Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (883)

Search Parameters:
Keywords = low-cost environmental sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 651 KiB  
Article
Enhancing IoT Connectivity in Suburban and Rural Terrains Through Optimized Propagation Models Using Convolutional Neural Networks
by George Papastergiou, Apostolos Xenakis, Costas Chaikalis, Dimitrios Kosmanos and Menelaos Panagiotis Papastergiou
IoT 2025, 6(3), 41; https://doi.org/10.3390/iot6030041 (registering DOI) - 31 Jul 2025
Abstract
The widespread adoption of the Internet of Things (IoT) has driven major advancements in wireless communication, especially in rural and suburban areas where low population density and limited infrastructure pose significant challenges. Accurate Path Loss (PL) prediction is critical for the effective deployment [...] Read more.
The widespread adoption of the Internet of Things (IoT) has driven major advancements in wireless communication, especially in rural and suburban areas where low population density and limited infrastructure pose significant challenges. Accurate Path Loss (PL) prediction is critical for the effective deployment and operation of Wireless Sensor Networks (WSNs) in such environments. This study explores the use of Convolutional Neural Networks (CNNs) for PL modeling, utilizing a comprehensive dataset collected in a smart campus setting that captures the influence of terrain and environmental variations. Several CNN architectures were evaluated based on different combinations of input features—such as distance, elevation, clutter height, and altitude—to assess their predictive accuracy. The findings reveal that CNN-based models outperform traditional propagation models (Free Space Path Loss (FSPL), Okumura–Hata, COST 231, Log-Distance), achieving lower error rates and more precise PL estimations. The best performing CNN configuration, using only distance and elevation, highlights the value of terrain-aware modeling. These results underscore the potential of deep learning techniques to enhance IoT connectivity in sparsely connected regions and support the development of more resilient communication infrastructures. Full article
Show Figures

Figure 1

9 pages, 1717 KiB  
Article
New Imaging Method of Mobile Phone-Based Colorimetric Sensor for Iron Quantification
by Ngan Anh Nguyen, Asher Hendricks, Emily Montoya, Amber Mayers, Diwitha Rajmohan, Aoife Morrin, Margaret McCaul, Nicholas Dunne, Noel O’Connor, Andreas Spanias, Gregory Raupp and Erica Forzani
Sensors 2025, 25(15), 4693; https://doi.org/10.3390/s25154693 (registering DOI) - 29 Jul 2025
Viewed by 127
Abstract
Blood iron levels are related to many health conditions, affecting hundreds of millions of individuals worldwide. To aid in the prevention and treatment of iron-related disorders, previous research has developed a low-cost, accurate, point-of-care method for measuring iron from a single finger-prick blood [...] Read more.
Blood iron levels are related to many health conditions, affecting hundreds of millions of individuals worldwide. To aid in the prevention and treatment of iron-related disorders, previous research has developed a low-cost, accurate, point-of-care method for measuring iron from a single finger-prick blood sample. This study builds upon that work by introducing an improved imaging method that accurately reads sensor images irrespective of variations in environmental illumination and camera quality. Smartphone cameras were used as analytical tools, demonstrating an average coefficient of variation of 5.13% across different phone models, and absorbance results were found to be improved by 8.80% compared to the method in a previous study. The proposed method successfully enhances iron detection accuracy under diverse lighting conditions, paving the way for smartphone-based sensing of other colorimetric reactions involving various analytes. Full article
(This article belongs to the Special Issue Colorimetric Sensors: Methods and Applications (2nd Edition))
Show Figures

