Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (393)

Search Parameters:
Keywords = low-saturation gas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3175 KiB  
Article
Creep Deformation Mechanisms of Gas-Bearing Coal in Deep Mining Environments: Experimental Characterization and Constitutive Modeling
by Xiaolei Sun, Xueqiu He, Liming Qiu, Qiang Liu, Limin Qie and Qian Sun
Processes 2025, 13(8), 2466; https://doi.org/10.3390/pr13082466 - 4 Aug 2025
Abstract
The impact mechanism of long-term creep in gas-containing coal on coal and gas outbursts has not been fully elucidated and remains insufficiently understood for the purpose of disaster engineering control. This investigation conducted triaxial creep experiments on raw coal specimens under controlled confining [...] Read more.
The impact mechanism of long-term creep in gas-containing coal on coal and gas outbursts has not been fully elucidated and remains insufficiently understood for the purpose of disaster engineering control. This investigation conducted triaxial creep experiments on raw coal specimens under controlled confining pressures, axial stresses, and gas pressures. Through systematic analysis of coal’s physical responses across different loading conditions, we developed and validated a novel creep damage constitutive model for gas-saturated coal through laboratory data calibration. The key findings reveal three characteristic creep regimes: (1) a decelerating phase dominates under low stress conditions, (2) progressive transitions to combined decelerating–steady-state creep with increasing stress, and (3) triphasic decelerating–steady–accelerating behavior at critical stress levels. Comparative analysis shows that gas-free specimens exhibit lower cumulative strain than the 0.5 MPa gas-saturated counterparts, with gas presence accelerating creep progression and reducing the time to failure. Measured creep rates demonstrate stress-dependent behavior: primary creep progresses at 0.002–0.011%/min, decaying exponentially to secondary creep rates below 0.001%/min. Steady-state creep rates follow a power law relationship when subject to deviatoric stress (R2 = 0.96). Through the integration of Burgers viscoelastic model with the effective stress principle for porous media, we propose an enhanced constitutive model, incorporating gas adsorption-induced dilatational stresses. This advancement provides a theoretical foundation for predicting time-dependent deformation in deep coal reservoirs and informs monitoring strategies concerning gas-bearing strata stability. This study contributes to the theoretical understanding and engineering monitoring of creep behavior in deep coal rocks. Full article
Show Figures

Figure 1

26 pages, 6611 KiB  
Article
The Geochronology, Geochemical Characteristics, and Tectonic Settings of the Granites, Yexilinhundi, Southern Great Xing’an Range
by Haixin Yue, Henan Yu, Zhenjun Sun, Yanping He, Mengfan Guan, Yingbo Yu and Xi Chen
Minerals 2025, 15(8), 813; https://doi.org/10.3390/min15080813 (registering DOI) - 31 Jul 2025
Viewed by 175
Abstract
The southern Great Xing’an Range is located in the overlap zone of the Paleo-Asian Ocean metallogenic domain and the Circum-Pacific metallogenic domain. It hosts numerous Sn-polymetallic deposits, such as Weilasituo, Bianjiadayuan, Huanggang, and Dajing, and witnessed multiple episodes of magmatism during the Late [...] Read more.
The southern Great Xing’an Range is located in the overlap zone of the Paleo-Asian Ocean metallogenic domain and the Circum-Pacific metallogenic domain. It hosts numerous Sn-polymetallic deposits, such as Weilasituo, Bianjiadayuan, Huanggang, and Dajing, and witnessed multiple episodes of magmatism during the Late Mesozoic. The study area is situated within the Huanggangliang-Ganzhuermiao metallogenic belt in the southern Great Xing’an Range. The region has witnessed extensive magmatism, with Mesozoic magmatic activities being particularly closely linked to regional mineralization. We present petrographic, zircon U-Pb chronological, lithogeochemical, and Lu-Hf isotopic analyses of the Yexilinhundi granites. The results indicate that the granite porphyry and granodiorite were emplaced during the Late Jurassic. Both rocks exhibit high SiO2, K2O + Na2O, differentiation index (DI), and 10,000 Ga/Al ratios, coupled with low MgO contents. They show distinct fractionation between light and heavy rare earth elements (LREEs and HREEs), exhibit Eu anomalies, and have low whole-rock zircon saturation temperatures (Tzr), collectively demonstrating characteristics of highly fractionated I-type granites. The εHf(t) values of the granites range from 0.600 to 9.14, with young two-stage model ages (TDM2 = 616.0~1158 Ma), indicating that the magmatic source originated from partial melting of Mesoproterozoic-Neoproterozoic juvenile crust. This study proposes that the granites formed in a post-collisional/post-orogenic extensional setting associated with the subduction of the Mongol-Okhotsk Ocean, providing a scientific basis for understanding the relationship between the formation of Sn-polymetallic deposits and granitic magmatic evolution in the study area. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

