Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = low-energy bound state

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2924 KB  
Article
Energy–Exergy–Exergoeconomic Evaluation of a Two-Stage Ammonia Refrigeration Cycle Under Industrial Operating Conditions
by Ayşe Bilgen Aksoy and Yunus Çerçi
Appl. Sci. 2026, 16(3), 1163; https://doi.org/10.3390/app16031163 - 23 Jan 2026
Abstract
Improving the thermodynamic and economic performance of industrial refrigeration systems is essential for reducing energy consumption and enhancing cold chain sustainability. This study presents an integrated energy, exergy, and exergoeconomic assessment of a full-scale two-stage ammonia (R717) vapor compression refrigeration system operating under [...] Read more.
Improving the thermodynamic and economic performance of industrial refrigeration systems is essential for reducing energy consumption and enhancing cold chain sustainability. This study presents an integrated energy, exergy, and exergoeconomic assessment of a full-scale two-stage ammonia (R717) vapor compression refrigeration system operating under real industrial conditions in Türkiye. Experimental data from 33 measurement points were used to perform component-level thermodynamic balances under steady-state conditions. The results showed that the evaporative condenser exhibited the highest heat transfer rate (426.7 kW), while the overall First Law efficiency of the system was 63.71%. Exergy analysis revealed that heat exchangers are the dominant sources of irreversibility (>45%), followed by circulation pumps with a notably low Second Law efficiency of 11.56%. The exergoeconomic assessment identified the circulation pumps as the components with the highest loss-to-cost ratio (2.45 W/USD). An uncertainty analysis confirmed that the relative ranking of system components remained robust within the measurement uncertainty bounds. The findings indicate that, although the existing NH3 configuration provides adequate performance, significant improvements can be achieved by prioritizing pump optimization, maintaining higher compressor loading, and implementing advanced variable-speed fan control strategies. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

22 pages, 2932 KB  
Article
Theoretical Calculation of Caq+ (q = 0, 1, 2) Interacting with a Krypton Atom: Electronic Structure and Vibrational Spectra Association
by Wissem Zrafi, Mohamed Bejaoui, Hela Ladjimi, Jamila Dhiflaoui and Hamid Berriche
Atoms 2026, 14(1), 5; https://doi.org/10.3390/atoms14010005 - 12 Jan 2026
Viewed by 254
Abstract
The potential energy curves and spectroscopic constants of the ground and several low-lying excited states of the Caq+-Kr (q = 0, 1, 2) van der Waals complexes were investigated using one- and two-electron pseudopotential approaches. This treatment effectively reduces the number [...] Read more.
The potential energy curves and spectroscopic constants of the ground and several low-lying excited states of the Caq+-Kr (q = 0, 1, 2) van der Waals complexes were investigated using one- and two-electron pseudopotential approaches. This treatment effectively reduces the number of active electrons in Caq+-Kr to a single valence electron for q = 1 and two valence electrons for q = 0, allowing the use of large and flexible basis sets for both Ca and Kr atoms. Within this work, potential energy curves (PECs) were calculated at the SCF level for the Ca+-Kr system, while both SCF and full configuration interaction (FCI) calculations were performed for the neutral Ca-Kr. Spin–orbit coupling effects were explicitly included in all calculations to accurately describe the fine-structure splitting of the asymptotic atomic states. The short-range core–core interaction for Ca2+-Kr was obtained using high-level CCSD(T) calculations. Spectroscopic constants were derived from the computed PECs and compared with available theoretical and experimental results, showing consistent trends. Furthermore, the transition dipole moments (TDM) were evaluated as a function of internuclear distances, including spin–orbit effects, to provide a comprehensive description of the electronic structure and radiative properties of these weakly bound systems. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