Figure 1

22 pages, 6452 KiB  
Article
A Blockchain and IoT-Enabled Framework for Ethical and Secure Coffee Supply Chains
by John Byrd, Kritagya Upadhyay, Samir Poudel, Himanshu Sharma and Yi Gu
Future Internet 2025, 17(8), 334; https://doi.org/10.3390/fi17080334 - 27 Jul 2025
Viewed by 330
Abstract
The global coffee supply chain is a complex multi-stakeholder ecosystem plagued by fragmented records, unverifiable origin claims, and limited real-time visibility. These limitations pose risks to ethical sourcing, product quality, and consumer trust. To address these issues, this paper proposes a blockchain and [...] Read more.
The global coffee supply chain is a complex multi-stakeholder ecosystem plagued by fragmented records, unverifiable origin claims, and limited real-time visibility. These limitations pose risks to ethical sourcing, product quality, and consumer trust. To address these issues, this paper proposes a blockchain and IoT-enabled framework for secure and transparent coffee supply chain management. The system integrates simulated IoT sensor data such as Radio-Frequency Identification (RFID) identity tags, Global Positioning System (GPS) logs, weight measurements, environmental readings, and mobile validations with Ethereum smart contracts to establish traceability and automate supply chain logic. A Solidity-based Ethereum smart contract is developed and deployed on the Sepolia testnet to register users and log batches and to handle ownership transfers. The Internet of Things (IoT) data stream is simulated using structured datasets to mimic real-world device behavior, ensuring that the system is tested under realistic conditions. Our performance evaluation on 1000 transactions shows that the model incurs low transaction costs and demonstrates predictable efficiency behavior of the smart contract in decentralized conditions. Over 95% of the 1000 simulated transactions incurred a gas fee of less than ETH 0.001. The proposed architecture is also scalable and modular, providing a foundation for future deployment with live IoT integrations and off-chain data storage. Overall, the results highlight the system’s ability to improve transparency and auditability, automate enforcement, and enhance consumer confidence in the origin and handling of coffee products. Full article
Show Figures

Figure 1

17 pages, 2625 KiB  
Article
Monitoring and Diagnostics of Non-Thermal Plasmas in the Food Sector Using Optical Emission Spectroscopy
by Sanda Pleslić and Franko Katalenić
Appl. Sci. 2025, 15(15), 8325; https://doi.org/10.3390/app15158325 - 26 Jul 2025
Viewed by 90
Abstract
Non-thermal plasma technology is used in the food sector due to its many advantages such as low operating costs, fast and efficient processing at low temperatures, minimal environmental impact, and preservation of sensory and nutritional properties. In this article, the plasma was generated [...] Read more.
Non-thermal plasma technology is used in the food sector due to its many advantages such as low operating costs, fast and efficient processing at low temperatures, minimal environmental impact, and preservation of sensory and nutritional properties. In this article, the plasma was generated using a high-voltage electrical discharge (HVED) with argon at a voltage of 35 kV and a frequency of 60 Hz. Plasma monitoring and diagnostics were performed using optical emission spectroscopy (OES) to optimise the process parameters and for quality control. OES was used as a non-invasive sensor to collect useful information about the properties of the plasma and to identify excited species. The values obtained for electron temperature and electron density (up to 2.3 eV and up to 1023 m3) confirmed that the generated plasma is a non-thermal plasma. Therefore, the use of OES is recommended in the daily control of food processing, as this is necessary to confirm that the processes are non-thermal and suitable for the food sector. Full article
(This article belongs to the Special Issue Innovative Technology in Food Analysis and Processing)
Show Figures

Figure 1

21 pages, 4341 KiB  
Article
Structural Monitoring Without a Budget—Laboratory Results and Field Report on the Use of Low-Cost Acceleration Sensors
by Sven Giermann, Thomas Willemsen and Jörg Blankenbach
Sensors 2025, 25(15), 4543; https://doi.org/10.3390/s25154543 - 22 Jul 2025
Viewed by 261
Abstract
Authorities responsible for critical infrastructure, particularly bridges, face significant challenges. Many bridges, constructed in the 1960s and 1970s, are now approaching or have surpassed their intended service life. A report from the German Federal Ministry for Digital and Transport (BMVI) indicates that about [...] Read more.
Authorities responsible for critical infrastructure, particularly bridges, face significant challenges. Many bridges, constructed in the 1960s and 1970s, are now approaching or have surpassed their intended service life. A report from the German Federal Ministry for Digital and Transport (BMVI) indicates that about 12% of the 40,000 federal trunk road bridges in Germany are in “inadequate or unsatisfactory” condition. Similar issues are observed in other countries worldwide. Economic constraints prevent ad hoc replacements, necessitating continued operation with frequent and costly inspections. This situation creates an urgent need for cost-effective, permanent monitoring solutions. This study explores the potential use of low-cost acceleration sensors for monitoring infrastructure structures. Inclination is calculated from the acceleration data of the sensor, using gravitational acceleration as a reference point. Long-term changes in inclination may indicate a change in the geometry of the structure, thereby triggering alarm thresholds. It is particularly important to consider specific challenges associated with low measurement accuracy and the susceptibility of sensors to environmental influences in a low-cost setting. The results of laboratory tests allow for an estimation of measurement accuracy and an analysis of the various error characteristics of the sensors. The article outlines the methodology for developing low-cost inclination sensor systems, the laboratory tests conducted, and the evaluation of different measures to enhance sensor accuracy. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