17 pages, 2495 KiB  
Article
Production Capacity and Temperature–Pressure Variation Laws in Depressurization Exploitation of Unconsolidated Hydrate Reservoir in Shenhu Sea Area
by Yuanwei Sun, Yuanfang Cheng, Yanli Wang, Jian Zhao, Xian Shi, Xiaodong Dai and Fengxia Shi
Processes 2025, 13(8), 2418; https://doi.org/10.3390/pr13082418 - 30 Jul 2025
Viewed by 253
Abstract
The Shenhu sea area is rich in unconsolidated hydrate reserves, but the formation mineral particles are small, the rock cementation is weak, and the coupling mechanism of hydrate phase change, fluid seepage, and formation deformation is complex, resulting in unclear productivity change law [...] Read more.
The Shenhu sea area is rich in unconsolidated hydrate reserves, but the formation mineral particles are small, the rock cementation is weak, and the coupling mechanism of hydrate phase change, fluid seepage, and formation deformation is complex, resulting in unclear productivity change law under depressurization exploitation. Therefore, a thermal–fluid–solid–chemical coupling model for natural gas hydrate depressurization exploitation in the Shenhu sea area was constructed to analyze the variation law of reservoir parameters and productivity. The results show that within 0–30 days, rapid near-well pressure drop (13.83→9.8 MPa, 36.37%) drives peak gas production (25,000 m3/d) via hydrate dissociation, with porosity (0.41→0.52) and permeability (75→100 mD) increasing. Within 30–60 days, slower pressure decline (9.8→8.6 MPa, 12.24%) and fines migration cause permeability fluctuations (120→90 mD), reducing gas production to 20,000 m3/d. Within 60–120 days, pressure stabilizes (~7.6 MPa) with residual hydrate saturation < 0.1, leading to stable low permeability (60 mD) and gas production (15,000 m3/d), with cumulative production reaching 2.2 × 106 m3. This study clarifies that productivity is governed by coupled “pressure-driven dissociation–heat limitation–fines migration” mechanisms, providing key insights for optimizing depressurization strategies (e.g., timed heat supplementation, anti-clogging measures) to enhance commercial viability of unconsolidated hydrate reservoirs. Full article
Show Figures