16 pages, 2244 KB  
Article
Fine Structure Investigation and Laser Cooling Study of the CdBr Molecule
by Ali Mostafa, Israa Zeid, Nariman Abu El Kher, Nayla El-Kork and Mahmoud Korek
Int. J. Mol. Sci. 2026, 27(1), 184; https://doi.org/10.3390/ijms27010184 - 23 Dec 2025
Viewed by 316
Abstract
The ab initio calculations of the electronic structure of the low-lying electronic states of the CdBr molecule are characterized in the 2S+1Λ(+/−) and Ω(+/−) representations using the complete active-space self-consistent field (CASSCF) method, followed by the multireference configuration interaction (MRCI) [...] Read more.
The ab initio calculations of the electronic structure of the low-lying electronic states of the CdBr molecule are characterized in the 2S+1Λ(+/−) and Ω(+/−) representations using the complete active-space self-consistent field (CASSCF) method, followed by the multireference configuration interaction (MRCI) method with Davidson correction (+Q). The potential energy curves are investigated, and spectroscopic parameters (Te, Re, ωe, Be, αe, μe, and De) of the bound states are determined and analyzed. In addition, the rovibrational constants (Ev, Bv, Dv, Rmin, and Rmax) are reported for the investigated states with and without spin–orbit coupling. The electronic transition dipole moment curve (TDMC) is obtained for the C2Π1/2 − X2Σ+1/2 transition. Based on these data, Franck–Condon factors (FCFs), Einstein coefficient of spontaneous emission Aν’ν, radiative lifetime τ, vibrational branching ratios, and the associated slowing distance are evaluated. The results indicated that CdBr is a promising candidate for direct laser cooling, and a feasible cooling scheme employing four pumping and repumping lasers in the ultraviolet region with suitable experimentally accessible parameters is presented. These findings provide practical guidance for experimental spectroscopists exploring ultracold diatomic molecules and their applications. Full article
Show Figures

Figure 1

28 pages, 5859 KB  
Article
Adaptive Gain Twisting Sliding Mode Controller Design for Flexible Manipulator Joints with Variable Stiffness
by Shijie Zhang, Tianle Yang, Hui Zhang and Jilong Wang
Actuators 2026, 15(1), 7; https://doi.org/10.3390/act15010007 - 22 Dec 2025
Viewed by 320
Abstract
This paper proposes an adaptive gain twisting sliding-mode control (AGTSMC) strategy for trapezoidal variable-stiffness joints (TVSJs) to achieve accurate trajectory tracking under both matched and mismatched uncertainties. The TVSJ employs a compact trapezoidal leaf spring with grooved bearing followers (GBFs), enabling wide-range stiffness [...] Read more.
This paper proposes an adaptive gain twisting sliding-mode control (AGTSMC) strategy for trapezoidal variable-stiffness joints (TVSJs) to achieve accurate trajectory tracking under both matched and mismatched uncertainties. The TVSJ employs a compact trapezoidal leaf spring with grooved bearing followers (GBFs), enabling wide-range stiffness modulation through low-friction rolling contact. To address the strong nonlinearities and unmodeled dynamics introduced by stiffness variation, a Lyapunov-based adaptive twisting controller is developed, where the gains are automatically adjusted without conservative overestimation. A second-order sliding-mode differentiator is integrated to estimate velocity and disturbance terms in finite time using only position measurements, effectively reducing chattering. The proposed controller guarantees finite-time stability of the closed-loop system despite bounded uncertainties and measurement noise. Extensive simulations and hardware-in-the-loop experiments on a TVSJ platform validate the method. Compared with conventional sliding mode controller (CSMC), terminal sliding mode controller (TSMC), and fixed-gain twisting control (TC), the AGTSMC achieves faster convergence, lower steady-state error, and improved vibration suppression across low, high, and variable stiffness modes. Experimental results confirm that the proposed approach enhances tracking accuracy and energy efficiency while maintaining robustness under large stiffness variations. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