25 pages, 8560 KiB  
Article
Visual Point Cloud Map Construction and Matching Localization for Autonomous Vehicle
by Shuchen Xu, Kedong Zhao, Yongrong Sun, Xiyu Fu and Kang Luo
Drones 2025, 9(7), 511; https://doi.org/10.3390/drones9070511 - 21 Jul 2025
Viewed by 294
Abstract
Collaboration between autonomous vehicles and drones can enhance the efficiency and connectivity of three-dimensional transportation systems. When satellite signals are unavailable, vehicles can achieve accurate localization by matching rich ground environmental data to digital maps, simultaneously providing the auxiliary localization information for drones. [...] Read more.
Collaboration between autonomous vehicles and drones can enhance the efficiency and connectivity of three-dimensional transportation systems. When satellite signals are unavailable, vehicles can achieve accurate localization by matching rich ground environmental data to digital maps, simultaneously providing the auxiliary localization information for drones. However, conventional digital maps suffer from high construction costs, easy misalignment, and low localization accuracy. Thus, this paper proposes a visual point cloud map (VPCM) construction and matching localization for autonomous vehicles. We fuse multi-source information from vehicle-mounted sensors and the regional road network to establish the geographically high-precision VPCM. In the absence of satellite signals, we segment the prior VPCM on the road network based on real-time localization results, which accelerates matching speed and reduces mismatch probability. Simultaneously, by continuously introducing matching constraints of real-time point cloud and prior VPCM through improved iterative closest point matching method, the proposed solution can effectively suppress the drift error of the odometry and output accurate fusion localization results based on pose graph optimization theory. The experiments carried out on the KITTI datasets demonstrate the effectiveness of the proposed method, which can autonomously construct the high-precision prior VPCM. The localization strategy achieves sub-meter accuracy and reduces the average error per frame by 25.84% compared to similar methods. Subsequently, this method’s reusability and localization robustness under light condition changes and environment changes are verified using the campus dataset. Compared to the similar camera-based method, the matching success rate increased by 21.15%, and the average localization error decreased by 62.39%. Full article
Show Figures

Figure 1

24 pages, 73556 KiB  
Article
Neural Network-Guided Smart Trap for Selective Monitoring of Nocturnal Pest Insects in Agriculture
by Joel Hinojosa-Dávalos, Miguel Ángel Robles-García, Melesio Gutiérrez-Lomelí, Ariadna Berenice Flores Jiménez and Cuauhtémoc Acosta Lúa
Agriculture 2025, 15(14), 1562; https://doi.org/10.3390/agriculture15141562 - 21 Jul 2025
Viewed by 270
Abstract
Insect pests remain a major threat to agricultural productivity, particularly in open-field cropping systems where conventional monitoring methods are labor-intensive and lack scalability. This study presents the design, implementation, and field evaluation of a neural network-guided smart trap specifically developed to monitor and [...] Read more.
Insect pests remain a major threat to agricultural productivity, particularly in open-field cropping systems where conventional monitoring methods are labor-intensive and lack scalability. This study presents the design, implementation, and field evaluation of a neural network-guided smart trap specifically developed to monitor and selectively capture nocturnal insect pests under real agricultural conditions. The proposed trap integrates light and rain sensors, servo-controlled mechanical gates, and a single-layer perceptron neural network deployed on an ATmega-2560 microcontroller by Microchip Technology Inc. (Chandler, AZ, USA). The perceptron processes normalized sensor inputs to autonomously decide, in real time, whether to open or close the gate, thereby enhancing the selectivity of insect capture. The system features a removable tray containing a food-based attractant and yellow and green LEDs designed to lure target species such as moths and flies from the orders Lepidoptera and Diptera. Field trials were conducted between June and August 2023 in La Barca, Jalisco, Mexico, under diverse environmental conditions. Captured insects were analyzed and classified using the iNaturalist platform, with the successful identification of key pest species including Tetanolita floridiana, Synchlora spp., Estigmene acrea, Sphingomorpha chlorea, Gymnoscelis rufifasciata, and Musca domestica, while minimizing the capture of non-target organisms such as Carpophilus spp., Hexagenia limbata, and Chrysoperla spp. Statistical analysis using the Kruskal–Wallis test confirmed significant differences in capture rates across environmental conditions. The results highlight the potential of this low-cost device to improve pest monitoring accuracy, and lay the groundwork for the future integration of more advanced AI-based classification and species recognition systems targeting nocturnal Lepidoptera and other pest insects. Full article
(This article belongs to the Special Issue Design and Development of Smart Crop Protection Equipment)
Show Figures

