Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (337)

Search Parameters:
Keywords = lower limbs power

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 391 KiB  
Article
A Comparative Study of Paralympic Veterans with Either a Spinal Cord Injury or an Amputation: Implications for Personalized Nutritional Advice
by Ilaria Peluso, Anna Raguzzini, Elisabetta Toti, Gennaro Boccia, Roberto Ferrara, Diego Munzi, Paolo Riccardo Brustio, Alberto Rainoldi, Valentina Cavedon, Chiara Milanese, Tommaso Sciarra and Marco Bernardi
J. Funct. Morphol. Kinesiol. 2025, 10(3), 305; https://doi.org/10.3390/jfmk10030305 - 6 Aug 2025
Abstract
Background: Dietary advice for Paralympic athletes (PAs) with a spinal cord injury (PAs-SCI) requires particular attention and has been widely studied. However, currently, no particular attention has been addressed to nutritional guidelines for athletes with an amputation (PAs-AMP). This study aimed at [...] Read more.
Background: Dietary advice for Paralympic athletes (PAs) with a spinal cord injury (PAs-SCI) requires particular attention and has been widely studied. However, currently, no particular attention has been addressed to nutritional guidelines for athletes with an amputation (PAs-AMP). This study aimed at filling up this gap, at least partially, and compared veteran PAs-SCI with PAs-AMP. Methods: A sample of 25 male PAs (12 with SCI and 13 with AMP), recruited during two training camps, was submitted to the following questionnaires: allergy questionnaire for athletes (AQUA), Nordic Musculoskeletal Questionnaire (NMQ), Starvation Symptom Inventory (SSI), neurogenic bowel dysfunction (NBD), orthorexia (ORTO-15/ORTO-7), alcohol use disorders identification test (AUDIT), and Mediterranean diet adherence (MDS). The PAs were also submitted to the following measurements: dietary Oxygen Radical Absorbance Capacity (ORAC) and intakes, body composition, handgrip strength (HGS), basal energy expenditure (BEE), peak oxygen uptake (VO2peak), peak power, peak heart rate (HR), post-exercise ketosis, and antioxidant response after a cardiopulmonary exercise test (CPET) to voluntary fatigue. Results: Compared to PAs-AMP, PAs-SCI had higher NBD and lower VO2peak (p < 0.05), peak power, peak HR, peak lactate, phase angle (PhA) of the dominant leg (p < 0.05), and ORTO15 (p < 0.05). The latter was related to NBD (r = −0.453), MDS (r = −0.638), and ORAC (r = −0.529), whereas ORTO7 correlated with PhA of the dominant leg (r = 0.485). Significant differences between PAs-AMP and PAs-SCI were not found in the antioxidant response, glucose, and ketone levels after CPET, nor in dietary intake, AUDIT, AQUA, NMQ, SSI, BEE, HGS, and FM%. Conclusions: The present study showed that PAs-SCI and PAs-AMP display similar characteristics in relation to lifestyle, energy intake, basal energy expenditure, and metabolic response to CPET. Based on both the similarities with PAs-SCI and the consequences of the limb deficiency impairment, PAs-AMP and PAs-SCI require personalized nutritional advice. Full article
(This article belongs to the Special Issue New Perspectives and Challenges in Adapted Sports)
Show Figures

