untreated, i.e., without sonication. Six [...] Read more.
Date pits are considered waste, and micronized date pit powder could be developed for use in foods and bio-products. In this study, micronized date pit powders were extracted by alcoholic sedimentation after ultrasound treatment. The control was considered untreated, i.e., without sonication. Six micronized fractions (i.e., three from control and three from treated) were prepared by three stages of alcoholic sedimentation. In the case of untreated date pit powder, the average particle size of the fractionated date pit powder (i.e., residue) from three stages of alcoholic sedimentation varied from 89 to 164 µm, while ultrasonic treatment showed variation from 39 to 65 µm. The average particle size of the supernatant fractions of untreated date pit powder varied from 22 to 63 µm, while ultrasonic treatment showed variation from 18 to 44 µm. Ultrasound treatment produced smaller particles. In all cases, Scanning Electron Microscopy (SEM) showed that supernatant fractions contained lumped particles compared to the residue fractions. Transmission Electron Microscopy (TEM) showed the presence of nanoparticles in all extracted fractions. Two glass transitions were observed in all fractions except for the residue from the first sedimentation stage. In addition, higher levels of degradation in the fractionated date pits could be achieved by ultrasonic treatment, as is evident from the Fourier Transform Infrared (FTIR) analysis. Full article
(This article belongs to the Special Issue Lignocellulose Bioconversion and High-Value Utilization)
Show Figures

Figure 1

23 pages, 6990 KiB  
Article
Fault Signal Emulation of Marine Turbo-Rotating Systems Based on Rotor-Gear Dynamic Interaction Modeling
by Seong Hyeon Kim, Hyun Min Song, Se Hyeon Jeong, Won Joon Lee and Sun Je Kim
J. Mar. Sci. Eng. 2025, 13(7), 1321; https://doi.org/10.3390/jmse13071321 - 9 Jul 2025
Viewed by 207
Abstract
Rotating machinery is essential in various industrial fields, and growing demands for high performance under harsh operating conditions have heightened interest in fault diagnosis and prognostic technologies. However, a major challenge in fault diagnosis research lies in the scarcity of data, primarily due [...] Read more.
Rotating machinery is essential in various industrial fields, and growing demands for high performance under harsh operating conditions have heightened interest in fault diagnosis and prognostic technologies. However, a major challenge in fault diagnosis research lies in the scarcity of data, primarily due to the inability to deliberately introduce faults into machines during actual operation. In this study, a physical model is proposed to realistically simulate the system behavior of a ship’s turbo-rotating machinery by coupling the torsional and lateral vibrations of the rotor. While previous studies employed simplified single-shaft models, the proposed model adopted gear mesh interactions to reflect the coupling behavior between shafts. Furthermore, the time-domain response of the system is analyzed through state-space transformation. The proposed model was applied to simulate imbalance and gear teeth damage conditions that may occur in marine turbo-rotating systems and the results were compared with those under normal operating conditions. The analysis confirmed that the model effectively reproduces fault-induced dynamic characteristics. By enabling rapid implementation of various fault conditions and efficient data acquisition data, the proposed model is expected to contribute to enhancing the reliability of fault diagnosis and prognostic research. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop