Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,433)

Search Parameters:
Keywords = low-power network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
48 pages, 2506 KiB  
Article
Enhancing Ship Propulsion Efficiency Predictions with Integrated Physics and Machine Learning
by Hamid Reza Soltani Motlagh, Seyed Behbood Issa-Zadeh, Md Redzuan Zoolfakar and Claudia Lizette Garay-Rondero
J. Mar. Sci. Eng. 2025, 13(8), 1487; https://doi.org/10.3390/jmse13081487 - 31 Jul 2025
Abstract
This research develops a dual physics-based machine learning system to forecast fuel consumption and CO2 emissions for a 100 m oil tanker across six operational scenarios: Original, Paint, Advanced Propeller, Fin, Bulbous Bow, and Combined. The combination of hydrodynamic calculations with Monte [...] Read more.
This research develops a dual physics-based machine learning system to forecast fuel consumption and CO2 emissions for a 100 m oil tanker across six operational scenarios: Original, Paint, Advanced Propeller, Fin, Bulbous Bow, and Combined. The combination of hydrodynamic calculations with Monte Carlo simulations provides a solid foundation for training machine learning models, particularly in cases where dataset restrictions are present. The XGBoost model demonstrated superior performance compared to Support Vector Regression, Gaussian Process Regression, Random Forest, and Shallow Neural Network models, achieving near-zero prediction errors that closely matched physics-based calculations. The physics-based analysis demonstrated that the Combined scenario, which combines hull coatings with bulbous bow modifications, produced the largest fuel consumption reduction (5.37% at 15 knots), followed by the Advanced Propeller scenario. The results demonstrate that user inputs (e.g., engine power: 870 kW, speed: 12.7 knots) match the Advanced Propeller scenario, followed by Paint, which indicates that advanced propellers or hull coatings would optimize efficiency. The obtained insights help ship operators modify their operational parameters and designers select essential modifications for sustainable operations. The model maintains its strength at low speeds, where fuel consumption is minimal, making it applicable to other oil tankers. The hybrid approach provides a new tool for maritime efficiency analysis, yielding interpretable results that support International Maritime Organization objectives, despite starting with a limited dataset. The model requires additional research to enhance its predictive accuracy using larger datasets and real-time data collection, which will aid in achieving global environmental stewardship. Full article
(This article belongs to the Special Issue Machine Learning for Prediction of Ship Motion)
13 pages, 1217 KiB  
Article
Optimization Scheme for Modulation of Data Transmission Module in Endoscopic Capsule
by Meiyuan Miao, Chen Ye, Zhiping Xu, Laiding Zhao and Jiafeng Yao
Sensors 2025, 25(15), 4738; https://doi.org/10.3390/s25154738 (registering DOI) - 31 Jul 2025
Abstract
The endoscopic capsule is a miniaturized device used for medical diagnosis, which is less invasive compared to traditional gastrointestinal endoscopy and can reduce patient discomfort. However, it faces challenges in communication transmission, such as high power consumption, serious signal interference, and low data [...] Read more.
The endoscopic capsule is a miniaturized device used for medical diagnosis, which is less invasive compared to traditional gastrointestinal endoscopy and can reduce patient discomfort. However, it faces challenges in communication transmission, such as high power consumption, serious signal interference, and low data transmission rate. To address these issues, this paper proposes an optimized modulation scheme that is low-cost, low-power, and robust in harsh environments, aiming to improve its transmission rate. The scheme is analyzed in terms of the in-body channel. The analysis and discussion for the scheme in wireless body area networks (WBANs) are divided into three aspects: bit error rate (BER) performance, energy efficiency (EE), and spectrum efficiency (SE), and complexity. These correspond to the following issues: transmission rate, communication quality, and low power consumption. The results demonstrate that the optimized scheme is more suitable for improving the communication performance of endoscopic capsules. Full article
Show Figures