21 pages, 9487 KB  
Article
Low-Cost Real-Time Remote Sensing and Geolocation of Moving Targets via Monocular Bearing-Only Micro UAVs
by Peng Sun, Shiji Tong, Kaiyu Qin, Zhenbing Luo, Boxian Lin and Mengji Shi
Remote Sens. 2025, 17(23), 3836; https://doi.org/10.3390/rs17233836 - 27 Nov 2025
Viewed by 585
Abstract
Low-cost and real-time remote sensing of moving targets is increasingly required in civilian applications. Micro unmanned aerial vehicles (UAVs) provide a promising platform for such missions because of their small size and flexible deployment, but they are constrained by payload capacity and energy [...] Read more.
Low-cost and real-time remote sensing of moving targets is increasingly required in civilian applications. Micro unmanned aerial vehicles (UAVs) provide a promising platform for such missions because of their small size and flexible deployment, but they are constrained by payload capacity and energy budget. Consequently, they typically carry lightweight monocular cameras only. These cameras cannot directly measure distance and suffer from scale ambiguity, which makes accurate geolocation difficult. This paper tackles geolocation and short-term trajectory prediction of moving targets over uneven terrain using bearing-only measurements from a monocular camera. We present a two-stage estimation framework in which a pseudo-linear Kalman filter (PLKF) provides real-time state estimates, while a sliding-window nonlinear least-squares (NLS) back end refines them. Future target positions are obtained by extrapolating the estimated trajectory. To improve localization accuracy, we analyze the relationship between the UAV path and the Cramér–Rao lower bound (CRLB) using the Fisher Information Matrix (FIM) and derive an observability-enhanced trajectory planning method. Real-flight experiments validate the framework, showing that accurate geolocation can be achieved in real time using only low-cost monocular bearing measurements. Full article
Show Figures

Figure 1

18 pages, 2508 KB  
Article
Investigation of Dynamic Errors in Low-Power Current Transformers for Accurate Current Measurement in Power and Electromechanical Systems
by Krzysztof Tomczyk, Bartosz Rozegnał, Marek S. Kozień and Lucyna Szul
Energies 2025, 18(21), 5773; https://doi.org/10.3390/en18215773 - 1 Nov 2025
Viewed by 477
Abstract
This paper presents a comprehensive analysis of the dynamic properties of low-power current transformers (LPCTs) in the context of their application in both power systems and electromechanical systems. Momentary changes in external loads occurring in the mechanical parts of systems, affecting their correct [...] Read more.
This paper presents a comprehensive analysis of the dynamic properties of low-power current transformers (LPCTs) in the context of their application in both power systems and electromechanical systems. Momentary changes in external loads occurring in the mechanical parts of systems, affecting their correct operation, cause the appropriate monitoring and control systems, including LPCTs, to operate in transient states where dynamic errors are significant. The issues discussed in this article are therefore important from both an electrical and mechanical engineering perspective. The study focuses on the evaluation of dynamic errors using two complementary performance criteria: the mean squared error and the absolute dynamic error. An equivalent circuit model of the LPCT is formulated and employed to investigate its response under transient conditions representative of modern energy networks as well as electromechanical devices, including drives, converters, and rotating machines operating under variable loads. A key contribution of this work is the determination of the upper bounds of dynamic errors, which establish the ultimate accuracy constraints of LPCTs when subjected to rapid current variations. The obtained results provide quantitative evidence of the impact of dynamic properties on the reliability of current measurements, thereby reinforcing the importance of the proposed error evaluation framework. In this context, the study demonstrates that a rigorous assessment of dynamic errors is essential for improving the functional performance of LPCTs, particularly in applications where steady-state accuracy must be complemented by a reliable transient response. Full article
Show Figures