Figure 1

24 pages, 11697 KiB  
Article
Layered Production Allocation Method for Dual-Gas Co-Production Wells
by Guangai Wu, Zhun Li, Yanfeng Cao, Jifei Yu, Guoqing Han and Zhisheng Xing
Energies 2025, 18(15), 4039; https://doi.org/10.3390/en18154039 - 29 Jul 2025
Viewed by 185
Abstract
The synergistic development of low-permeability reservoirs such as deep coalbed methane (CBM) and tight gas has emerged as a key technology to reduce development costs, enhance single-well productivity, and improve gas recovery. However, due to fundamental differences between coal seams and tight sandstones [...] Read more.
The synergistic development of low-permeability reservoirs such as deep coalbed methane (CBM) and tight gas has emerged as a key technology to reduce development costs, enhance single-well productivity, and improve gas recovery. However, due to fundamental differences between coal seams and tight sandstones in their pore structure, permeability, water saturation, and pressure sensitivity, significant variations exist in their flow capacities and fluid production behaviors. To address the challenges of production allocation and main reservoir identification in the co-development of CBM and tight gas within deep gas-bearing basins, this study employs the transient multiphase flow simulation software OLGA to construct a representative dual-gas co-production well model. The regulatory mechanisms of the gas–liquid distribution, deliquification efficiency, and interlayer interference under two typical vertical stacking relationships—“coal over sand” and “sand over coal”—are systematically analyzed with respect to different tubing setting depths. A high-precision dynamic production allocation method is proposed, which couples the wellbore structure with real-time monitoring parameters. The results demonstrate that positioning the tubing near the bottom of both reservoirs significantly enhances the deliquification efficiency and bottomhole pressure differential, reduces the liquid holdup in the wellbore, and improves the synergistic productivity of the dual-reservoirs, achieving optimal drainage and production performance. Building upon this, a physically constrained model integrating real-time monitoring data—such as the gas and liquid production from tubing and casing, wellhead pressures, and other parameters—is established. Specifically, the model is built upon fundamental physical constraints, including mass conservation and the pressure equilibrium, to logically model the flow paths and phase distribution behaviors of the gas–liquid two-phase flow. This enables the accurate derivation of the respective contributions of each reservoir interval and dynamic production allocation without the need for downhole logging. Validation results show that the proposed method reliably reconstructs reservoir contribution rates under various operational conditions and wellbore configurations. Through a comparison of calculated and simulated results, the maximum relative error occurs during abrupt changes in the production capacity, approximately 6.37%, while for most time periods, the error remains within 1%, with an average error of 0.49% throughout the process. These results substantially improve the timeliness and accuracy of the reservoir identification. This study offers a novel approach for the co-optimization of complex multi-reservoir gas fields, enriching the theoretical framework of dual-gas co-production and providing technically adaptive solutions and engineering guidance for multilayer unconventional gas exploitation. Full article
Show Figures

Figure 1

18 pages, 3036 KiB  
Article
Modelling and Simulation of a New π-Gate AlGaN/GaN HEMT with High Voltage Withstand and High RF Performance
by Jun Yao, Xianyun Liu, Chenglong Lu, Di Yang and Wulong Yuan
Electronics 2025, 14(15), 2947; https://doi.org/10.3390/electronics14152947 - 24 Jul 2025
Viewed by 220
Abstract
Aiming at the problems of low withstand voltage and poor RF performance of traditional HEMT devices, a new AlGaN/GaN high electron mobility transistor device with a π-gate (NπGS HEMT) is designed in this paper. The new structure incorporates a π-gate design along with [...] Read more.
Aiming at the problems of low withstand voltage and poor RF performance of traditional HEMT devices, a new AlGaN/GaN high electron mobility transistor device with a π-gate (NπGS HEMT) is designed in this paper. The new structure incorporates a π-gate design along with a PN-junction field plate and an AlGaN back-barrier layer. The device is modeled and simulated in Silvaco TCAD 2015 software and compared with traditional t-gate HEMT devices. The results show that the NπGS HEMT has a significant improvement in various characteristics. The new structure has a higher peak transconductance of 336 mS·mm−1, which is 13% higher than that of the traditional HEMT structure. In terms of output characteristics, the new structure has a higher saturation drain current of 0.188 A/mm. The new structure improves the RF performance of the device with a higher maximum cutoff frequency of about 839 GHz. The device also has a better performance in terms of voltage withstand, exhibiting a higher breakdown voltage of 1817 V. These results show that the proposed new structure could be useful for future research on high voltage withstand and high RF HEMT devices. Full article
Show Figures

Figure 1

14 pages, 2616 KiB  
Article
Evaluation Model of Water Production in Tight Gas Reservoirs Considering Bound Water Saturation
by Wenwen Wang, Bin Zhang, Yunan Liang, Sinan Fang, Zhansong Zhang, Guilan Lin and Yue Yang
Processes 2025, 13(7), 2317; https://doi.org/10.3390/pr13072317 - 21 Jul 2025
Viewed by 258
Abstract
Tight gas is an unconventional resource abundantly found in low-porosity, low-permeability sandstone reservoirs. Production can be significantly reduced due to water production during the development process. Therefore, it is necessary to predict water production during the logging phase to formulate development strategies for [...] Read more.
Tight gas is an unconventional resource abundantly found in low-porosity, low-permeability sandstone reservoirs. Production can be significantly reduced due to water production during the development process. Therefore, it is necessary to predict water production during the logging phase to formulate development strategies for tight gas wells. This study analyzes the water production mechanism in tight sandstone reservoirs and identifies that the core of water production evaluation in the Shihezi Formation of the Linxing block is to clarify the pore permeability structure of tight sandstone and the type of intra-layer water. The primary challenge lies in the accurate characterization of bound water saturation. By integrating logging data with core experiments, a bound water saturation evaluation model based on grain size diameter and pore structure index was established, achieving a calculation accuracy of 92% for the multi-parameter-fitted bound water saturation. Then, based on the high-precision bound water saturation, a gas–water ratio prediction model for the first month of production, considering water saturation, grain size diameter, and fluid type, was established, improving the prediction accuracy to 87.7%. The bound water saturation evaluation and water production evaluation models in this study can achieve effective water production prediction in the early stage of production, providing theoretical support for the scientific development of tight gas in the Linxing block. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