Figure 1

22 pages, 2738 KiB  
Article
Mitigation of Solar PV Impact in Four-Wire LV Radial Distribution Feeders Through Reactive Power Management Using STATCOMs
by Obaidur Rahman, Duane Robinson and Sean Elphick
Electronics 2025, 14(15), 3063; https://doi.org/10.3390/electronics14153063 (registering DOI) - 31 Jul 2025
Abstract
Australia has the highest per capita penetration of rooftop solar PV systems in the world. Integration of these systems has led to reverse power flow and associated voltage rise problems in residential low-voltage (LV) distribution networks. Furthermore, random, uncontrolled connection of single-phase solar [...] Read more.
Australia has the highest per capita penetration of rooftop solar PV systems in the world. Integration of these systems has led to reverse power flow and associated voltage rise problems in residential low-voltage (LV) distribution networks. Furthermore, random, uncontrolled connection of single-phase solar systems can exacerbate voltage unbalance in these networks. This paper investigates the application of a Static Synchronous Compensator (STATCOM) for the improvement of voltage regulation in four-wire LV distribution feeders through reactive power management as a means of mitigating voltage regulation and unbalance challenges. To demonstrate the performance of the STATCOM with varying loads and PV output, a Q-V droop curve is applied to specify the level of reactive power injection/absorption required to maintain appropriate voltage regulation. A practical four-wire feeder from New South Wales, Australia, has been used as a case study network to analyse improvements in system performance through the use of the STATCOM. The outcomes indicate that the STATCOM has a high degree of efficacy in mitigating voltage regulation and unbalance excursions. In addition, compared to other solutions identified in the existing literature, the STATCOM-based solution requires no sophisticated communication infrastructure. Full article
(This article belongs to the Special Issue Power Electronics and Renewable Energy System)
Show Figures

Figure 1

14 pages, 1161 KiB  
Article
Multipath Interference Impact Due to Fiber Mode Coupling in C+L+S Multiband Transmission Reach
by Luís Cancela and João Pires
Photonics 2025, 12(8), 770; https://doi.org/10.3390/photonics12080770 - 30 Jul 2025
Abstract
Multiband transmission is, nowadays, being implemented worldwide to increase the optical transport network capacity, mainly because it uses the already-installed single-mode fiber (SMF). The G.654E SMF, due to its attributes (e.g., low-loss, and large-effective area in comparison with the standard G.652 SMF), can [...] Read more.
Multiband transmission is, nowadays, being implemented worldwide to increase the optical transport network capacity, mainly because it uses the already-installed single-mode fiber (SMF). The G.654E SMF, due to its attributes (e.g., low-loss, and large-effective area in comparison with the standard G.652 SMF), can also increase network capacity and can also be used for multiband (MB) transmission. Nevertheless, in MB transmission, power mode coupling arises when bands with wavelengths below the cut-off wavelength are used, inducing multipath interference (MPI). This work investigates the impact of the MPI, due to mode coupling from G.654E SMF, in the transmission reach of a C+L+S band transmission system. Our results indicate that for the S-band scenario, the band below the wavelength cut-off, an approximately 25% reach decrease is observed when the MPI/span increases to −26 dB/span, considering quadrature phase-shift keying (QPSK) signals with a 64 GBaud symbol rate. We also concluded that if the L-band were not above the wavelength cut-off, it would be much more affected than the S-band, with an approximately 52% reach decrease due to MPI impact. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

21 pages, 1657 KiB  
Article
Heterogeneous-IRS-Assisted Millimeter-Wave Systems: Element Position and Phase Shift Optimization
by Weibiao Zhao, Qiucen Wu, Hao Wei, Dongliang Su and Yu Zhu
Sensors 2025, 25(15), 4688; https://doi.org/10.3390/s25154688 - 29 Jul 2025
Viewed by 152
Abstract
Intelligent reflecting surfaces (IRSs) have attracted extensive attention in the design of future communication networks. However, their large number of reflecting elements still results in non-negligible power consumption and hardware costs. To address this issue, we previously proposed a green heterogeneous IRS (HE-IRS) [...] Read more.
Intelligent reflecting surfaces (IRSs) have attracted extensive attention in the design of future communication networks. However, their large number of reflecting elements still results in non-negligible power consumption and hardware costs. To address this issue, we previously proposed a green heterogeneous IRS (HE-IRS) consisting of both dynamically tunable elements (DTEs) and statically tunable elements (STEs). Compared to conventional IRSs with only DTEs, the unique DTE–STE integrated structure introduces new challenges in optimizing the positions and phase shifts of the two types of elements. In this paper, we investigate the element position and phase shift optimization problems in HE-IRS-assisted millimeter-wave systems. We first propose a particle swarm optimization algorithm to determine the specific positions of the DTEs and STEs. Then, by decomposing the phase shift optimization of the two types of elements into two subproblems, we utilize the manifold optimization method to optimize the phase shifts of the STEs, followed by deriving a closed-form solution for those of the DTEs. Furthermore, we propose a low-complexity phase shift optimization algorithm for both DTEs and STEs based on the Cauchy–Schwarz bound. The simulation results show that with the tailored element position and phase shift optimization algorithms, the HE-IRS can achieve a competitive performance compared to that of the conventional IRS, but with much lower power consumption. Full article
(This article belongs to the Special Issue Design and Measurement of Millimeter-Wave Antennas)
Show Figures