Figure 1

22 pages, 906 KB  
Article
Fractional-Order Backstepping Approach Based on the Mittag–Leffler Criterion for Controlling Non-Commensurate Fractional-Order Chaotic Systems Under Uncertainties and External Disturbances
by Abdelhamid Djari, Abdelaziz Aouiche, Riadh Djabri, Hanane Djellab, Mohamad A. Alawad and Yazeed Alkhrijah
Mathematics 2025, 13(19), 3096; https://doi.org/10.3390/math13193096 - 26 Sep 2025
Viewed by 509
Abstract
Chaotic systems appear in a wide range of natural and engineering contexts, making the design of reliable and flexible control strategies a crucial challenge. This work proposes a robust control scheme based on the Fractional-Order Backstepping Control (FOBC) method for the stabilization of [...] Read more.
Chaotic systems appear in a wide range of natural and engineering contexts, making the design of reliable and flexible control strategies a crucial challenge. This work proposes a robust control scheme based on the Fractional-Order Backstepping Control (FOBC) method for the stabilization of non-commensurate fractional-order chaotic systems subject to bounded uncertainties and external disturbances. The method is developed through a rigorous stability analysis grounded in the Mittag–Leffler function, enabling the step-by-step stabilization of each subsystem. By incorporating fractional-order derivatives into carefully selected Lyapunov candidate functions, the proposed controller ensures global system stability. The performance of the FOBC approach is validated on fractional-order versions of the Duffing–Holmes system and the Rayleigh oscillator, with the results compared against those of a fractional-order PID (FOPID) controller. Numerical evaluations demonstrate the superior performance of the proposed strategy: the error dynamics converge rapidly to zero, the system exhibits strong robustness by restoring state variables to equilibrium quickly after disturbances, and the method achieves low energy dissipation with a high error convergence speed. These quantitative indices confirm the efficiency of FOBC over existing methods. The integration of fractional-order dynamics within the backstepping framework offers a powerful, robust, and resilient approach to stabilizing complex chaotic systems in the presence of uncertainties and external perturbations. Full article
Show Figures

Figure 1

20 pages, 2201 KB  
Article
Performance and Emission Characteristics of n-Pentanol–Diesel Blends in a Single-Cylinder CI Engine
by Doohyun Kim, Jeonghyeon Yang and Jaesung Kwon
Energies 2025, 18(19), 5083; https://doi.org/10.3390/en18195083 - 24 Sep 2025
Viewed by 1084
Abstract
This work provides a systematic evaluation of the performance and regulated emissions of binary n-pentanol–diesel blends under steady-state conditions, thereby clarifying condition-dependent efficiency–emission trade-offs across multiple loads and speeds. A single-cylinder, air-cooled diesel engine was operated at two speeds (1700 and 2700 rpm) [...] Read more.
This work provides a systematic evaluation of the performance and regulated emissions of binary n-pentanol–diesel blends under steady-state conditions, thereby clarifying condition-dependent efficiency–emission trade-offs across multiple loads and speeds. A single-cylinder, air-cooled diesel engine was operated at two speeds (1700 and 2700 rpm) and four brake mean effective pressure (BMEP) levels (0.25–0.49 MPa) using commercial diesel (D100) and three n-pentanol–diesel blends at volume ratios of 10%, 30%, and 50% (designated D90P10, D70P30, and D50P50, respectively). Brake thermal efficiency (BTE), brake specific energy consumption (BSEC), and brake specific fuel consumption (BSFC) were measured alongside exhaust emissions of nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbon (HC), carbon dioxide (CO2), and smoke opacity. The results show that due to a lower cetane number, high latent heat of vaporization, and reduced heating value, n-pentanol blends incur efficiency and fuel consumption penalties at light to moderate loads. However, these disadvantages diminish or reverse at high loads and speeds: D50P50 surpasses D100 in BTE and matches or improves BSEC and BSFC at 2700 rpm and 0.49 MPa. Emission data reveal that the blend’s fuel-bound oxygen and enhanced mixing provide up to 16% NOx reduction; 35% and 45% reductions in CO and HC, respectively; and a 74% reduction in smoke opacity under demanding conditions, while CO2 per unit work output aligns with or falls below D100 at high load. These findings demonstrate that optimized n-pentanol–diesel blends can simultaneously improve efficiency and mitigate emissions, offering a practical pathway for low-carbon diesel engines. Full article
(This article belongs to the Special Issue Renewable Fuels for Internal Combustion Engines: 2nd Edition)
Show Figures