Figure 1

18 pages, 1632 KiB  
Article
Impact of an Eight-Week Plyometric Training Intervention on Neuromuscular Performance, Musculotendinous Stiffness, and Directional Speed in Elite Polish Badminton Athletes
by Mariola Gepfert, Artur Gołaś, Robert Roczniok, Jan Walencik, Kamil Węgrzynowicz and Adam Zając
J. Funct. Morphol. Kinesiol. 2025, 10(3), 304; https://doi.org/10.3390/jfmk10030304 - 5 Aug 2025
Abstract
Background: This study aimed to examine the effects of an 8-week plyometric training program on lower-limb explosive strength, jump performance, musculotendinous stiffness, reactive strength index (RSI), and multidirectional speed in elite Polish badminton players. Methods: Twenty-four athletes were randomly assigned to [...] Read more.
Background: This study aimed to examine the effects of an 8-week plyometric training program on lower-limb explosive strength, jump performance, musculotendinous stiffness, reactive strength index (RSI), and multidirectional speed in elite Polish badminton players. Methods: Twenty-four athletes were randomly assigned to either an experimental group (n = 15), which supplemented their regular badminton training with plyometric exercises, or a control group (n = 15), which continued standard technical training. Performance assessments included squat jump (SJ), countermovement jump (CMJ), single-leg jumps, sprint tests (5 m, 10 m), lateral movements, musculotendinous stiffness, and RSI measurements. Results: The experimental group showed statistically significant improvements in jump height, power output, stiffness, and 10 m sprint and lateral slide-step performance (p < 0.05), with large effect sizes. No significant changes were observed in the control group. Single-leg jump improvements suggested potential benefits for addressing lower-limb asymmetries. Conclusions: An 8-week plyometric intervention significantly enhanced lower-limb explosive performance and multidirectional movement capabilities in young badminton players. These findings support the integration of targeted plyometric training into regular training programs to optimize physical performance, improve movement efficiency, and potentially reduce injury risk in high-intensity racket sports. Full article
Show Figures

Figure 1

16 pages, 612 KiB  
Article
Examination of Step Kinematics Between Children with Different Acceleration Patterns in Short-Sprint Dash
by Ilias Keskinis, Vassilios Panoutsakopoulos, Evangelia Merkou, Savvas Lazaridis and Eleni Bassa
Biomechanics 2025, 5(3), 60; https://doi.org/10.3390/biomechanics5030060 - 4 Aug 2025
Viewed by 81
Abstract
Background/Objectives: Sprinting is a fundamental locomotor skill and a key indicator of lower limb strength and anaerobic power in early childhood. The aim of the study was to examine possible differences in the step kinematic parameters and their contribution to sprint speed [...] Read more.
Background/Objectives: Sprinting is a fundamental locomotor skill and a key indicator of lower limb strength and anaerobic power in early childhood. The aim of the study was to examine possible differences in the step kinematic parameters and their contribution to sprint speed between children with different patterns of speed development. Methods: 65 prepubescent male and female track athletes (33 males and 32 females; 6.9 ± 0.8 years old) were examined in a maximal 15 m short sprint running test, where photocells measured time for each 5 m segment. At the last 5 m segment, step length, frequency, and velocity were evaluated via a video analysis method. The symmetry angle was calculated for the examined step kinematic parameters. Results: Based on the speed at the final 5 m segment of the test, two groups were identified, the maximum sprint phase (MAX) and the acceleration phase (ACC) group. Speed was significantly (p < 0.05) higher in ACC in the final 5 m segment, while there was a significant (p < 0.05) interrelationship between step length and frequency in ACC but not in MAX. No other differences were observed. Conclusions: The difference observed in the interrelationship between speed and step kinematic parameters between ACC and MAX highlights the importance of identifying the speed development pattern to apply individualized training stimuli for the optimization of training that can lead to better conditioning and wellbeing of children involved in sports with requirements for short-sprint actions. Full article
(This article belongs to the Collection Locomotion Biomechanics and Motor Control)
Show Figures

Figure 1

18 pages, 3271 KiB  
Article
Mobile App–Induced Mental Fatigue Affects Strength Asymmetry and Neuromuscular Performance Across Upper and Lower Limbs
by Andreas Stafylidis, Walter Staiano, Athanasios Mandroukas, Yiannis Michailidis, Lluis Raimon Salazar Bonet, Marco Romagnoli and Thomas I. Metaxas
Sensors 2025, 25(15), 4758; https://doi.org/10.3390/s25154758 - 1 Aug 2025
Viewed by 589
Abstract
This study aimed to investigate the effects of mental fatigue on physical and cognitive performance (lower-limb power, isometric and handgrip strength, and psychomotor vigilance). Twenty-two physically active young adults (12 males, 10 females; Mage = 20.82 ± 1.47) were randomly assigned to [...] Read more.
This study aimed to investigate the effects of mental fatigue on physical and cognitive performance (lower-limb power, isometric and handgrip strength, and psychomotor vigilance). Twenty-two physically active young adults (12 males, 10 females; Mage = 20.82 ± 1.47) were randomly assigned to either a Mental Fatigue (MF) or Control group (CON). The MF group showed a statistically significant (p = 0.019) reduction in non-dominant handgrip strength, declining by approximately 2.3 kg (about 5%), while no such change was observed in the CON group or in dominant handgrip strength across groups. Reaction time (RT) was significantly impaired following the mental fatigue protocol: RT increased by 117.82 ms, representing an approximate 46% longer response time in the MF group (p < 0.001), whereas the CON group showed a smaller, non-significant increase of 32.82 ms (~12% longer). No significant differences were found in squat jump performance, indicating that lower-limb explosive power may be less affected by acute mental fatigue. These findings demonstrate that mental fatigue selectively impairs fine motor strength and cognitive processing speed, particularly reaction time, while gross motor power remains resilient. Understanding these effects is critical for optimizing performance in contexts requiring fine motor control and sustained attention under cognitive load. Full article
(This article belongs to the Special Issue Sensing Human Cognitive Factors)
Show Figures