Figure 1

27 pages, 5740 KiB  
Article
Localization of Multiple GNSS Interference Sources Based on Target Detection in C/N0 Distribution Maps
by Qidong Chen, Rui Liu, Qiuzhen Yan, Yue Xu, Yang Liu, Xiao Huang and Ying Zhang
Remote Sens. 2025, 17(15), 2627; https://doi.org/10.3390/rs17152627 - 29 Jul 2025
Viewed by 185
Abstract
The localization of multiple interference sources in Global Navigation Satellite Systems (GNSS) can be achieved using carrier-to-noise ratio (C/N0) information provided by GNSS receivers, such as those embedded in smartphones. However, in increasingly prevalent complex scenarios—such as the coexistence of multiple [...] Read more.
The localization of multiple interference sources in Global Navigation Satellite Systems (GNSS) can be achieved using carrier-to-noise ratio (C/N0) information provided by GNSS receivers, such as those embedded in smartphones. However, in increasingly prevalent complex scenarios—such as the coexistence of multiple directional interferences, increased diversity and density of GNSS interference, and the presence of multiple low-power interference sources—conventional localization methods often fail to provide reliable results, thereby limiting their applicability in real-world environments. This paper presents a multi-interference sources localization method using object detection in GNSS C/N0 distribution maps. The proposed method first exploits the similarity between C/N0 data reported by GNSS receivers and image grayscale values to construct C/N0 distribution maps, thereby transforming the problem of multi-source GNSS interference localization into an object detection and localization task based on image processing techniques. Subsequently, an Oriented Squeeze-and-Excitation-based Faster Region-based Convolutional Neural Network (OSF-RCNN) framework is proposed to process the C/N0 distribution maps. Building upon the Faster R-CNN framework, the proposed method integrates an Oriented RPN (Region Proposal Network) to regress the orientation angles of directional antennas, effectively addressing their rotational characteristics. Additionally, the Squeeze-and-Excitation (SE) mechanism and the Feature Pyramid Network (FPN) are integrated at key stages of the network to improve sensitivity to small targets, thereby enhancing detection and localization performance for low-power interference sources. The simulation results verify the effectiveness of the proposed method in accurately localizing multiple interference sources under the increasingly prevalent complex scenarios described above. Full article
(This article belongs to the Special Issue Advanced Multi-GNSS Positioning and Its Applications in Geoscience)
Show Figures

Figure 1

17 pages, 3604 KiB  
Article
Binary-Weighted Neural Networks Using FeRAM Array for Low-Power AI Computing
by Seung-Myeong Cho, Jaesung Lee, Hyejin Jo, Dai Yun, Jihwan Moon and Kyeong-Sik Min
Nanomaterials 2025, 15(15), 1166; https://doi.org/10.3390/nano15151166 - 28 Jul 2025
Viewed by 104
Abstract
Artificial intelligence (AI) has become ubiquitous in modern computing systems, from high-performance data centers to resource-constrained edge devices. As AI applications continue to expand into mobile and IoT domains, the need for energy-efficient neural network implementations has become increasingly critical. To meet this [...] Read more.
Artificial intelligence (AI) has become ubiquitous in modern computing systems, from high-performance data centers to resource-constrained edge devices. As AI applications continue to expand into mobile and IoT domains, the need for energy-efficient neural network implementations has become increasingly critical. To meet this requirement of energy-efficient computing, this work presents a BWNN (binary-weighted neural network) architecture implemented using FeRAM (Ferroelectric RAM)-based synaptic arrays. By leveraging the non-volatile nature and low-power computing of FeRAM-based CIM (computing in memory), the proposed CIM architecture indicates significant reductions in both dynamic and standby power consumption. Simulation results in this paper demonstrate that scaling the ferroelectric capacitor size can reduce dynamic power by up to 6.5%, while eliminating DRAM-like refresh cycles allows standby power to drop by over 258× under typical conditions. Furthermore, the combination of binary weight quantization and in-memory computing enables energy-efficient inference without significant loss in recognition accuracy, as validated using MNIST datasets. Compared to prior CIM architectures of SRAM-CIM, DRAM-CIM, and STT-MRAM-CIM, the proposed FeRAM-CIM exhibits superior energy efficiency, achieving 230–580 TOPS/W in a 45 nm process. These results highlight the potential of FeRAM-based BWNNs as a compelling solution for edge-AI and IoT applications where energy constraints are critical. Full article
(This article belongs to the Special Issue Neuromorphic Devices: Materials, Structures and Bionic Applications)
Show Figures