12 pages, 1804 KiB  
Article
Evaluation Method of Gas Production in Shale Gas Reservoirs in Jiaoshiban Block, Fuling Gas Field
by Haitao Rao, Wenrui Shi and Shuoliang Wang
Energies 2025, 18(14), 3817; https://doi.org/10.3390/en18143817 - 17 Jul 2025
Viewed by 209
Abstract
The gas-production potential of shale gas is a comprehensive evaluation metric that assesses the reservoir quality, gas-content properties, and gas-production capacity. Currently, the evaluation of gas-production potential is generally conducted through qualitative comparisons of relevant parameters, which can lead to multiple solutions and [...] Read more.
The gas-production potential of shale gas is a comprehensive evaluation metric that assesses the reservoir quality, gas-content properties, and gas-production capacity. Currently, the evaluation of gas-production potential is generally conducted through qualitative comparisons of relevant parameters, which can lead to multiple solutions and make it difficult to establish a comprehensive evaluation index. This paper introduces a gas-production potential evaluation method based on the Analytic Hierarchy Process (AHP). It uses judgment matrices to analyze key parameters such as gas content, brittleness index, total organic carbon content, the length of high-quality gas-layer horizontal sections, porosity, gas saturation, formation pressure, and formation density. By integrating fuzzy mathematics, a mathematical model for gas-production potential is established, and corresponding gas-production levels are defined. The model categorizes gas-production potential into four levels: when the gas-production index exceeds 0.65, it is classified as a super-high-production well; when the gas-production index is between 0.45 and 0.65, it is classified as a high-production well; when the gas-production index is between 0.35 and 0.45, it is classified as a medium-production well; and when the gas-production index is below 0.35, it is classified as a low-production well. Field applications have shown that this model can accurately predict the gas-production potential of shale gas wells, showing a strong correlation with the unobstructed flow rate of gas wells, and demonstrating broad applicability. Full article
Show Figures

Figure 1

14 pages, 4488 KiB  
Article
Exploring Intensity-Dependent Echogenic Response to Percutaneous Electrolysis in Tendon Tissue: A Cadaveric Study
by Miguel Malo-Urriés, Jacobo Rodríguez-Sanz, Sergio Borrella-Andrés, Isabel Albarova-Corral, Juan Carlos Martínez-Zamorano and Carlos López-de-Celis
J. Clin. Med. 2025, 14(13), 4772; https://doi.org/10.3390/jcm14134772 - 6 Jul 2025
Viewed by 408
Abstract
Background: Percutaneous electrolysis (PE) is an emerging therapeutic approach for tendinopathies, applying a galvanic current through a dry-needling needle to induce regenerative tissue responses. However, current dosing strategies are often empirical and lack objective physiological feedback. Objective: This study aimed to [...] Read more.
Background: Percutaneous electrolysis (PE) is an emerging therapeutic approach for tendinopathies, applying a galvanic current through a dry-needling needle to induce regenerative tissue responses. However, current dosing strategies are often empirical and lack objective physiological feedback. Objective: This study aimed to evaluate the echogenic effects of different galvanic current intensities on cadaveric tendon tissue using quantitative ultrasound. Methods: An ex vivo study was conducted on 29 cadaveric patellar tendon samples, each exposed to a single intensity (0–10 mA for 1 s). Quantitative ultrasound analysis was performed post-intervention, and echogenic variables were extracted using UZ eDosifier software. A composite variable, Electrolysis_UZ_Dose, was created via multiple regression to capture the overall ultrasound-visible changes. Data were analyzed using correlation, regression models, and dose–range comparisons. Results: An intensity-dependent response was observed in key echogenic parameters. Minimal changes occurred at low intensities (0–2 mA), whereas a progressive response emerged between 2 and 6 mA. Beyond 6 mA, a plateau effect suggested either tissue saturation or imaging limitations due to gas-induced acoustic shadowing. The Electrolysis_UZ_Dose variable strongly correlated with applied intensity (R2 = 0.732). Conclusions: This study suggests an intensity-dependent echogenic effect of PE on tendon tissue in key ultrasound-derived parameters (A_Number, A_Area, A_Perimeter, A_Homogeneity, and A_ASM). However, as this study was conducted under experimental conditions with a single 1 s application per sample, the results should not be extrapolated to clinical practice without further validation. Full article
(This article belongs to the Section Nuclear Medicine & Radiology)
Show Figures