Figure 1

17 pages, 1134 KiB  
Article
Functional Asymmetries and Force Efficiency in Elite Junior Badminton: A Controlled Trial Using Hop Test Metrics and Neuromuscular Adaption Indices
by Mariola Gepfert, Artur Gołaś, Adam Maszczyk, Kajetan Ornowski and Przemysław Pietraszewski
Appl. Sci. 2025, 15(15), 8450; https://doi.org/10.3390/app15158450 - 30 Jul 2025
Viewed by 279
Abstract
Given the high neuromechanical demands and frequent asymmetries in badminton, this study investigated the impact of a four-week asymmetry-targeted intervention on single-leg hop performance in elite junior badminton players and examined whether asymmetry-based indices could predict training responsiveness. Twenty-two national-level athletes (aged 15–18) [...] Read more.
Given the high neuromechanical demands and frequent asymmetries in badminton, this study investigated the impact of a four-week asymmetry-targeted intervention on single-leg hop performance in elite junior badminton players and examined whether asymmetry-based indices could predict training responsiveness. Twenty-two national-level athletes (aged 15–18) were randomized into an experimental group (EG) undergoing neuromechanical training with EMG biofeedback or a control group (CG) following general plyometric exercises. Key performance metrics—Jump Height, Reactive Strength Index (RSI), Peak Power, and Active Stiffness—were evaluated pre- and post-intervention. Two novel composite indices, Force Efficiency Ratio (FER) and Asymmetry Impact Index (AII), were computed to assess force production efficiency and asymmetry burden. The EG showed significant improvements in Jump Height (p = 0.030), RSI (p = 0.012), and Peak Power (p = 0.028), while the CG showed no significant changes. Contrary to initial hypotheses, traditional asymmetry metrics showed no significant correlations with performance variables (r < 0.1). Machine learning models (Random Forest) using FER and AII failed to classify responders reliably (AUC = 0.50). The results suggest that targeted interventions can improve lower-limb explosiveness in youth athletes; however, both traditional and composite asymmetry indices may not reliably predict training outcomes in small elite groups. The results highlight the need for multidimensional and individualized approaches in athlete diagnostics and training optimization, especially in asymmetry-prone sports like badminton. Full article
(This article belongs to the Special Issue Exercise Physiology and Biomechanics in Human Health: 2nd Edition)
Show Figures

