Effects of Cold-Water Immersion on Muscle Damage Markers, Physical Performance, and Skin Temperature of Kung Fu Athletes
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sample
2.3. Instruments and Procedures
2.3.1. Muscle Damage
2.3.2. Physical Performance Tests
2.3.3. Body Surface Temperature Measurement and Asymmetries Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ciembroniewicz, E. Imitation or Genuine Forms? Chinese Martial Arts in the Process of Cultural Globalisation. Intercult. Relations 2020, 3, 139–156. [Google Scholar] [CrossRef]
- IWUF About IWUF. Available online: https://www.iwuf.org/en/about-iwuf/index.html (accessed on 12 December 2024).
- Artioli, G.G.; Gualano, B.; Franchini, E.; Batista, R.N.; Polacow, V.O.; Lancha, A.H. Physiological, Performance, and Nutritional Profile of the Brazilian Olympic Wushu (Kung-Fu) Team. J. Strength Cond. Res. 2009, 23, 20–25. [Google Scholar] [CrossRef]
- Karaman, M.E.; Arslan, C.; Kinaci, A.E. The Effect of Single Bout of Competitive Training on Muscle Damage and Liver Enzymes in University Student Wrestling and Taekwondo Athletes. J. Pharm. Res. Int. 2021, 33, 26–30. [Google Scholar] [CrossRef]
- Mendes-Cordeiro, E.; Guimarães, M.; Dantas, E.H.M. Alterações Nas Concentrações De Creatina Quinase Oriundas Do Treinamento De Combate Em Atletas De Kung Fu. FIEP-Bull. 2011, 81. [Google Scholar]
- Owens, D.J.; Twist, C.; Cobley, J.N.; Howatson, G.; Close, G.L. Exercise-induced Muscle Damage: What Is It, What Causes It and What Are the Nutritional Solutions? Eur. J. Sport Sci. 2019, 19, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.; Sun, Y.; Woods, J.A. Exercise and the Regulation of Inflammatory Responses. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2015; Volume 135, pp. 337–354. ISBN 978-0-12-803991-5. [Google Scholar]
- Twist, C.; Eston, R. The Effects of Exercise-Induced Muscle Damage on Maximal Intensity Intermittent Exercise Performance. Eur. J. Appl. Physiol. 2005, 94, 652–658. [Google Scholar] [CrossRef]
- Xiao, F.; Kabachkova, A.V.; Jiao, L.; Zhao, H.; Kapilevich, L.V. Effects of Cold Water Immersion after Exercise on Fatigue Recovery and Exercise Performance--Meta Analysis. Front. Physiol. 2023, 14, 1006512. [Google Scholar] [CrossRef]
- Rowsell, G.J.; Coutts, A.J.; Reaburn, P.; Hill-Haas, S. Effects of Cold-Water Immersion on Physical Performance between Successive Matches in High-Performance Junior Male Soccer Players. J. Sports Sci. 2009, 27, 565–573. [Google Scholar] [CrossRef]
- Broatch, J.R.; Petersen, A.; Bishop, D.J. Postexercise Cold Water Immersion Benefits Are Not Greater than the Placebo Effect. Med. Sci. Sports Exerc. 2014, 46, 2139–2147. [Google Scholar] [CrossRef]
- Baird, M.F.; Graham, S.M.; Baker, J.S.; Bickerstaff, G.F. Creatine-Kinase- and Exercise-Related Muscle Damage Implications for Muscle Performance and Recovery. J. Nutr. Metab. 2012, 2012, 960363. [Google Scholar] [CrossRef]