Figure 1

11 pages, 351 KB  
Article
Short–Range Hard–Sphere Potential and Coulomb Interaction: Deser–Trueman Formula for Rydberg States of Exotic Atomic Systems
by Gregory S. Adkins and Ulrich D. Jentschura
Atoms 2025, 13(9), 81; https://doi.org/10.3390/atoms13090081 - 11 Sep 2025
Cited by 2 | Viewed by 1047
Abstract
In exotic atomic systems with hadronic constituent particles, it is notoriously difficult to estimate the strong-interaction correction to energy levels. It is well known that, due to the strength of the nuclear interaction, the problem cannot be solved using Wigner–Brillouin perturbation theory alone. [...] Read more.
In exotic atomic systems with hadronic constituent particles, it is notoriously difficult to estimate the strong-interaction correction to energy levels. It is well known that, due to the strength of the nuclear interaction, the problem cannot be solved using Wigner–Brillouin perturbation theory alone. Recently, high-angular-momentum Rydberg states of exotic atomic systems with hadronic constituents have been identified as promising candidates in the search for new physics in the low-energy sector of the Standard Model. We thus derive a generalized Deser–Trueman formula for the induced energy shift for a general hydrogenic bound state with principal quantum number n and orbital angular momentum quantum number , and we find that the energy shift is given by the formula δE=2αn,β(ah/a0)2+1Eh/n3, where αn,0=1, αn,=s=1(s2n2), β=(2+1)/[(2+1)!!]2, Eh is the Hartree energy, ah is the hadronic radius and a0 is the generalized Bohr radius. The square of the double factorial, [(2+1)!!]2, in the denominator implies a drastic suppression of the effect for higher angular momenta. Full article
(This article belongs to the Section Nuclear Theory and Experiments)
Show Figures

Figure 1

44 pages, 4680 KB  
Review
Resistance of Nitric Oxide Dioxygenase and Cytochrome c Oxidase to Inhibition by Nitric Oxide and Other Indications of the Spintronic Control of Electron Transfer
by Paul R. Gardner
Biophysica 2025, 5(3), 41; https://doi.org/10.3390/biophysica5030041 - 9 Sep 2025
Cited by 1 | Viewed by 1674
Abstract
Heme enzymes that bind and reduce O2 are susceptible to poisoning by NO. The high reactivity and affinity of NO for ferrous heme produces stable ferrous-NO complexes, which in theory should preclude O2 binding and turnover. However, NO inhibition is often [...] Read more.
Heme enzymes that bind and reduce O2 are susceptible to poisoning by NO. The high reactivity and affinity of NO for ferrous heme produces stable ferrous-NO complexes, which in theory should preclude O2 binding and turnover. However, NO inhibition is often competitive with respect to O2 and rapidly reversible, thus providing cellular and organismal survival advantages. This kinetic paradox has prompted a search for mechanisms for reversal and hence resistance. Here, I critically review proposed resistance mechanisms for NO dioxygenase (NOD) and cytochrome c oxidase (CcO), which substantiate reduction or oxidation of the tightly bound NO but nevertheless fail to provide kinetically viable solutions. A ferrous heme intermediate is clearly not available during rapid steady-state turnover. Reversible inhibition can be attributed to NO competing with O2 in transient low-affinity interactions with either the ferric heme in NOD or the ferric heme-cupric center in CcO. Toward resolution, I review the underlying principles and evidence for kinetic control of ferric heme reduction via an O2-triggered ferric heme spin crossover and an electronically-forced motion of the heme and structurally-linked protein side chains that elicit electron transfer and activate O2 in the flavohemoglobin-type NOD. For CcO, kinetics, structures, and density functional theory point to the existence of an analogous O2 and reduced oxygen intermediate-controlled electron-transfer gate with a linked proton pump function. A catalytic cycle and mechanism for CcO is finally at hand that links each of the four O2-reducing electrons to each of the four pumped protons in time and space. A novel proton-conducting tunnel and channel, electron path, and pump mechanism, most notably first hypothesized by Mårten Wikström in 1977 and pursued since, are laid out for further scrutiny. In both models, low-energy spin-orbit couplings or ‘spintronic’ interactions with O2 and NO or copper trigger the electronic motions within heme that activate electron transfer to O2, and the exergonic reactions of transient reactive oxygen intermediates ultimately drive all enzyme, electron, and proton motions. Full article
(This article belongs to the Special Issue Investigations into Protein Structure)
Show Figures