Figure 1

11 pages, 3023 KiB  
Article
Comparison of Lower Limb COP and Muscle Activation During Single-Leg Deadlift Using Elastic and Inelastic Barbells
by Jihwan Jeong and Ilbong Park
Sports 2025, 13(8), 242; https://doi.org/10.3390/sports13080242 - 24 Jul 2025
Viewed by 376
Abstract
Background: This study aimed to investigate how barbell type (elastic vs. inelastic) and lifting speed affect postural stability and lower limb muscle activation during the single-leg deadlift (SLDL), a common unilateral exercise in rehabilitation and performance training. Methods: Twenty-seven healthy adults performed SLDLs [...] Read more.
Background: This study aimed to investigate how barbell type (elastic vs. inelastic) and lifting speed affect postural stability and lower limb muscle activation during the single-leg deadlift (SLDL), a common unilateral exercise in rehabilitation and performance training. Methods: Twenty-seven healthy adults performed SLDLs using both elastic and inelastic barbells under three lifting speeds (normal, fast, and power). Center of pressure (COP) displacement in the anterior–posterior (AP) and medial–lateral (ML) directions and electromyographic (EMG) activity of eight lower limb muscles were measured. Results: COP displacement was significantly lower when using elastic barbells (AP: F = 6.509, p = 0.017, η2 = 0.200, ω2 = 0.164; ML: F = 9.996, p = 0.004, η2 = 0.278, ω2 = 0.243). EMG activation was significantly higher for the gluteus medius, biceps femoris, semitendinosus, and gastrocnemius (all p < 0.01), especially under power conditions. Significant interactions between barbell type and speed were found for the gluteus medius (F = 13.737, p < 0.001, η2 = 0.346, ω2 = 0.176), semitendinosus (F = 6.757, p = 0.002, η2 = 0.206, ω2 = 0.080), and tibialis anterior (F = 3.617, p = 0.034, η2 = 0.122, ω2 = 0.029). Conclusions: The findings suggest that elastic barbells improve postural control and enhance neuromuscular activation during the SLDL, particularly at higher speeds. These results support the integration of elastic resistance in dynamic balance and injury prevention programs. Full article
Show Figures

Figure 1

12 pages, 2851 KiB  
Article
Comparative Analysis of Mechanical Variables in Different Exercises Performed with a Rotational Inertial Device in Professional Soccer Players: A Pilot Study
by Álvaro Murillo-Ortiz, Luis Manuel Martínez-Aranda, Moisés Falces-Prieto, Samuel López-Mariscal, Francisco Javier Iglesias-García and Javier Raya-González
J. Funct. Morphol. Kinesiol. 2025, 10(3), 279; https://doi.org/10.3390/jfmk10030279 - 18 Jul 2025
Viewed by 330
Abstract
Background: Soccer performance is largely dependent on high-intensity, unilateral actions such as sprints, jumps, and changes of direction. These demands can lead to strength and power differences between limbs, highlighting the importance of individualised assessment in professional players. Rotational inertial devices offer a [...] Read more.
Background: Soccer performance is largely dependent on high-intensity, unilateral actions such as sprints, jumps, and changes of direction. These demands can lead to strength and power differences between limbs, highlighting the importance of individualised assessment in professional players. Rotational inertial devices offer a valuable method to evaluate and train these mechanical variables separately for each leg. The aim of this study was twofold: (a) to characterise the mechanical variables derived from several lower-body strength exercises performed on rotational inertial devices, all targeting the same muscle group; and (b) to compare the mechanical variables between the dominant and non-dominant leg for each exercise. Methods: Twenty-six male professional soccer players (age = 26.3 ± 5.1 years; height = 182.3 ± 0.6 cm; weight = 75.9 ± 5.9 kg; body mass index = 22.8 ± 1.1 kg/m2; fat mass percentage = 9.1 ± 0.6%; fat-free mass = 68.8 ± 5.3 kg), all belonging to the same professional Belgian team, voluntarily participated in this study. The players completed a single assessment session consisting of six unilateral exercises (i.e., quadriceps hip, hamstring knee, adductor, quadriceps knee, hamstring hip, and abductor). For each exercise, they performed two sets of eight repetitions with each leg (i.e., dominant and non-dominant) in a randomised order. Results: The quadriceps hip exercise resulted in higher mechanical values compared to the quadriceps knee exercise in both limbs (p < 0.004). Similarly, the hamstring hip exercise produced greater values across all variables and limbs (p < 0.004), except for peak force, where the hamstring knee exercise exhibited higher values (p < 0.004). The adductor exercise showed higher peak force values for the dominant limb (p < 0.004). The between-limb comparison revealed differences only in the abductor exercise (p < 0.004). Conclusions: These findings suggest the necessity of prioritising movement selection based on targeted outcomes, although it should be considered that the differences between limb differences are very limited. Full article
(This article belongs to the Special Issue Sports-Specific Conditioning: Techniques and Applications)
Show Figures