Figure 1

14 pages, 6249 KiB  
Article
Application of the NOA-Optimized Random Forest Algorithm to Fluid Identification—Low-Porosity and Low-Permeability Reservoirs
by Qunying Tang, Yangdi Lu, Xiaojing Yang, Yuping Li, Wei Zhang, Qiangqiang Yang, Zhen Tian and Rui Deng
Processes 2025, 13(7), 2132; https://doi.org/10.3390/pr13072132 - 4 Jul 2025
Viewed by 313
Abstract
As an important unconventional oil and gas resource, tight oil exploration and development is of great significance to ensure energy supply under the background of continuous growth of global energy demand. Low-porosity and low-permeability reservoirs are characterized by tight rock properties, poor physical [...] Read more.
As an important unconventional oil and gas resource, tight oil exploration and development is of great significance to ensure energy supply under the background of continuous growth of global energy demand. Low-porosity and low-permeability reservoirs are characterized by tight rock properties, poor physical properties, and complex pore structure, and as a result the fine calculation of logging reservoir parameters faces great challenges. In addition, the crude oil in this area has high viscosity, the formation water salinity is low, and the oil reservoir resistivity shows significant spatial variability in the horizontal direction, which further increases the difficulty of oil and water reservoir identification and affects the accuracy of oil saturation calculation. Targeting the above problems, the Nutcracker Optimization Algorithm (NOA) was used to optimize the hyperparameters of the random forest classification model, and then the optimal hyperparameters were input into the random forest model, and the conventional logging curve and oil test data were combined to identify and classify the reservoir fluids, with the final accuracy reaching 94.92%. Compared with the traditional Hingle map intersection method, the accuracy of this method is improved by 14.92%, which verifies the reliability of the model for fluid identification of low-porosity and low-permeability reservoirs in the research block and provides reference significance for the next oil test and production test layer in this block. Full article
(This article belongs to the Special Issue Oil and Gas Drilling Processes: Control and Optimization, 2nd Edition)
Show Figures

Figure 1

18 pages, 8224 KiB  
Article
Cascaded Absorption Heat Pump Integration in Biomass CHP Systems: Multi-Source Waste Heat Recovery for Low-Carbon District Heating
by Pengying Wang and Hangyu Zhou
Sustainability 2025, 17(13), 5870; https://doi.org/10.3390/su17135870 - 26 Jun 2025
Viewed by 271
Abstract
District heating systems in northern China predominantly rely on coal-fired heat sources, necessitating sustainable alternatives to reduce carbon emissions. This study investigates a biomass combined heat and power (CHP) system integrated with cascaded absorption heat pump (AHP) technology to recover waste heat from [...] Read more.
District heating systems in northern China predominantly rely on coal-fired heat sources, necessitating sustainable alternatives to reduce carbon emissions. This study investigates a biomass combined heat and power (CHP) system integrated with cascaded absorption heat pump (AHP) technology to recover waste heat from semi-dry flue gas desulfurization exhaust and turbine condenser cooling water. A multi-source operational framework is developed, coordinating biomass CHP units with coal-fired boilers for peak-load regulation. The proposed system employs a two-stage heat recovery methodology: preliminary sensible heat extraction from non-saturated flue gas (elevating primary heating loop (PHL) return water from 50 °C to 55 °C), followed by serial AHPs utilizing turbine extraction steam to upgrade waste heat from circulating cooling water (further heating PHL water to 85 °C). Parametric analyses demonstrate that the cascaded AHP system reduces turbine steam extraction by 4.4 to 8.8 t/h compared to conventional steam-driven heating, enabling 3235 MWh of annual additional power generation. Environmental benefits include an annual CO2 reduction of 1821 tonnes, calculated using regional grid emission factors. The integration of waste heat recovery and multi-source coordination achieves synergistic improvements in energy efficiency and operational flexibility, advancing low-carbon transitions in district heating systems. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