- Brancaccio, P.; Lippi, G.; Maffulli, N. Biochemical Markers of Muscular Damage. Clin. Chem. Lab. Med. 2010, 48, 757–767. [Google Scholar] [CrossRef]
- Marins, J.C.B.; Fernández-Cuevas, I.; Arnaiz-Lastras, J.; Fernandes, A.A.; Sillero-Quintana, M. Applications of Infrared Thermography in Sports. A review. Int. J. Med. Sci. Phys. Act. Sport 2015, 60, 805–824. [Google Scholar]
- Mala, L.; Maly, T.; Cabell, L.; Cech, P.; Hank, M.; Coufalova, K.; Zahalka, F. Body Composition and Morphological Limbs Asymmetry in Competitors in Six Martial Arts. Int. J. Morphol. 2019, 37, 568–575. [Google Scholar] [CrossRef]
- Afonso, J.; Peña, J.; Sá, M.; Virgile, A.; García-de-Alcaraz, A.; Bishop, C. Why Sports Should Embrace Bilateral Asymmetry: A Narrative Review. Symmetry 2022, 14, 1993. [Google Scholar] [CrossRef]
- Choo, H.C.; Lee, M.; Yeo, V.; Poon, W.; Ihsan, M. The Effect of Cold Water Immersion on the Recovery of Physical Performance Revisited: A Systematic Review with Meta-Analysis. J. Sports Sci. 2022, 40, 2608–2638. [Google Scholar] [CrossRef]
- Fyfe, J.J.; Broatch, J.R.; Trewin, A.J.; Hanson, E.D.; Argus, C.K.; Garnham, A.P.; Halson, S.L.; Polman, R.C.; Bishop, D.J.; Petersen, A.C. Cold Water Immersion Attenuates Anabolic Signaling and Skeletal Muscle Fiber Hypertrophy, but Not Strength Gain, Following Whole-Body Resistance Training. J. Appl. Physiol. 2019, 127, 1403–1418. [Google Scholar] [CrossRef]
- Santos, W.Y.H.D.; Aidar, F.J.; de Matos, D.G.; Van den Tillaar, R.; Marçal, A.C.; Lobo, L.F.; Marcucci-Barbosa, L.S.; Machado, S.d.C.; Almeida-Neto, P.F.d.; Garrido, N.D.; et al. Physiological and Biochemical Evaluation of Different Types of Recovery in National Level Paralympic Powerlifting. Int. J. Environ. Res. Public Health 2021, 18, 5155. [Google Scholar] [CrossRef]
- Aidar, F.J.; dos Santos, W.Y.H.; Machado, S.d.C.; Nunes-Silva, A.; Vieira, É.L.M.; Pérez, D.I.V.; Aedo-Muñoz, E.; Brito, C.J.; Nikolaidis, P.T. Enhancing Post-Training Muscle Recovery and Strength in Paralympic Powerlifting Athletes with Cold-Water Immersion, a Cross-Sectional Study. Int. J. Environ. Res. Public Health 2025, 22, 122. [Google Scholar] [CrossRef]
- Batista, N.P.; De Carvalho, F.A.; Rodrigues, C.R.D.; Micheletti, J.K.; Machado, A.F.; Pastre, C.M. Effects of Post-Exercise Cold-Water Immersion on Performance and Perceptive Outcomes of Competitive Adolescent Swimmers. Eur. J. Appl. Physiol. 2024, 124, 2439–2450. [Google Scholar] [CrossRef]
- Fonseca, L.B.; Brito, C.J.; Silva, R.J.S.; Silva-Grigoletto, M.E.; Da Silva, W.M.; Franchini, E. Use of Cold-Water Immersion to Reduce Muscle Damage and Delayed-Onset Muscle Soreness and Preserve Muscle Power in Jiu-Jitsu Athletes. J. Athl. Train. 2016, 51, 540–549. [Google Scholar] [CrossRef]