Figure 1

23 pages, 2960 KiB  
Article
Submaximal Accentuated Eccentric Jump Training Improves Punching Performance and Countermovement Jump Force–Time Variables in Amateur Boxers
by Celso Sánchez-Ramírez, Izham Cid-Calfucura, Jordan Hernandez-Martinez, Jorge Cancino-López, Esteban Aedo-Muñoz, Pablo Valdés-Badilla, Emerson Franchini, José Manuel García-García, Bibiana Calvo-Rico, Javier Abián-Vicén and Tomás Herrera-Valenzuela
Appl. Sci. 2025, 15(14), 7873; https://doi.org/10.3390/app15147873 - 14 Jul 2025
Viewed by 318
Abstract
Objective: This study aimed to identify the effects of a submaximal jump training program using accentuated eccentric loading (AEL) on punching performance and countermovement jump (CMJ) force–time characteristics in amateur boxers. Methods: Twenty-nine amateur boxers (age: 24.9 ± 5.4 years; height of 175.9 [...] Read more.
Objective: This study aimed to identify the effects of a submaximal jump training program using accentuated eccentric loading (AEL) on punching performance and countermovement jump (CMJ) force–time characteristics in amateur boxers. Methods: Twenty-nine amateur boxers (age: 24.9 ± 5.4 years; height of 175.9 ± 5.2 cm; body mass: 76.2 ± 10.5 kg) were randomly assigned to three groups: AEL group (n = 9), CMJ group (n = 10), and control group (n = 10). The AEL group performed countermovement jumps using handheld dumbbells equivalent to 10–20% of body mass, followed by unloaded concentric phases. All participants were evaluated pre- and post-intervention on punching peak force and countermovement jump performance. Results: Significant differences were found in favor of the AEL group for the peak force of the jab punch (pre: 1050 ± 203; post: 1158 ± 189 N), straight punch (pre: 1685 ± 393; post: 1861 ± 429 N), right cross punch (pre: 2005 ± 362; post: 2150 ± 417 N), and left cross punch (pre: 1836 ± 312; post: 1977 ± 393 N), along with greater gains in jump height, propulsive impulse, and absolute and relative peak power than the CMJ and control groups. Conclusions: A submaximal accentuated eccentric jump training program enhances punching peak force and lower-limb power output in amateur boxers, offering a practical strategy for improving power-oriented performance during preparatory training phases. Full article
Show Figures

Figure 1

18 pages, 3719 KiB  
Article
Energy-Efficient Bipedal Locomotion Through Parallel Actuation of Hip and Ankle Joints
by Prabhu Manoharan and Karthikeyan Palanisamy
Symmetry 2025, 17(7), 1110; https://doi.org/10.3390/sym17071110 - 10 Jul 2025
Viewed by 332
Abstract
Achieving energy-efficient, human-like gait remains a major challenge in bipedal humanoid robotics, as traditional serial actuation architectures often lead to high instantaneous power peaks and uneven load distribution. This study addresses the lack of research on how mechanical symmetry, achieved through parallel actuation, [...] Read more.
Achieving energy-efficient, human-like gait remains a major challenge in bipedal humanoid robotics, as traditional serial actuation architectures often lead to high instantaneous power peaks and uneven load distribution. This study addresses the lack of research on how mechanical symmetry, achieved through parallel actuation, can improve power management in lower-limb joints. We developed a 14-degree-of-freedom (DOF) hip-sized bipedal robot model and conducted simulations comparing a conventional serial configuration—using single-DOF rotary actuators—with a novel parallel configuration that employs paired linear actuators at the hip pitch, hip roll, ankle pitch, and ankle roll joints. Simulation results over a standardized walking cycle show that the parallel configuration reduces peak hip-pitch power by 80.4% and peak ankle-pitch power by 53.5%. These findings demonstrate that incorporating actuator symmetry through parallel joint design significantly reduces actuator stress, improves load sharing, and enhances overall energy efficiency in bipedal locomotion. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