Figure 1

21 pages, 4738 KiB  
Article
Research on Computation Offloading and Resource Allocation Strategy Based on MADDPG for Integrated Space–Air–Marine Network
by Haixiang Gao
Entropy 2025, 27(8), 803; https://doi.org/10.3390/e27080803 - 28 Jul 2025
Viewed by 193
Abstract
This paper investigates the problem of computation offloading and resource allocation in an integrated space–air–sea network based on unmanned aerial vehicle (UAV) and low Earth orbit (LEO) satellites supporting Maritime Internet of Things (M-IoT) devices. Considering the complex, dynamic environment comprising M-IoT devices, [...] Read more.
This paper investigates the problem of computation offloading and resource allocation in an integrated space–air–sea network based on unmanned aerial vehicle (UAV) and low Earth orbit (LEO) satellites supporting Maritime Internet of Things (M-IoT) devices. Considering the complex, dynamic environment comprising M-IoT devices, UAVs and LEO satellites, traditional optimization methods encounter significant limitations due to non-convexity and the combinatorial explosion in possible solutions. A multi-agent deep deterministic policy gradient (MADDPG)-based optimization algorithm is proposed to address these challenges. This algorithm is designed to minimize the total system costs, balancing energy consumption and latency through partial task offloading within a cloud–edge-device collaborative mobile edge computing (MEC) system. A comprehensive system model is proposed, with the problem formulated as a partially observable Markov decision process (POMDP) that integrates association control, power control, computing resource allocation, and task distribution. Each M-IoT device and UAV acts as an intelligent agent, collaboratively learning the optimal offloading strategies through a centralized training and decentralized execution framework inherent in the MADDPG. The numerical simulations validate the effectiveness of the proposed MADDPG-based approach, which demonstrates rapid convergence and significantly outperforms baseline methods, and indicate that the proposed MADDPG-based algorithm reduces the total system cost by 15–60% specifically. Full article
(This article belongs to the Special Issue Space-Air-Ground-Sea Integrated Communication Networks)
Show Figures

Figure 1

16 pages, 2137 KiB  
Article
Constellation-Optimized IM-OFDM: Joint Subcarrier Activation and Mapping via Deep Learning for Low-PAPR ISAC
by Li Li, Jiying Lin, Jianguo Li and Xiangyuan Bu
Electronics 2025, 14(15), 3007; https://doi.org/10.3390/electronics14153007 - 28 Jul 2025
Viewed by 144
Abstract
Orthogonal frequency division multiplexing (OFDM) has been regarded as an attractive waveform for integrated sensing and communication (ISAC). However, suffering from its high peak-to-average power ratio (PAPR), sensitivity to phase noise (PN), and spectral efficiency saturation, the performance of OFDM in ISAC is [...] Read more.
Orthogonal frequency division multiplexing (OFDM) has been regarded as an attractive waveform for integrated sensing and communication (ISAC). However, suffering from its high peak-to-average power ratio (PAPR), sensitivity to phase noise (PN), and spectral efficiency saturation, the performance of OFDM in ISAC is limited. Against this background, this paper proposes a constellation-optimized index-modulated OFDM (CO-IM-OFDM) framework that leverages neural networks to design a constellation suitable for subcarrier activation patterns. A correlation model between index modulation and constellation is established, enabling adaptive constellation mapping in IM-OFDM. Then, Adam optimizer is employed to train the constellation tailored for ISAC, enhancing spectral efficiency under PN and PAPR constraints. Furthermore, a weighting factor is defined to characterize the joint communication–sensing performance, thus optimizing the overall system performance. Simulation results demonstrate that the proposed method can achieve improvements in bit error rate (BER) by over 4 dB and in Cramér–Rao bound (CRB) by 2% to 8% compared to traditional IM-OFDM constellation mapping. It overcomes fixed constellation constraints of conventional IM-OFDM systems, offering theoretical innovation waveform design for low-power communication–sensing systems in highly dynamic environments. Full article
(This article belongs to the Special Issue Integrated Sensing and Communications for 6G)
Show Figures