- Franchini, E.; Brito, C.J.; Artioli, G.G. Weight Loss in Combat Sports: Physiological, Psychological and Performance Effects. J. Int. Soc. Sports Nutr. 2012, 9, 52. [Google Scholar] [CrossRef]
- Brito, C.J.; Gatti, K.; Lacerda Mendes, E.; Toledo Nóbrega, O.; Córdova, C.; Bouzas Marins, J.C.; Franchini, E. Carbohydrate Intake and Immunosuppression during Judo Training. Med. Dello Sport 2011, 64, 393–408. [Google Scholar]
- Santos, W.O.C.; Brito, C.J.; Júnior, E.A.P.; Valido, C.N.; Mendes, E.L.; Nunes, M.A.P.; Franchini, E. Cryotherapy Post-Training Reduces Muscle Damage Markers in Jiu-Jitsu Fighters. J. Hum. Sport Exerc. 2012, 7, 629–638. [Google Scholar] [CrossRef]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A Simple Method for Measurement of Mechanical Power in Jumping. Europ. J. Appl. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef]
- Moreira, D.G.; Costello, J.T.; Brito, C.J.; Adamczyk, J.G.; Ammer, K.; Bach, A.J.E.; Costa, C.M.A.; Eglin, C.; Fernandes, A.A.; Fernández-Cuevas, I.; et al. Thermographic Imaging in Sports and Exercise Medicine: A Delphi Study and Consensus Statement on the Measurement of Human Skin Temperature. J. Therm. Biol. 2017, 69, 155–162. [Google Scholar] [CrossRef]
- Cohen, J. A Power Primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Ihsan, M.; Watson, G.; Abbiss, C.R. What Are the Physiological Mechanisms for Post-Exercise Cold Water Immersion in the Recovery from Prolonged Endurance and Intermittent Exercise? Sports Med. 2016, 46, 1095–1109. [Google Scholar] [CrossRef]
- Pinho Júnior, E.A.; Brito, C.J.; Costa Santos, W.O.; Nardelli Valido, C.; Lacerda Mendes, E.; Franchini, E. Influence of Cryotherapy on Muscle Damage Markers in Jiu-Jitsu Fighters after Competition: A Cross-over Study. Rev. Andal. Med. Deport. 2014, 7, 7–12. [Google Scholar] [CrossRef]
- Takeda, M.; Sato, T.; Hasegawa, T.; Shintaku, H.; Kato, H.; Radak, Z.; Yamaguchi, Y. The Effects of Cold Water Immersion after Rugby Training on Muscle Power and Biochemical Markers. J. Sports Sci. Med. 2014, 13, 616–623. [Google Scholar]
- Butova, O.A.; Masalov, S.V. Lactate Dehydrogenase Activity as an Index of Muscle Tissue Metabolism in Highly Trained Athletes. Hum. Physiol. 2009, 35, 127–129. [Google Scholar] [CrossRef]
- Lofti, N.; Takmil, M.M.; Karimi, A. Effects of cold water immersion following a Wushu training session on the metabolic and cellular damage indices of body. J. Pract. Stud. Biosci. Sport 2021, 9, 18–22. [Google Scholar] [CrossRef]
- Nasser, N.; Zorgati, H.; Chtourou, H.; Guimard, A. Cold Water Immersion after a Soccer Match: Does the Placebo Effect Occur? Front. Physiol. 2023, 14, 1062398. [Google Scholar] [CrossRef]