24 pages, 6478 KiB  
Article
Numerical Simulation of Multi-Cluster Fracture Propagation in Marine Natural Gas Hydrate Reservoirs
by Lisha Liao, Youkeren An, Jinshan Wang, Yiqun Zhang, Lerui Liu, Meihua Chen, Yiming Gao and Jiayi Han
J. Mar. Sci. Eng. 2025, 13(7), 1224; https://doi.org/10.3390/jmse13071224 - 25 Jun 2025
Viewed by 219
Abstract
Natural gas hydrates (NGHs) are promising energy resources, although their marine exploitation is limited by low reservoir permeability and hydrate decomposition efficiency. Multi-cluster fracturing technology can enhance reservoir permeability, yet complex properties of hydrate sediments render the prediction of fracture behavior challenging. Therefore, [...] Read more.
Natural gas hydrates (NGHs) are promising energy resources, although their marine exploitation is limited by low reservoir permeability and hydrate decomposition efficiency. Multi-cluster fracturing technology can enhance reservoir permeability, yet complex properties of hydrate sediments render the prediction of fracture behavior challenging. Therefore, we developed a three-dimensional (3D) fluid–solid coupling model for hydraulic fracturing in NGH reservoirs based on cohesive elements to analyze the effects of sediment plasticity, hydrate saturation, fracturing fluid viscosity, and injection rate, as well as the stress interference mechanisms in multi-cluster simultaneous fracturing under different cluster spacings. Results show that selecting low-plastic reservoirs with high hydrate saturation (SH > 50%) and adopting an optimal combination of fracturing fluid viscosity and injection rate can achieve the co-optimization of stimulated reservoir volume (SRV) and cross-layer risk. In multi-cluster fracturing, inter-fracture stress interference promotes the propagation of fractures along the fracture plane while suppressing it in the normal direction of the fracture plane, and this effect diminishes significantly till 9 m cluster spacing. This study provides valuable insights for the selection of optimal multi-cluster fracturing parameters for marine NGH reservoirs. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

24 pages, 4986 KiB  
Article
Research on Multi-Cycle Injection–Production Displacement Characteristics and Factors Influencing Storage Capacity in Oil Reservoir-Based Underground Gas Storage
by Yong Tang, Peng Zheng, Zhitao Tang, Minmao Cheng and Yong Wang
Energies 2025, 18(13), 3330; https://doi.org/10.3390/en18133330 - 25 Jun 2025
Viewed by 857
Abstract
In order to clarify the feasibility of constructing a gas storage reservoir through synergistic injection and production in the target reservoir, micro-displacement experiments and multi-cycle injection–production experiments were conducted. These experiments investigated the displacement characteristics and the factors affecting storage capacity during the [...] Read more.
In order to clarify the feasibility of constructing a gas storage reservoir through synergistic injection and production in the target reservoir, micro-displacement experiments and multi-cycle injection–production experiments were conducted. These experiments investigated the displacement characteristics and the factors affecting storage capacity during the multi-cycle injection–production process for converting the target reservoir into a gas storage facility. Microscopic displacement experiments have shown that the remaining oil is primarily distributed in the dead pores and tiny pores of the core in the form of micro-bead chains and films. The oil displacement efficiency of water flooding followed by gas flooding is 18.61% higher than that of gas flooding alone, indicating that the transition from water flooding to gas flooding can further reduce the liquid saturation and increase the storage capacity space by 2.17%. Single-tube long-core displacement experiments indicate that, during the collaborative construction of a gas storage facility, the overall oil displacement efficiency without a depletion process is approximately 24% higher than that with a depletion process. This suggests that depletion production is detrimental to enhancing oil recovery and expanding the capacity of the gas storage facility. During the cyclic injection–production stage, the crude oil recovery rate increases by 1% to 4%. As the number of cycles increases, the incremental oil displacement efficiency in each stage gradually decreases, and so does the increase in cumulative oil displacement efficiency. Better capacity expansion effects are achieved when gas is produced simultaneously from both ends. Parallel double-tube long-core displacement experiments demonstrate that, when the permeability is the same, the oil displacement efficiencies during the gas flooding stage and the cyclic injection–production stage are essentially identical. When there is a permeability contrast, the oil displacement efficiency of the high-permeability core is 9.56% higher than that of the low-permeability core. The ratio of the oil displacement efficiency between the high-permeability end and the low-permeability end is positively correlated with the permeability contrast; the greater the permeability contrast, the larger the ratio. The research findings can provide a reference for enhancing oil recovery and expanding the capacity of the target reservoir when it is converted into a gas storage facility. Full article
Show Figures