Figure 1

12 pages, 457 KB  
Article
Negative Differential Conductance Induced by Majorana Bound States Side-Coupled to T-Shaped Double Quantum Dots
by Yu-Mei Gao, Yi-Fei Huang, Feng Chi, Zi-Chuan Yi and Li-Ming Liu
Nanomaterials 2025, 15(17), 1359; https://doi.org/10.3390/nano15171359 - 3 Sep 2025
Cited by 1 | Viewed by 874
Abstract
Electronic transport through T-shaped double quantum dots (TDQDs) connected to normal metallic leads is studied theoretically by using a nonequilibrium Green’s function method. It is assumed that the Coulomb interaction exists only in the central QD (QD-1) sandwiched between the leads, and it [...] Read more.
Electronic transport through T-shaped double quantum dots (TDQDs) connected to normal metallic leads is studied theoretically by using a nonequilibrium Green’s function method. It is assumed that the Coulomb interaction exists only in the central QD (QD-1) sandwiched between the leads, and it is absent in the other reference QD (QD-2) side-coupled to QD-1. We also consider the impacts of Majorana bound states (MBSs), which are prepared at the opposite ends of a topological superconductor nanowire (hereafter called a Majorana nanowire) connected to QD-2, on the electrical current and differential conductance. Our results show that by the combined effects of the Coulomb interaction in QD-1 and the MBSs, a negative differential conductance (NDC) effect emerges near the zero-bias point, where MBSs play significant roles. Now, the electrical current decreases despite the increasing bias voltage. The NDC is prone to occur under conditions of low temperature, and both of the two QDs’ energy levels are resonant to the leads’ zero Fermi energy. Its magnitude, which is characterized by a peak-to-valley ratio, can be enhanced up to 3 by increasing the interdot coupling strength, and it depends on the dot-MBS hybridization strength nonlinearly. This prominent NDC combined with the previously found zero-bias anomaly (ZBA) of the differential conductance is useful in designing novel quantum electric devices, and it may also serve as an effective detection means for the existence of MBSs, which is still a challenge in solid-state physics. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Figure 1