Figure 1

31 pages, 4435 KiB  
Article
A Low-Cost IoT Sensor and Preliminary Machine-Learning Feasibility Study for Monitoring In-Cabin Air Quality: A Pilot Case from Almaty
by Nurdaulet Tasmurzayev, Bibars Amangeldy, Gaukhar Smagulova, Zhanel Baigarayeva and Aigerim Imash
Sensors 2025, 25(14), 4521; https://doi.org/10.3390/s25144521 - 21 Jul 2025
Viewed by 408
Abstract
The air quality within urban public transport is a critical determinant of passenger health. In the crowded and poorly ventilated cabins of Almaty’s metro, buses, and trolleybuses, concentrations of CO2 and PM2.5 often accumulate, elevating the risk of respiratory and cardiovascular [...] Read more.
The air quality within urban public transport is a critical determinant of passenger health. In the crowded and poorly ventilated cabins of Almaty’s metro, buses, and trolleybuses, concentrations of CO2 and PM2.5 often accumulate, elevating the risk of respiratory and cardiovascular diseases. This study investigates the air quality along three of the city’s busiest transport corridors, analyzing how the concentrations of CO2, PM2.5, and PM10, as well as the temperature and relative humidity, fluctuate with the passenger density and time of day. Continuous measurements were collected using the Tynys mobile IoT device, which was bench-calibrated against a commercial reference sensor. Several machine learning models (logistic regression, decision tree, XGBoost, and random forest) were trained on synchronized environmental and occupancy data, with the XGBoost model achieving the highest predictive accuracy at 91.25%. Our analysis confirms that passenger occupancy is the primary driver of in-cabin pollution and that these machine learning models effectively capture the nonlinear relationships among environmental variables. Since the surveyed routes serve Almaty’s most densely populated districts, improving the ventilation on these lines is of immediate importance to public health. Furthermore, the high-temporal-resolution data revealed short-term pollution spikes that correspond with peak ridership, advancing the current understanding of exposure risks in transit. These findings highlight the urgent need to combine real-time monitoring with ventilation upgrades. They also demonstrate the practical value of using low-cost IoT technologies and data-driven analytics to safeguard public health in urban mobility systems. Full article
(This article belongs to the Special Issue IoT-Based Sensing Systems for Urban Air Quality Forecasting)
Show Figures