Figure 1

21 pages, 11260 KiB  
Article
GaN HEMT Oscillators with Buffers
by Sheng-Lyang Jang, Ching-Yen Huang, Tzu Chin Yang and Chien-Tang Lu
Micromachines 2025, 16(8), 869; https://doi.org/10.3390/mi16080869 - 28 Jul 2025
Viewed by 188
Abstract
With their superior switching speed, GaN high-electron-mobility transistors (HEMTs) enable high power density, reduce energy losses, and increase power efficiency in a wide range of applications, such as power electronics, due to their high breakdown voltage. GaN-HEMT devices are subject to long-term reliability [...] Read more.
With their superior switching speed, GaN high-electron-mobility transistors (HEMTs) enable high power density, reduce energy losses, and increase power efficiency in a wide range of applications, such as power electronics, due to their high breakdown voltage. GaN-HEMT devices are subject to long-term reliability due to the self-heating effect and lattice mismatch between the SiC substrate and the GaN. Depletion-mode GaN HEMTs are utilized for radio frequency applications, and this work investigates three wide-bandgap (WBG) GaN HEMT fixed-frequency oscillators with output buffers. The first GaN-on-SiC HEMT oscillator consists of an HEMT amplifier with an LC feedback network. With the supply voltage of 0.8 V, the single-ended GaN oscillator can generate a signal at 8.85 GHz, and it also supplies output power of 2.4 dBm with a buffer supply of 3.0 V. At 1 MHz frequency offset from the carrier, the phase noise is −124.8 dBc/Hz, and the figure of merit (FOM) of the oscillator is −199.8 dBc/Hz. After the previous study, the hot-carrier stressed RF performance of the GaN oscillator is studied, and the oscillator was subject to a drain supply of 8 V for a stressing step time equal to 30 min and measured at the supply voltage of 0.8 V after the step operation for performance benchmark. Stress study indicates the power oscillator with buffer is a good structure for a reliable structure by operating the oscillator core at low supply and the buffer at high supply. The second balanced oscillator can generate a differential signal. The feedback filter consists of a left-handed transmission-line LC network by cascading three unit cells. At a 1 MHz frequency offset from the carrier of 3.818 GHz, the phase noise is −131.73 dBc/Hz, and the FOM of the 2nd oscillator is −188.4 dBc/Hz. High supply voltage operation shows phase noise degradation. The third GaN cross-coupled VCO uses 8-shaped inductors. The VCO uses a pair of drain inductors to improve the Q-factor of the LC tank, and it uses 8-shaped inductors for magnetic coupling noise suppression. At the VCO-core supply of 1.3 V and high buffer supply, the FOM at 6.397 GHz is −190.09 dBc/Hz. This work enhances the design techniques for reliable GaN HEMT oscillators and knowledge to design high-performance circuits. Full article
(This article belongs to the Special Issue Research Trends of RF Power Devices)
Show Figures