9 pages, 1664 KB  
Article
Quantized Nuclear Recoil in the Search for Sterile Neutrinos in Tritium Beta Decay with PTOLEMY
by Wonyong Chung, Mark Farino, Andi Tan, Christopher G. Tully and Shiran Zhang
Universe 2025, 11(9), 297; https://doi.org/10.3390/universe11090297 - 2 Sep 2025
Viewed by 926
Abstract
The search for keV-scale sterile neutrinos in tritium beta decay is made possible through the theoretically allowed small admixture of electron flavor in right-handed, singlet, massive neutrino states. A distinctive feature of keV-scale sterile-neutrino–induced threshold distortions in the tritium beta spectrum is the [...] Read more.
The search for keV-scale sterile neutrinos in tritium beta decay is made possible through the theoretically allowed small admixture of electron flavor in right-handed, singlet, massive neutrino states. A distinctive feature of keV-scale sterile-neutrino–induced threshold distortions in the tritium beta spectrum is the presence of quantized nuclear-recoil effects, as predicted for atomic tritium bound to two-dimension materials such as graphene. The sensitivities to the sterile neutrino mass and electron-flavor mixing are considered in the context of the PTOLEMY detector simulation with tritiated graphene substrates. The ability to scan the entire tritium energy spectrum with a narrow energy window, low backgrounds, and high-resolution differential energy measurements provides the opportunity to pinpoint the quantized nuclear-recoil effects. providing an additional tool for identifying the kinematics of the production of sterile neutrinos. Background suppression is achieved by transversely accelerating electrons into a high magnetic field, where semi-relativistic electron tagging can be performed with cyclotron resonance emission RF antennas followed by deceleration through the PTOLEMY filter into a high-resolution differential energy detector operating in a zero-magnetic-field region. The PTOLEMY-based approach to keV-scale searches for sterile neutrinos involves a novel precision apparatus utilizing two-dimensional materials to yield high-resolution, sub-eV mass determination for electron-flavor mixing fractions of |Ue4|2105 and smaller. Full article
Show Figures

Figure 1

21 pages, 3739 KB  
Article
Occurrence State and Extraction of Lithium from Jinyinshan Clay-Type Lithium Deposit, Southern Hubei: Novel Blank Roasting–Acid Leaching Processes
by Hao Zhang, Peng Li, Wensheng Zhang, Jiankang Li, Zhenyu Chen, Jin Yin, Yong Fang, Shuang Liu, Jian Kang and Dan Zhu
Appl. Sci. 2025, 15(16), 9100; https://doi.org/10.3390/app15169100 - 18 Aug 2025
Cited by 1 | Viewed by 1111
Abstract
Addressing the technological bottlenecks in the efficient utilization of clay-type Li deposits in China, this study systematically investigates Li occurrence states and develops clean extraction processes using the Jinyinshan clay-type Li deposit in southern Hubei as a case study. The research aims to [...] Read more.
Addressing the technological bottlenecks in the efficient utilization of clay-type Li deposits in China, this study systematically investigates Li occurrence states and develops clean extraction processes using the Jinyinshan clay-type Li deposit in southern Hubei as a case study. The research aims to provide technical guidance for subsequent geological exploration and development of such deposits. Analytical techniques, including AMICS, EPMA, and LA-ICP-MS, reveal that Li primarily occurs in structurally bound forms within cookeite (82.55% of total Li), illite (6.65%), and rectorite (5.20%), with mineral particle sizes concentrated in fine-grained fractions (<45 μm). Leveraging process mineralogical insights, two industrially adaptable blank roasting–acid leaching processes were innovatively developed. Process I employs a full flow of blank roasting–hydrochloric acid leaching–Li-Al separation–Ca/Mg removal–concentration for Li precipitation–three-stage counter-current washing. Optimizing roasting temperature (600 °C), hydrochloric acid concentration (18 wt%), and leaching parameters achieved a 92.37% Li leaching rate. Multi-step purification yielded lithium carbonate with >99% Li2CO3 purity and an overall Li recovery of 73.89%. Process II follows blank roasting–sulfuric acid leaching–Al removal via alum precipitation–Al/Fe removal–freeze crystallization for sodium sulfate removal–Ca/Mg removal–concentration for Li precipitation–three-stage counter-current washing. Parameter optimization and freezing impurity removal achieved an 89.11% Li leaching rate, producing lithium carbonate with >98.85% Li2CO3 content alongside by-products like crude sodium chloride and ammonium alum. Both processes enable resource utilization of Al-rich residues, with the hydrochloric acid-based method excelling in stability and the sulfuric acid-based approach offering superior by-product valorization potential. This low-energy, high-yield clean extraction system provides critical theoretical and technical foundations for scaling clay-type Li deposit utilization, advancing green Li extraction and industrial chain development. Full article
(This article belongs to the Special Issue Recent Advances in Geochemistry)
Show Figures