Figure 1

17 pages, 3477 KiB  
Article
Development of Polydopamine–Chitosan-Modified Electrochemical Immunosensor for Sensitive Detection of 7,12-Dimethylbenzo[a]anthracene in Seawater
by Huili Hao, Chengjun Qiu, Wei Qu, Yuan Zhuang, Zizi Zhao, Haozheng Liu, Wenhao Wang, Jiahua Su and Wei Tao
Chemosensors 2025, 13(7), 263; https://doi.org/10.3390/chemosensors13070263 - 20 Jul 2025
Viewed by 276
Abstract
7,12-Dimethylbenzo[a]anthracene (DMBA-7,12), a highly toxic and environmentally persistent polycyclic aromatic hydrocarbon (PAH), poses significant threats to marine biodiversity and human health due to its bioaccumulation through the food chain. Conventional chromatographic methods, while achieving comparable detection limits, are hindered by the need for [...] Read more.
7,12-Dimethylbenzo[a]anthracene (DMBA-7,12), a highly toxic and environmentally persistent polycyclic aromatic hydrocarbon (PAH), poses significant threats to marine biodiversity and human health due to its bioaccumulation through the food chain. Conventional chromatographic methods, while achieving comparable detection limits, are hindered by the need for expensive instrumentation and prolonged analysis times, rendering them unsuitable for rapid on-site monitoring of DMBA-7,12 in marine environments. Therefore, the development of novel, efficient detection techniques is imperative. In this study, we have successfully developed an electrochemical immunosensor based on a polydopamine (PDA)–chitosan (CTs) composite interface to overcome existing technical limitations. PDA provides a robust scaffold for antibody immobilization due to its strong adhesive properties, while CTs enhances signal amplification and biocompatibility. The synergistic integration of these materials combines the high efficiency of electrochemical detection with the specificity of antigen–antibody recognition, enabling precise qualitative and quantitative analysis of the target analyte through monitoring changes in the electrochemical properties at the electrode surface. By systematically optimizing key experimental parameters, including buffer pH, probe concentration, and antibody loading, we have constructed the first electrochemical immunosensor for detecting DMBA-7,12 in seawater. The sensor achieved a detection limit as low as 0.42 ng/mL. In spiked seawater samples, the recovery rates ranged from 95.53% to 99.44%, with relative standard deviations (RSDs) ≤ 4.6%, demonstrating excellent accuracy and reliability. This innovative approach offers a cost-effective and efficient solution for the in situ rapid monitoring of trace carcinogens in marine environments, potentially advancing the field of marine pollutant detection technologies. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Graphical abstract

15 pages, 924 KiB  
Article
Excessive Smoke from a Neighborhood Restaurant Highlights Gaps in Air Pollution Enforcement: Citizen Science Observational Study
by Nicholas C. Newman, Deborah Conradi, Alexander C. Mayer, Cole Simons, Ravi Newman and Erin N. Haynes
Air 2025, 3(3), 20; https://doi.org/10.3390/air3030020 - 18 Jul 2025
Viewed by 355
Abstract
Regulatory air pollution monitoring is performed using a sparse monitoring network designed to provide background concentrations of pollutants but may miss small area variations due to local emission sources. Low-cost air pollution sensors operated by trained citizen scientists provide an opportunity to fill [...] Read more.
Regulatory air pollution monitoring is performed using a sparse monitoring network designed to provide background concentrations of pollutants but may miss small area variations due to local emission sources. Low-cost air pollution sensors operated by trained citizen scientists provide an opportunity to fill this gap. We describe the development and implementation of an air pollution monitoring and community engagement plan in response to resident concerns regarding excessive smoke production from a neighborhood restaurant. Particulate matter (PM2.5) was measured using a low-cost, portable sensor. When cooking was taking place, the highest PM2.5 readings were within 50 m of the source (mean PM2.5 36.9 µg/m3) versus greater than 50 m away (mean PM2.5 13.0 µg/m3). Sharing results with local government officials did not result in any action to address the source of the smoke emissions, due to lack of jurisdiction. A review of air pollution regulations across the United States indicated that only seven states regulate food cookers and six states specifically exempted cookers from air pollution regulations. Concerns about the smoke were communicated with the restaurant owner who eventually changed the cooking fuel. Following this change, less smoke was observed from the restaurant and PM2.5 measurements were reduced to background levels. Although current environmental health regulations may not protect residents living near sources of food cooker-based sources of PM2.5, community engagement shows promise in addressing these emissions. Full article
Show Figures