- Bouchiba, M.; Bragazzi, N.L.; Zarzissi, S.; Turki, M.; Zghal, F.; Grati, M.A.; Daab, W.; Ayadi, F.; Rebai, H.; Ibn Hadj Amor, H.; et al. Cold Water Immersion Improves the Recovery of Both Central and Peripheral Fatigue Following Simulated Soccer Match-Play. Front. Physiol. 2022, 13, 860709. [Google Scholar] [CrossRef]
- Pariyavuth, P.; Lee, J.K.W.; Tan, P.M.S.; Vichaiwong, K.; Mawhinney, C.; Pinthong, M. Practical Internal and External Cooling Methods Do Not Influence Rapid Recovery from Simulated Taekwondo Performance. J. Exerc. Sci. Fit. 2023, 21, 286–294. [Google Scholar] [CrossRef]
- Neves, E.B.; Vilaca-Alves, J.; Antunes, N.; Felisberto, I.M.V.; Rosa, C.; Reis, V.M. Different Responses of the Skin Temperature to Physical Exercise: Systematic Review. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2015, 2015, 1307–1310. [Google Scholar] [CrossRef]
- Neves, E.B.; Salamunes, A.C.C.; de Oliveira, R.M.; Stadnik, A.M.W. Effect of Body Fat and Gender on Body Temperature Distribution. J. Therm. Biol. 2017, 70, 1–8. [Google Scholar] [CrossRef]
- Mendes, R.; Sousa, N.; Almeida, A.; Vilaça-Alves, J.; Reis, V.M.; Neves, E.B. Thermography: A Technique for Assessing the Risk of Developing Diabetic Foot Disorders. Postgrad. Med. J. 2015, 91, 538. [Google Scholar] [CrossRef]
- Takada, S.; Okita, K.; Suga, T.; Omokawa, M.; Morita, N.; Horiuchi, M.; Kadoguchi, T.; Takahashi, M.; Hirabayashi, K.; Yokota, T.; et al. Blood Flow Restriction Exercise in Sprinters and Endurance Runners. Med. Sci. Sports Exerc. 2012, 44, 413–419. [Google Scholar] [CrossRef]
- Bandeira, F.; de Moura, M.A.M.; Souza, M.A.d.; Nohama, P.; Neves, E.B. Can Thermography Aid in the Diagnosis of Muscle Injuries in Soccer Athletes? Rev. Bras. Med. Esporte 2012, 18, 246–251. [Google Scholar] [CrossRef]
- Chudecka, M.; Lubkowska, A.; Leźnicka, K.; Krupecki, K. The Use of Thermal Imaging in the Evaluation of the Symmetry of Muscle Activity in Various Types of Exercises (Symmetrical and Asymmetrical). J. Hum. Kinet 2015, 49, 141–147. [Google Scholar] [CrossRef] [PubMed]
Variables. | Values (Mean ± SD) |
---|---|
Age (years) | 22.00 ± 3.95 |
Body weight (kg) | 76.90 ± 9.74 |
Height (m) | 1.73 ± 0.08 |
Experience (years) | 5.81 ± 0.42 |
Body Fat (%) | 13.7 ± 3.7 |
Experience (years) | 5.27 ± 0.51 |
Chinese Boxing/Kung Fu | 10/08 * |
Competition | 1.75 ± 0.77 |
Level of Attention | Asymmetry |
---|---|
Normal | ≤0.4 °C |
Monitoring | ≥0.5–0.7 °C: it is advisable to reassess and verify whether there is an influence from an external factor |
Prevention | 0.8–1.0 °C: it is recommended that the load should be reduced or even the training suspended, and medical and/or physiotherapeutic evaluation sought |
Alarm | 1.1–1.5 °C: training should be immediately suspended and/or medical or physiotherapeutic evaluation sought |
Severe | ≥1.6 °C: suggests an asymmetry with pathological characteristics or an important lesion; medical and/or physiotherapeutic evaluation is recommended |