Figure 1

20 pages, 689 KiB  
Article
Efficiency of Ozone Applied in Flow and at Low Pressures in the Inactivation of Salmonella in Black Peppercorns (Piper nigrum L.) and the Effects of Ozone Treatment on Grain Quality and Essential Oil Composition
by Handina da Graça Lurdes Langa Massango, Lêda Rita D’Antonino Faroni, Maria Cristina Dantas Vanetti, Ernandes Rodrigues de Alencar, Marcus Vinícius de Assis Silva, Alessandra Aparecida Zinato Rodrigues, Paulo Roberto Cecon, Carollayne Gonçalves Magalhães, Daniele Almeida Teixeira and Letícia Elisa Rossi
Foods 2025, 14(13), 2215; https://doi.org/10.3390/foods14132215 - 24 Jun 2025
Viewed by 400
Abstract
Food contamination by Salmonella poses a significant public health risk, rendering products unfit for consumption. This study aimed to evaluate the efficiency of ozone gas (O3), applied in flow and at low pressures, in inactivating Salmonella on black peppercorns (Piper [...] Read more.
Food contamination by Salmonella poses a significant public health risk, rendering products unfit for consumption. This study aimed to evaluate the efficiency of ozone gas (O3), applied in flow and at low pressures, in inactivating Salmonella on black peppercorns (Piper nigrum L.). Samples were inoculated with a cocktail of four Salmonella serotypes and subjected to ozonation under flow or low-pressure conditions in a hypobaric chamber. For the flow treatment, ozone gas at 16 mg L−1 was humidified by passing it through a 40% (w/v) sodium chloride solution and applied for 2, 4, and 8 h. For the hypobaric chamber treatment, an inlet O3 concentration of 60 mg L−1 was used, with 10, 15, and 20 injections. The results showed that, under flow ozonation for 8 h, Salmonella was absent in 25 g of the sample. Ozone treatment increased pH, total titratable acidity (TTA), antioxidant activity (DPPH*), lightness (L*), color saturation (C*), total phenolic content (TPC), and the concentration of major essential oil compounds in all treatments. Under low-pressure ozonation, Salmonella persisted in all tested conditions, along with changes in color difference (∆E*), moisture content, TTA, DPPH*, L*, C*, pH, TPC, and the concentration of major essential oil compounds. The essential oil yield was not affected. Although the application of ozone at low pressures reduced Salmonella contamination, it was not sufficient for complete inactivation under the tested conditions. However, the flow-applied ozone treatment proved effective in the inactivation of Salmonella in black peppercorns. Full article
Show Figures