Figure 1

23 pages, 3620 KiB  
Article
Temperature Prediction at Street Scale During a Heat Wave Using Random Forest
by Panagiotis Gkirmpas, George Tsegas, Denise Boehnke, Christos Vlachokostas and Nicolas Moussiopoulos
Atmosphere 2025, 16(7), 877; https://doi.org/10.3390/atmos16070877 - 17 Jul 2025
Viewed by 313
Abstract
The rising frequency of heatwaves, combined with the urban heat island effect, increases the population’s exposure to high temperatures, significantly impacting the health of vulnerable groups and the overall well-being of residents. While mesoscale meteorological models can reliably forecast temperatures across urban neighbourhoods, [...] Read more.
The rising frequency of heatwaves, combined with the urban heat island effect, increases the population’s exposure to high temperatures, significantly impacting the health of vulnerable groups and the overall well-being of residents. While mesoscale meteorological models can reliably forecast temperatures across urban neighbourhoods, dense networks of in situ measurements offer more precise data at the street scale. In this work, the Random Forest technique was used to predict street-scale temperatures in the downtown area of Thessaloniki, Greece, during a prolonged heatwave in July 2021. The model was trained using data from a low-cost sensor network, meteorological fields calculated by the mesoscale model MEMO, and micro-environmental spatial features. The results show that, although the MEMO temperature predictions achieve high accuracy during nighttime compared to measurements, they exhibit inconsistent trends across sensor locations during daytime, indicating that the model does not fully account for microclimatic phenomena. Additionally, by using only the observed temperature as the target of the Random Forest model, higher accuracy is achieved, but spatial features are not represented in the predictions. In contrast, the most reliable approach to incorporating spatial characteristics is to use the difference between observed and mesoscale temperatures as the target variable. Full article
(This article belongs to the Special Issue Urban Heat Islands, Global Warming and Effects)
Show Figures

Figure 1

23 pages, 6991 KiB  
Article
Comparing the Accuracy of Soil Moisture Estimates Derived from Bulk and Energy-Resolved Gamma Radiation Measurements
by Sonia Akter, Johan Alexander Huisman and Heye Reemt Bogena
Sensors 2025, 25(14), 4453; https://doi.org/10.3390/s25144453 - 17 Jul 2025
Viewed by 258
Abstract
Monitoring soil moisture (SM) using permanently installed gamma radiation (GR) detectors is a promising non-invasive method based on the inverse relationship between SM and soil-emitted GR. In a previous study, we successfully estimated SM from environmental gamma radiation (EGR) measured by a low-cost [...] Read more.
Monitoring soil moisture (SM) using permanently installed gamma radiation (GR) detectors is a promising non-invasive method based on the inverse relationship between SM and soil-emitted GR. In a previous study, we successfully estimated SM from environmental gamma radiation (EGR) measured by a low-cost counter-tube detector. Since this detector type provides a bulk GR response across a wide energy range, EGR signals are influenced by several confounding factors, e.g., soil radon emanation, biomass. To what extent these confounding factors deteriorate the accuracy of SM estimates obtained from EGR is not fully understood. Therefore, the aim of this study was to compare the accuracy of SM estimates from EGR with those from reference 40K GR (1460 keV) measurements which are much less influenced by these factors. For this, a Geiger–Mueller counter (G–M), which is commonly used for EGR monitoring, and a gamma spectrometer were installed side by side in an agricultural field equipped with in situ sensors to measure reference SM and a meteorological station. The EGRG–M and spectrometry-based 40K measurements were related to reference SM using a functional relationship derived from theory. We found that daily SM can be predicted with an RMSE of 3.39 vol. % from 40K using the theoretical value of α = 1.11 obtained from the effective ratio of GR mass attenuation coefficients for the water and solid phase. A lower accuracy was achieved for the EGRG–M measurements (RMSE = 6.90 vol. %). Wavelet coherence analysis revealed that the EGRG–M measurements were influenced by radon-induced noise in winter. Additionally, biomass shielding had a stronger impact on EGRG–M than on 40K GR estimates of SM during summer. In summary, our study provides a better understanding on the lower prediction accuracy of EGRG–M and suggests that correcting for biomass can improve SM estimation from the bulk EGR data of operational radioactivity monitoring networks. Full article
(This article belongs to the Special Issue Sensors in Smart Irrigation Systems)
Show Figures