14 pages, 6959 KiB  
Article
Power–Cadence Relationships in Cycling: Building Models from a Limited Number of Data Points
by David M. Rouffet, Briar L. Rudsits, Michael W. Daniels, Temi Ariyo and Christophe A. Hautier
Signals 2025, 6(3), 32; https://doi.org/10.3390/signals6030032 - 10 Jul 2025
Viewed by 604
Abstract
Accurate modeling of the power–cadence relationship is essential for assessing maximal anaerobic power (Pmax) of the lower limbs. Experimental data points from Force–Velocity tests during cycling do not always reflect the maximal and cadence-specific power individuals can produce. The quality of the models [...] Read more.
Accurate modeling of the power–cadence relationship is essential for assessing maximal anaerobic power (Pmax) of the lower limbs. Experimental data points from Force–Velocity tests during cycling do not always reflect the maximal and cadence-specific power individuals can produce. The quality of the models and the accuracy of Pmax estimation is potentially compromised by the inclusion of non-maximal data points. This study evaluated a novel residual-based filtering method that selects five strategically located, maximal data points to improve model fit and Pmax prediction. Twenty-three recreationally active male participants (age: 26 ± 5 years; height: 178 ± 5 cm; body mass: 73 ± 11 kg) completed a Force–Velocity test consisting of multiple maximal cycling efforts on a stationary ergometer. Power and cadence data were used to generate third-order polynomial models: from all data points (High Number, HN), from the highest power value in each 5-RPM interval (Moderate Number, MN), and from five selected data points (Low Number, LN). The LN model yielded the best goodness of fit (R2 = 0.995 ± 0.008; SEE = 29 ± 15 W), the most accurate estimates of experimentally measured peak power (mean absolute percentage error = 1.45%), and the highest Pmax values (1220 ± 168 W). Selecting a limited number of maximal data points improves the modeling of individual power–cadence relationships and Pmax assessment. Full article
Show Figures

Graphical abstract

18 pages, 1549 KiB  
Article
Characteristics of Post-Exercise Lower Limb Muscle Tremor Among Speed Skaters
by Szymon Kuliś, Przemysław Pietraszewski and Bianca Callegari
Sensors 2025, 25(14), 4301; https://doi.org/10.3390/s25144301 - 10 Jul 2025
Viewed by 339
Abstract
Physiological tremor analysis is a practical tool for assessing the neuromuscular impacts of sport-specific training. The purpose of this study was to examine and compare the physiological characteristics of lower limb resting postural tremor in athletes from Poland’s national speed skating team, following [...] Read more.
Physiological tremor analysis is a practical tool for assessing the neuromuscular impacts of sport-specific training. The purpose of this study was to examine and compare the physiological characteristics of lower limb resting postural tremor in athletes from Poland’s national speed skating team, following both sprint and endurance workouts. The study included 19 male, well-trained, elite athletes (with a mean age of 18 ± 3.1 years, body mass of 71.4 ± 10.1 kg, height of 178.5 ± 9.0 cm, and training experience of 12.6 ± 2.8 years) and a control group of 19 physically active but non-athlete men (with a mean age of 19 ± 2.3 years, body mass of 78.9 ± 12.1 kg, and height of 181.5 ± 11.0 cm). This group was assessed under resting conditions to provide baseline reference values for physiological tremor and to evaluate whether the neuromuscular tremor response is specific to trained athletes. Tremor amplitude and frequency were measured using an accelerometer, with data log-transformed to normalize the power spectrum distribution. Key findings indicate a significant effect of training condition on tremor amplitude in the low-frequency range (L(2_5); F(1,18) = 38.42; p < 0.0001; ηp2 = 0.68) and high-frequency range (L(9_14); F(1,36) = 19.19; p < 0.0001; ηp2 = 0.51). Post hoc analysis showed that tremor amplitude increased significantly after both sprint (p < 0.001) and endurance training (p < 0.001) compared to rest. No significant differences were observed between sprint and endurance training conditions for L(2_5) (p = 0.1014), but sprint training resulted in a greater increase in tremor in the high-frequency range (L(9_14); p < 0.0001). Tremor frequency (F(2_5) and F(9_14)) also increased significantly post-training. Notably, no differences were observed between limbs, indicating symmetrical neuromuscular adaptation. These findings highlight the utility of tremor analysis in monitoring neuromuscular fatigue and performance in speed skaters. Future research should explore the application of this method in broader athletic populations and evaluate its potential integration into training programs. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