Figure 1

13 pages, 3319 KiB  
Article
Field Testing and Seepage Analysis of Multi-Layer Leachate Levels in Landfills with Intermediate Covers: A Case Study
by Wei Shi, Yang Zhang, Yifan Lin, Han Gao and Jiwu Lan
Processes 2025, 13(6), 1889; https://doi.org/10.3390/pr13061889 - 14 Jun 2025
Viewed by 339
Abstract
The distribution of leachate in landfill systems significantly influences landfill stability, pollutant migration, and gas transport. However, existing methods for measuring leachate levels in landfills with multiple intermediate cover layers remain insufficient. This study introduces a novel in situ testing method to determine [...] Read more.
The distribution of leachate in landfill systems significantly influences landfill stability, pollutant migration, and gas transport. However, existing methods for measuring leachate levels in landfills with multiple intermediate cover layers remain insufficient. This study introduces a novel in situ testing method to determine multi-layer leachate levels. Field experiments at a landfill site in northwestern China successfully quantified leachate levels on each intermediate cover layer. Seepage analysis simulated the leachate level recovery test method used in field investigations, enabling examination of the formation mechanisms and drainage characteristics of multi-layer leachate systems. Measurement results demonstrated that each intermediate cover layer retained a corresponding perched leachate level. Variations in perched water head across waste layers arise from differences in drainage capacity between waste strata. Differential settlement of the intermediate cover layers in localized areas generated adverse hydraulic gradients, contributing to spatial heterogeneity in perched leachate distribution. Back analysis yields an in situ saturated hydraulic conductivity ranging from 1 × 10−4 to 3.3 × 10−3 cm/s. Low-permeability intermediate cover layers were identified as the primary factors contributing to multi-layer leachate formation. The implementation of effective horizontal drainage can reduce perched leachate accumulation above intermediate layers. Full article
Show Figures

Figure 1

18 pages, 6412 KiB  
Article
Geochemistry and Zircon U-Pb Chronology of West Kendewula Late Paleozoic A-Type Granites in the East Kunlun Orogenic Belt: Implications for Post-Collision Extension
by Bang-Shi Dong, Wen-Qin Wang, Gen-Hou Wang, Pei-Lie Zhang, Peng-Sheng Li, Zhao-Lei Ding, Ze-Jun He, Pu Zhao, Jing-Qi Zhang and Chao Bo
Appl. Sci. 2025, 15(12), 6661; https://doi.org/10.3390/app15126661 - 13 Jun 2025
Viewed by 498
Abstract
The Late Paleozoic granitoids widely distributed in the central section of the East Kunlun Orogenic Belt (EKOB) are responsible for the constraints on its post-collisional extensional processes. We report the whole-rock geochemical compositions, zircon U-Pb ages, and zircon Hf isotope data of granites [...] Read more.
The Late Paleozoic granitoids widely distributed in the central section of the East Kunlun Orogenic Belt (EKOB) are responsible for the constraints on its post-collisional extensional processes. We report the whole-rock geochemical compositions, zircon U-Pb ages, and zircon Hf isotope data of granites in the western Kendewula area. The granites, dated between 413.7 Ma and 417.7 Ma, indicate emplacement during the Early Devonian period. The granite is characterized by high silicon content (72.45–78.96 wt%), high and alkali content (7.59–9.35 wt%), high 10,000 × Ga/Al values, and low Al2O3 (11.29–13.32 wt%), CaO (0.07–0.31 wt%), and MgO contents (0.16–0.94 wt%). The rocks exhibit enrichment in large-ion lithophile element (LILE) content and high-field-strength element (HFSE) content, in addition to strong losses, showing significant depletion in Ba, Sr, P and Eu. These geochemical characteristics correspond to A2-type granites. The values of Rb/N and Ba/La and the higher zircon saturation temperature (800~900 °C) indicate that the magma source is mainly crustal, with the participation of mantle materials, although limited. In addition, the zircon εHf(t) values (−4.3–3.69) also support this view. In summary, the A2-type granite exposed in the western Kendewula region formed against a post-collisional extensional setting background, suggesting that the Southern Kunlun Terrane (SKT) entered a post-orogenic extensional phase in the evolution stage since the Early Devonian. The upwelling of the asthenospheric mantle of the crust, triggered by crustal detachment and partial melting, likely contributed to the flare-up of A2-type granite during this period. By studying the nature of granite produced during orogeny, the evolution process of the formation of orogenic belts is discussed, and our understanding of orogenic is enhanced. Full article
(This article belongs to the Special Issue Technologies and Methods for Exploitation of Geological Resources)
Show Figures

Figure 1

Back to TopTop