Figure 1

17 pages, 4618 KiB  
Article
ANN-Enhanced Modulated Model Predictive Control for AC-DC Converters in Grid-Connected Battery Systems
by Andrea Volpini, Samuela Rokocakau, Giulia Tresca, Filippo Gemma and Pericle Zanchetta
Energies 2025, 18(15), 3996; https://doi.org/10.3390/en18153996 - 27 Jul 2025
Viewed by 188
Abstract
With the increasing integration of renewable energy sources (RESs) into power systems, batteries are playing a critical role in ensuring grid reliability and flexibility. Among them, vanadium redox flow batteries (VRFBs) have emerged as a promising solution for large-scale storage due to their [...] Read more.
With the increasing integration of renewable energy sources (RESs) into power systems, batteries are playing a critical role in ensuring grid reliability and flexibility. Among them, vanadium redox flow batteries (VRFBs) have emerged as a promising solution for large-scale storage due to their long cycle life, scalability, and deep discharge capability. However, achieving optimal control and system-level integration of VRFBs requires accurate, real-time modeling and parameter estimation, challenging tasks given the multi-physics nature and time-varying dynamics of such systems. This paper presents a lightweight physics-informed neural network (PINN) framework tailored for VRFBs, which directly embeds the discrete-time state-space dynamics into the network architecture. The model simultaneously predicts terminal voltage and estimates five discrete-time physical parameters associated with RC dynamics and internal resistance, while avoiding hidden layers to enhance interpretability and computational efficiency. The resulting PINN model is integrated into a modulated model predictive control (MMPC) scheme for a dual-stage DC-AC converter interfacing the VRFB with low-voltage AC grids. Simulation and hardware-in-the-loop results demonstrate that adaptive tuning of the PINN-estimated parameters enables precise tracking of battery parameter variations, thereby improving the robustness and performance of the MMPC controller under varying operating conditions. Full article
Show Figures

Figure 1

23 pages, 3932 KiB  
Article
Design and Development of a New 10 kV Overhead Line Fixing Device in Power System
by Bohan Liu, Shuhan Tao, Lingxi Chen, Jiawen Li, Xingtong Zhong, Lanxin Bao, You Shu and Yi Liu
Processes 2025, 13(8), 2379; https://doi.org/10.3390/pr13082379 - 26 Jul 2025
Viewed by 200
Abstract
In response to the problems of wire detachment, insulation layer damage, and low construction efficiency in the traditional hand tied wire fixing method for 10 kV overhead lines, this paper develops a new type of 10 kV overhead line fixing device. The device [...] Read more.
In response to the problems of wire detachment, insulation layer damage, and low construction efficiency in the traditional hand tied wire fixing method for 10 kV overhead lines, this paper develops a new type of 10 kV overhead line fixing device. The device mainly consists of a buckle type base and an infinitely adjustable gripper. The base is quickly installed through mechanical interlocking buckles, supplemented by auxiliary buckles to enhance stability, and the edge arc design improves operational safety. The clamp is equipped with a raised diamond-shaped structure to increase the friction coefficient and meshing strength. Combined with an arc-shaped inner surface and an infinitely adjustable screw, it can adapt to insulated wires of different diameters. The fixed device has a simple structure, easy installation, and advantages such as firm fixation and adaptability to overhead lines of different diameters. The fixed device of the overhead power line has been subjected to finite element mechanical simulation and electronic universal testing machine tension and pressure testing, and can meet the on-site mechanical performance, effectively improving the construction efficiency and safety of the overhead power line in the distribution network. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 13424 KiB  
Article
A Comprehensive Analysis of Security Challenges in ZigBee 3.0 Networks
by Akbar Ghobakhlou, Duaa Zuhair Al-Hamid, Sara Zandi and James Cato
Sensors 2025, 25(15), 4606; https://doi.org/10.3390/s25154606 - 25 Jul 2025
Viewed by 191
Abstract
ZigBee, a wireless technology standard for the Internet of Things (IoT) devices based on IEEE 802.15.4, faces significant security challenges that threaten the confidentiality, integrity, and availability of its networks. Despite using 128-bit Advanced Encryption Standard (AES) with symmetric keys for node authentication [...] Read more.
ZigBee, a wireless technology standard for the Internet of Things (IoT) devices based on IEEE 802.15.4, faces significant security challenges that threaten the confidentiality, integrity, and availability of its networks. Despite using 128-bit Advanced Encryption Standard (AES) with symmetric keys for node authentication and data confidentiality, ZigBee’s design constraints, such as low cost and low power, have allowed security issues to persist. While ZigBee 3.0 introduces enhanced security features such as install codes and trust centre link key updates, there remains a lack of empirical research evaluating their effectiveness in real-world deployments. This research addresses the gap by conducting a comprehensive, hardware-based analysis of ZigBee 3.0 networks using XBee 3 radio modules and ZigBee-compatible devices. We investigate the following three core security issues: (a) the security of symmetric keys, focusing on vulnerabilities that could allow attackers to obtain these keys; (b) the impact of compromised symmetric keys on network confidentiality; and (c) susceptibility to Denial-of-Service (DoS) attacks due to insufficient protection mechanisms. Our experiments simulate realistic attack scenarios under both Centralised and Distributed Security Models to assess the protocol’s resilience. The findings reveal that while ZigBee 3.0 improves upon earlier versions, certain vulnerabilities remain exploitable. We also propose practical security controls and best practices to mitigate these attacks and enhance network security. This work contributes novel insights into the operational security of ZigBee 3.0, offering guidance for secure IoT deployments and advancing the understanding of protocol-level defences in constrained environments. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