Figure 1

13 pages, 948 KB  
Article
Extended Photoionization Cross Section Calculations for C III
by V. Stancalie
Appl. Sci. 2025, 15(14), 8099; https://doi.org/10.3390/app15148099 - 21 Jul 2025
Viewed by 727
Abstract
Spectral features of photoionization of various levels of C III are reported. These include characteristics of Rydberg and Seaton resonances, low and high excited levels, lifetimes, and total and partial cross sections. Calculations are performed in the relativistic Breit–Pauli R-matrix method with close-coupling [...] Read more.
Spectral features of photoionization of various levels of C III are reported. These include characteristics of Rydberg and Seaton resonances, low and high excited levels, lifetimes, and total and partial cross sections. Calculations are performed in the relativistic Breit–Pauli R-matrix method with close-coupling approximation, including damping effects on the resonance structure associated with the core-excited states produced by the electron excitation of C IV and photoionization of C III. For bound channel contribution, the close-coupling wavefunction expansion for photoionization includes ground and 14 excited states of the target ion CIV and 105 states configurations of C III. Extensive sets of atomic data for bound fine-structure levels, resulting in 762 dipole-allowed transitions, radiative probabilities, and photoionization cross sections out of Jπ = 0± − 4± fine-structure levels are obtained. The ground-level photoionization cross section smoothly decreases with increasing energy, showing a very narrow, strong Rydberg resonance converging to the CIV 1s22p threshold. The work shows that prominent Seaton resonances for 2sns states with n ≥ 5, caused by photoexcitation of the core electron below the 2p threshold, visibly contribute to photoabsorption from excited states of C III. The present results provide highly accurate parameters of various model applications in plasma spectroscopy. Full article
Show Figures

Figure 1

27 pages, 1056 KB  
Article
Quantum Mechanical Numerical Model for Interaction of Dark Atom with Atomic Nucleus of Matter
by Timur Bikbaev, Maxim Khlopov and Andrey Mayorov
Physics 2025, 7(1), 8; https://doi.org/10.3390/physics7010008 - 7 Mar 2025
Viewed by 1781
Abstract
Within the framework of the XHe hypothesis, the positive results of the DAMA/NaI and DAMA/LIBRA experiments on the direct search for dark matter particles can be explained by the annual modulation of the radiative capture of dark atoms into low-energy bound states with [...] Read more.
Within the framework of the XHe hypothesis, the positive results of the DAMA/NaI and DAMA/LIBRA experiments on the direct search for dark matter particles can be explained by the annual modulation of the radiative capture of dark atoms into low-energy bound states with sodium nuclei. Since this effect is not observed in other underground WIMP (weakly interacting massive particle) search experiments, it is necessary to explain these results by investigating the possibility of the existence of low-energy bound states between dark atoms and the nuclei of matter. Numerical modeling is used to solve this problem, since the study of the XHe–nucleus system is a three-body problem and leaves no possibility of an analytical solution. To understand the key properties and patterns underlying the interaction of dark atoms with the nuclei of baryonic matter, we develop the quantum mechanical description of such an interaction. In the numerical quantum mechanical model presented, takes into account the effects of quantum physics, self-consistent electromagnetic interaction, and nuclear attraction. This approach allows us to obtain a numerical model of the interaction between the dark atom and the nucleus of matter and interpret the results of direct experiments on the underground search for dark matter, within the framework of the dark atom hypothesis. Thus, in this paper, for the first time, steps are taken towards a consistent quantum mechanical description of the interaction of dark atoms, with unshielded nuclear attraction, with the nuclei of atoms of matter. The total effective interaction potential of the OHe–Na system has therefore been restored, the shape of which allows for the preservation of the integrity and stability of the dark atom, which is an essential requirement for confirming the validity of the OHe hypothesis. Full article
(This article belongs to the Special Issue Beyond the Standard Models of Physics and Cosmology: 2nd Edition)
Show Figures

Figure 1

Back to TopTop