40 pages, 2250 KiB  
Review
Comprehensive Comparative Analysis of Lower Limb Exoskeleton Research: Control, Design, and Application
by Sk Hasan and Nafizul Alam
Actuators 2025, 14(7), 342; https://doi.org/10.3390/act14070342 - 9 Jul 2025
Viewed by 645
Abstract
This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric [...] Read more.
This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric use, and industrial support. Applications range from sit-to-stand transitions and post-stroke therapy to balance support and real-world navigation. Control approaches vary from traditional impedance and fuzzy logic models to advanced data-driven frameworks, including reinforcement learning, recurrent neural networks, and digital twin-based optimization. These controllers support personalized and adaptive interaction, enabling real-time intent recognition, torque modulation, and gait phase synchronization across different users and tasks. Hardware platforms include powered multi-degree-of-freedom exoskeletons, passive assistive devices, compliant joint systems, and pediatric-specific configurations. Innovations in actuator design, modular architecture, and lightweight materials support increased usability and energy efficiency. Sensor systems integrate EMG, EEG, IMU, vision, and force feedback, supporting multimodal perception for motion prediction, terrain classification, and user monitoring. Human–robot interaction strategies emphasize safe, intuitive, and cooperative engagement. Controllers are increasingly user-specific, leveraging biosignals and gait metrics to tailor assistance. Evaluation methodologies include simulation, phantom testing, and human–subject trials across clinical and real-world environments, with performance measured through joint tracking accuracy, stability indices, and functional mobility scores. Overall, the review highlights the field’s evolution toward intelligent, adaptable, and user-centered systems, offering promising solutions for rehabilitation, mobility enhancement, and assistive autonomy in diverse populations. Following a detailed review of current developments, strategic recommendations are made to enhance and evolve existing exoskeleton technologies. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

12 pages, 3556 KiB  
Article
Power Indices Through Rotational Inertial Devices for Lower Extremity Profiling and Injury Risk Stratification in Professional Soccer Players: A Cross-Sectional Study
by Álvaro Murillo-Ortiz, Javier Raya-González, Moisés Falces-Prieto, Samuel López-Mariscal, Francisco Javier Iglesias-García and Luis Manuel Martínez-Aranda
Diagnostics 2025, 15(13), 1691; https://doi.org/10.3390/diagnostics15131691 - 2 Jul 2025
Cited by 1 | Viewed by 493
Abstract
Background/Objectives: Power indices may provide valuable information for performance and injury prevention in soccer players, so increasing the knowledge about them seems essential. Therefore, this study aimed to establish limb-specific normative values for flywheel-derived power indices in professional soccer players, while accounting [...] Read more.
Background/Objectives: Power indices may provide valuable information for performance and injury prevention in soccer players, so increasing the knowledge about them seems essential. Therefore, this study aimed to establish limb-specific normative values for flywheel-derived power indices in professional soccer players, while accounting for limb performance or ability, to explore the relationships between power indices across variables and to compare the power outcomes related to these indices between injured and non-injured players within four months post-assessment. Methods: Twenty-two male professional soccer players (age: 26.6 ± 4.6 years; competitive level: Belgian second division) were recruited from a single elite-tier club to participate in this cross-sectional diagnostic study. Participants underwent a standardized assessment protocol, executed in a rotational inertial device, comprising six unilateral exercises focused on the lower limbs: hip-dominant quadriceps (Qhip), knee-dominant quadriceps (Qknee), hip-dominant hamstrings (Hhip), knee-dominant hamstrings (Hknee), adductor (Add), and abductor (Abd). The testing session incorporated a randomized, counterbalanced design, with each exercise comprising two sets of eight maximal concentric–eccentric repetitions per limb. Leg dominance was operationally defined as the self-reported preferred limb for ball-striking tasks. Power indices were calculated from these exercises. Results: No significant differences in flywheel-derived power indices were found between limbs or between injured and non-injured players. However, significant correlations between indices were found in all power variables, with the Qhip:Qknee and Hhip:Hknee concentric ratios emerging as the most clinically actionable biomarkers for rapid screening. Conclusions: These results suggest the necessity of including more variables for injury prediction. Moreover, power indices could be considered based on the classification of limbs as “strong” or “weak”. Full article
Show Figures