28 pages, 2925 KiB  
Article
A Lightweight Neural Network Based on Memory and Transition Probability for Accurate Real-Time Sleep Stage Classification
by Dhanushka Wijesinghe and Ivan T. Lima
Brain Sci. 2025, 15(8), 789; https://doi.org/10.3390/brainsci15080789 - 25 Jul 2025
Viewed by 306
Abstract
Background/Objectives: This study shows a lightweight hybrid framework based on a feedforward neural network using a single frontopolar electroencephalography channel, which is a practical configuration for wearable systems combining memory and a sleep stage transition probability matrix. Methods: Motivated by autocorrelation [...] Read more.
Background/Objectives: This study shows a lightweight hybrid framework based on a feedforward neural network using a single frontopolar electroencephalography channel, which is a practical configuration for wearable systems combining memory and a sleep stage transition probability matrix. Methods: Motivated by autocorrelation analysis, revealing strong temporal dependencies across sleep stages, we incorporate prior epoch information as additional features. To capture temporal context without requiring long input sequences, we introduce a transition-aware feature derived from the softmax output of the previous epoch, weighted by a learned stage transition matrix. The model combines predictions from memory-based and no-memory networks using a confidence-driven fallback strategy. Results: The proposed model achieves up to 85.4% accuracy and 0.79 Cohen’s kappa, despite using only a single 30 s epoch per prediction. Compared to other models that use a single frontopolar channel, our method outperforms convolutional neural networks, recurrent neural networks, and decision tree approaches. Additionally, confidence-based rejection of low-certainty predictions enhances reliability, since most of the epochs with low confidence in the sleep stage classification contain transitions between sleep stages. Conclusions: These results demonstrate that the proposed method balances performance, interpretability, and computational efficiency, making it well-suited for real-time clinical and wearable sleep staging applications using battery-powered computing devices. Full article
Show Figures

Figure 1

32 pages, 5164 KiB  
Article
Decentralized Distributed Sequential Neural Networks Inference on Low-Power Microcontrollers in Wireless Sensor Networks: A Predictive Maintenance Case Study
by Yernazar Bolat, Iain Murray, Yifei Ren and Nasim Ferdosian
Sensors 2025, 25(15), 4595; https://doi.org/10.3390/s25154595 - 24 Jul 2025
Viewed by 335
Abstract
The growing adoption of IoT applications has led to increased use of low-power microcontroller units (MCUs) for energy-efficient, local data processing. However, deploying deep neural networks (DNNs) on these constrained devices is challenging due to limitations in memory, computational power, and energy. Traditional [...] Read more.
The growing adoption of IoT applications has led to increased use of low-power microcontroller units (MCUs) for energy-efficient, local data processing. However, deploying deep neural networks (DNNs) on these constrained devices is challenging due to limitations in memory, computational power, and energy. Traditional methods like cloud-based inference and model compression often incur bandwidth, privacy, and accuracy trade-offs. This paper introduces a novel Decentralized Distributed Sequential Neural Network (DDSNN) designed for low-power MCUs in Tiny Machine Learning (TinyML) applications. Unlike the existing methods that rely on centralized cluster-based approaches, DDSNN partitions a pre-trained LeNet across multiple MCUs, enabling fully decentralized inference in wireless sensor networks (WSNs). We validate DDSNN in a real-world predictive maintenance scenario, where vibration data from an industrial pump is analyzed in real-time. The experimental results demonstrate that DDSNN achieves 99.01% accuracy, explicitly maintaining the accuracy of the non-distributed baseline model and reducing inference latency by approximately 50%, highlighting its significant enhancement over traditional, non-distributed approaches, demonstrating its practical feasibility under realistic operating conditions. Full article
Show Figures

Figure 1

Back to TopTop