CON | CWI | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Before Training (°C) | After Intervention (°C) | 24 h After (°C) | 48 h After (°C) | Before Training (°C) | After Recovery (°C) | 24 h (°C) | 48 h (°C) | η2p | ||
Anterior | RAT | 31.18 ± 0.91 | 33.09 ± 0.54 ab | 31.66 ± 0.70 | 31.74 ± 0.57 | 31.34 ± 0.87 | 27.89 ± 2.46 ab | 31.96 ± 0.76 | 31.65 ± 0.65 | 0.631 * |
LAT | 31.26 ± 0.93 | 32.98 ± 0.52 ab | 31.78 ± 0.83 | 31.78 ± 0.60 | 31.45 ± 0.17 | 27.93 ± 2.44 ab | 31.99 ± 0.96 | 31.85 ± 0.66 | 0.595 * | |
RFT | 31.23 ± 0.63 | 32.77 ± 0.65 ab | 31.61 ± 0.69 | 31.58 ± 0.57 | 31.08 ± 0.77 | 26.40 ± 2.22 ab | 31.85 ± 0.87 | 31.76 ± 0.57 | 0.752 * | |
LFT | 31.20 ± 0.60 | 32.75 ± 0.69 ab | 31.59 ± 0.69 | 31.51 ± 0.55 | 31.11 ± 0.51 | 26.33 ± 2.19 ab | 31.93 ± 0.93 | 31.89 ± 0.63 | 0.752 * | |
Posterior | RAT | 30.99 ± 0.64 | 32.91 ± 0.74 ab | 31.65 ± 0.77 | 31.49 ± 0.66 | 31.17 ± 0.58 | 27.50 ± 1.94 ab | 31.89 ± 0.44 | 31.49 ± 0.81 | 0.698 * |
LAT | 30.98 ± 0.63 | 32.88 ± 0.75 ab | 31.74 ± 0.89 | 31.42 ± 0.77 | 31.21 ± 0.32 | 27.41 ± 1.75 ab | 31.83 ± 0.48 | 31.57 ± 0.84 | 0.695 * | |
RFT | 30.99 ± 0.55 | 32.96 ± 0.66 ab | 31.60 ± 0.68 | 31.38 ± 0.56 | 31.15 ± 0.52 | 25.91 ± 2.50 ab | 32.12 ± 0.59 | 31.38 ± 0.56 | 0.776 * | |
LFT | 31.01 ± 0.60 | 33.07 ± 0.67 ab | 31.49 ± 0.69 | 31.36 ± 0.69 | 31.18 ± 0.52 | 26.03 ± 2.44 ab | 32.02 ± 0.55 | 31.49 ± 0.84 | 0.767 * |
PR | CWI | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Before Test (°C) | After Recovery (°C) | 24 h (°C) | 48 h (°C) | Before Test (°C) | After Recovery (°C) | 24 h (°C) | 48 h (°C) | η2pde Cohen | ||
Anterior | RTT | 31.65 ± 0.76 | 32.73 ± 0.50 ab | 31.73 ± 0.54 | 31.78 ± 0.45 | 31.24 ± 0.67 | 26.27 ± 2.16 ab | 31.90 ± 0.81 | 31.71 ± 0.64 | 0.776 * |
LTT | 31.39 ± 0.71 | 32.71 ± 0.48 ab | 31.72 ± 0.59 | 31.68 ± 0.42 | 31.09 ± 0.55 | 26.23 ± 1.97 ab | 31.87 ± 0.90 | 31.64 ± 0.67 | 0.784 * | |
RLT | 31.10 ± 0.63 | 33.11 ± 0.52 ab | 31.54 ± 0.54 | 31.71 ± 0.58 | 30.99 ± 0.51 | 26.19 ± 2.75 ab | 31.60 ± 0.74 | 31.46 ± 0.53 | 0.758 * | |
LLT | 31.10 ± 0.58 | 33.05 ± 0.47 ab | 31.44 ± 0.54 | 31.58 ± 0.60 | 30.98 ± 0.52 | 26.56 ± 3.39 ab | 31.49 ± 0.80 | 31.33 ± 0.54 | 0.674 * | |
Posterior | RTT | 31.12 ± 0.55 | 32.91 ± 0.50 ab | 31.69 ± 0.62 | 31.62 ± 0.60 | 30.99 ± 0.48 | 26.74 ± 2.14 ab | 31.99 ± 0.77 | 31.64 ± 0.92 | 0.742 * |
LTT | 31.12 ± 0.63 | 32.83 ± 0.44 ab | 31.63 ± 0.56 | 31.66 ± 0.58 | 30.98 ± 0.51 | 26.73 ± 2.32 ab | 31.97 ± 0.71 | 31.58 ± 1.00 | 0.724 * | |
RLT | 30.98 ± 0.66 | 32.74 ± 0.49 ab | 31.51 ± 0.79 | 31.49 ± 0.64 | 30.88 ± 0.54 | 26.47 ± 2.37 ab | 31.69 ± 0.58 | 31.68 ± 0.64 | 0.742 * | |
LLT | 30.96 ± 0.65 | 32.83 ± 0.52 ab | 31.46 ± 0.63 | 31.51 ± 0.64 | 30.91 ± 0.56 | 26.23 ± 2.43 ab | 31.70 ± 0.63 | 31.68 ± 0.57 | 0.766 * |
PR | CWI | ||||||||
---|---|---|---|---|---|---|---|---|---|