Figure 1

13 pages, 718 KiB  
Article
Effects of Cold-Water Immersion on Muscle Damage Markers, Physical Performance, and Skin Temperature of Kung Fu Athletes
by Gilvandro Oliveira Barros, Felipe J. Aidar, Raphael Fabricio de Souza, Ciro José Brito, Renato Méndez-delCanto, Jymmys Lopes dos Santos, Paulo Francisco Almeida-Neto, Breno Guilherme de Araújo Tinoco Cabral, Nuno Domingos Garrido, Victor Machado Reis, Rolland van den Tillaar and Pantelis T. Nikolaidis
Physiologia 2025, 5(3), 21; https://doi.org/10.3390/physiologia5030021 - 2 Jul 2025
Viewed by 632
Abstract
Objective: This study aimed to evaluate the effects of cold-water immersion (CWI) on post-training recovery in Kung Fu athletes. Methods: In a 3-week crossover design, 16 Kung Fu athletes (22.00 ± 5.95 years, 76.90 ± 9.74 kg) were divided into two [...] Read more.
Objective: This study aimed to evaluate the effects of cold-water immersion (CWI) on post-training recovery in Kung Fu athletes. Methods: In a 3-week crossover design, 16 Kung Fu athletes (22.00 ± 5.95 years, 76.90 ± 9.74 kg) were divided into two conditions: CWI and passive recovery as a control (CON) measure. Through the study, muscle damage markers (creatine kinase [CK], lactate dehydrogenase [LDH], aspartate aminotransferase [AST] and alanine aminotransferase [ALT]), physical performance tests (upper limbs power, SJ and CMJ), skin temperature (from lower and upper limbs), and skin temperature asymmetries were measured. Results: CWI resulted in a higher reduction of CK concentration than CON 24 h after the intervention (−21.32%; p < 0.001). The SJ height 24 h after the intervention was higher in the CWI than in the CON (p < 0.001). Both CWI and CON resulted in skin temperature returning to baseline levels 24 h after intervention. Conclusions: CWI was effective in restoring muscle power, reducing muscle damage and reducing body temperature (BT) in Kung Fu athletes. Cold water recovery showed better muscle power and strength 24 and 48 h after training when compared to the passive method. CK and skin temperature were better 24 h after cold water recovery. Full article
(This article belongs to the Special Issue Exercise Physiology and Biochemistry: 2nd Edition)
Show Figures

Figure 1

13 pages, 1009 KiB  
Article
The FIFA 11+ Program Significantly Enhances Physical Performance and Dynamic Balance in Male Handball Players
by Ridha Aouadi, Mohamed Amine Ltifi, Mohamed Riadh Bedoui, Batool Mohammed Foqha and Nicola Luigi Bragazzi
Appl. Sci. 2025, 15(13), 7311; https://doi.org/10.3390/app15137311 - 28 Jun 2025
Viewed by 420
Abstract
Injury prevention and performance enhancement are key objectives in sports training. The FIFA 11+ program, originally developed to reduce injury risks, has gained attention for its potential benefits in improving physical performance and dynamic balance. This study aimed to examine the impact of [...] Read more.
Injury prevention and performance enhancement are key objectives in sports training. The FIFA 11+ program, originally developed to reduce injury risks, has gained attention for its potential benefits in improving physical performance and dynamic balance. This study aimed to examine the impact of an 8-week FIFA 11+ training program on vertical jump, Illinois Agility, and Y-Balance Test (YBT) performances in adult male handball players. Twenty-five players from two senior national male handball teams were recruited and randomly assigned to an experimental group (n = 13) or a control group (n = 11). Assessments were conducted before and after the intervention, including the countermovement jump (CMJ), the Illinois Agility Test (IAT), and the Y-Balance Test (YBT), which measured anterior (AT), posteromedial (PM), and posterolateral (PL) reach directions as well as a composite score (CS). The FIFA 11+ group showed significant improvements after the eight-week program, with increased CMJ (p = 0.013) and reduced IAT time (p < 0.001). Dynamic balance, as measured by the YBT, improved significantly in both lower limbs (p = 0.022–0.001), with enhanced postural stability across multiple directions (F = 6.92–20.23, p = 0.022–0.001, ηp2 = 0.366–0.628, power = 0.68–0.98). In contrast, the control group exhibited minimal or no significant changes. While the results suggest that the FIFA 11+ program can improve specific performance outcomes in this population, the relatively small sample size and focus on a single sport and age group warrant caution in generalizing these findings. Further studies involving larger and more diverse cohorts are recommended. Full article
Show Figures

Figure 1

Back to TopTop