BRI | Before Test ΔTP (°C) | After Recovery ΔTP (°C) | 24 h ΔTP (°C) | 48 h ΔTP (°C) | Before Test ΔTP (°C) | After Recovery ΔTP (°C) | 24 h ΔTP (°C) | 48 h ΔTP (°C) | |
ANTERIOR | Arm | 0.18 ± 0.02 | 0.26 ± 0.02 | 0.19 ± 0.02 | 0.21 ± 0.02 | 0.17 ± 0.02 | 0.19 ± 0.01 | 0.19 ± 0.01 | 0.25 ± 0.02 |
Forearm | 0.09 ± 0.01 | 0.24 ± 0.01 | 0.20 ± 0.02 | 0.23 ± 0.02 | 0.09 ± 0.01 | 0.22 ± 0.02 | 0.20 ± 0.02 | 0.15 ± 0.01 | |
Thigh | 0.21 ± 0.03 | 0.19 ± 0.01 | 0.18 ± 0.02 | 0.19 ± 0.02 | 0.21 ± 0.03 | 0.15 ± 0.01 | 0.13 ± 0.01 | 0.18 ± 0.02 | |
Leg | 0.26 ± 0.03 | 0.61 ± 0.05 * | 0.28 ± 0.03 | 0.20 ± 0.02 | 0.25 ± 0.03 | 0.21 ± 0.02 | 0.28 ± 0.02 | 0.25 ± 0.03 | |
POSTERIOR | Arm | 0.10 ± 0.01 | 0.26 ± 0.03 | 0.28 ± 0.03 | 0.25 ± 0.02 | 0.10 ± 0.01 | 0.24 ± 0.02 | 0.21 ± 0.02 | 0.17 ± 0.01 |
Forearm | 0.14 ± 0.01 | 0.21 ± 0.01 | 0.42 ± 0.04 | 0.26 ± 0.01 | 0.14 ± 0.01 | 0.20 ± 0.01 | 0.23 ± 0.02 | 0.18 ± 0.01 | |
Thigh | 0.12 ± 0.01 | 0.24 ± 0.01 | 0.22 ± 0.02 | 0.13 ± 0.01 | 0.12 ± 0.02 | 0.16 ± 0.01 | 0.18 ± 0.02 | 0.16 ± 0.01 | |
Leg | 0.12 ± 0.01 | 0.64 ± 0.05 * | 0.26 ± 0.03 | 0.19 ± 0.01 | 0.12 ± 0.01 | 0.16 ± 0.02 | 0.10 ± 0.01 | 0.20 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barros, G.O.; Aidar, F.J.; Fabricio de Souza, R.; Brito, C.J.; Méndez-delCanto, R.; dos Santos, J.L.; Almeida-Neto, P.F.; Cabral, B.G.d.A.T.; Garrido, N.D.; Reis, V.M.; et al. Effects of Cold-Water Immersion on Muscle Damage Markers, Physical Performance, and Skin Temperature of Kung Fu Athletes. Physiologia 2025, 5, 21. https://doi.org/10.3390/physiologia5030021
Barros GO, Aidar FJ, Fabricio de Souza R, Brito CJ, Méndez-delCanto R, dos Santos JL, Almeida-Neto PF, Cabral BGdAT, Garrido ND, Reis VM, et al. Effects of Cold-Water Immersion on Muscle Damage Markers, Physical Performance, and Skin Temperature of Kung Fu Athletes. Physiologia. 2025; 5(3):21. https://doi.org/10.3390/physiologia5030021
Chicago/Turabian StyleBarros, Gilvandro Oliveira, Felipe J. Aidar, Raphael Fabricio de Souza, Ciro José Brito, Renato Méndez-delCanto, Jymmys Lopes dos Santos, Paulo Francisco Almeida-Neto, Breno Guilherme de Araújo Tinoco Cabral, Nuno Domingos Garrido, Victor Machado Reis, and et al. 2025. "Effects of Cold-Water Immersion on Muscle Damage Markers, Physical Performance, and Skin Temperature of Kung Fu Athletes" Physiologia 5, no. 3: 21. https://doi.org/10.3390/physiologia5030021
APA StyleBarros, G. O., Aidar, F. J., Fabricio de Souza, R., Brito, C. J., Méndez-delCanto, R., dos Santos, J. L., Almeida-Neto, P. F., Cabral, B. G. d. A. T., Garrido, N. D., Reis, V. M., Tillaar, R. v. d., & Nikolaidis, P. T. (2025). Effects of Cold-Water Immersion on Muscle Damage Markers, Physical Performance, and Skin Temperature of Kung Fu Athletes. Physiologia, 5(3), 21. https://doi.org/10.3390/physiologia5030021