Figure 1

29 pages, 8416 KiB  
Article
WSN-Based Multi-Sensor System for Structural Health Monitoring
by Fatih Dagsever, Zahra Sharif Khodaei and M. H. Ferri Aliabadi
Sensors 2025, 25(14), 4407; https://doi.org/10.3390/s25144407 - 15 Jul 2025
Viewed by 813
Abstract
Structural Health Monitoring (SHM) is an essential technique for continuously assessing structural conditions using integrated sensor systems during operation. SHM technologies have evolved to address the increasing demand for efficient maintenance strategies in advanced engineering fields, such as civil infrastructure, aerospace, and transportation. [...] Read more.
Structural Health Monitoring (SHM) is an essential technique for continuously assessing structural conditions using integrated sensor systems during operation. SHM technologies have evolved to address the increasing demand for efficient maintenance strategies in advanced engineering fields, such as civil infrastructure, aerospace, and transportation. However, developing a miniaturized, cost-effective, and multi-sensor solution based on Wireless Sensor Networks (WSNs) remains a significant challenge, particularly for SHM applications in weight-sensitive aerospace structures. To address this, the present study introduces a novel WSN-based Multi-Sensor System (MSS) that integrates multiple sensing capabilities onto a 3 × 3 cm flexible Printed Circuit Board (PCB). The proposed system combines a Piezoelectric Transducer (PZT) for impact detection; a strain gauge for mechanical deformation monitoring; an accelerometer for capturing dynamic responses; and an environmental sensor measuring temperature, pressure, and humidity. This high level of functional integration, combined with real-time Data Acquisition (DAQ) and precise time synchronization via Bluetooth Low Energy (LE), distinguishes the proposed MSS from conventional SHM systems, which are typically constrained by bulky hardware, single sensing modalities, or dependence on wired communication. Experimental evaluations on composite panels and aluminum specimens demonstrate reliable high-fidelity recording of PZT signals, strain variations, and acceleration responses, matching the performance of commercial instruments. The proposed system offers a low-power, lightweight, and scalable platform, demonstrating strong potential for on-board SHM in aircraft applications. Full article
Show Figures

Figure 1

38 pages, 5046 KiB  
Review
Photonics on a Budget: Low-Cost Polymer Sensors for a Smarter World
by Muhammad A. Butt
Micromachines 2025, 16(7), 813; https://doi.org/10.3390/mi16070813 - 15 Jul 2025
Viewed by 493
Abstract
Polymer-based photonic sensors are emerging as cost-effective, scalable alternatives to conventional silicon and glass photonic platforms, offering unique advantages in flexibility, functionality, and manufacturability. This review provides a comprehensive assessment of recent advances in polymer photonic sensing technologies, focusing on material systems, fabrication [...] Read more.
Polymer-based photonic sensors are emerging as cost-effective, scalable alternatives to conventional silicon and glass photonic platforms, offering unique advantages in flexibility, functionality, and manufacturability. This review provides a comprehensive assessment of recent advances in polymer photonic sensing technologies, focusing on material systems, fabrication techniques, device architectures, and application domains. Key polymer materials, including PMMA, SU-8, polyimides, COC, and PDMS, are evaluated for their optical properties, processability, and suitability for integration into sensing platforms. High-throughput fabrication methods such as nanoimprint lithography, soft lithography, roll-to-roll processing, and additive manufacturing are examined for their role in enabling large-area, low-cost device production. Various photonic structures, including planar waveguides, Bragg gratings, photonic crystal slabs, microresonators, and interferometric configurations, are discussed concerning their sensing mechanisms and performance metrics. Practical applications are highlighted in environmental monitoring, biomedical diagnostics, and structural health monitoring. Challenges such as environmental stability, integration with electronic systems, and reproducibility in mass production are critically analyzed. This review also explores future opportunities in hybrid material systems, printable photonics, and wearable sensor arrays. Collectively, these developments position polymer photonic sensors as promising platforms for widespread deployment in smart, connected sensing environments. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

29 pages, 7197 KiB  
Review
Recent Advances in Electrospun Nanofiber-Based Self-Powered Triboelectric Sensors for Contact and Non-Contact Sensing
by Jinyue Tian, Jiaxun Zhang, Yujie Zhang, Jing Liu, Yun Hu, Chang Liu, Pengcheng Zhu, Lijun Lu and Yanchao Mao
Nanomaterials 2025, 15(14), 1080; https://doi.org/10.3390/nano15141080 - 11 Jul 2025
Viewed by 531
Abstract
Electrospun nanofiber-based triboelectric nanogenerators (TENGs) have emerged as a highly promising class of self-powered sensors for a broad range of applications, particularly in intelligent sensing technologies. By combining the advantages of electrospinning and triboelectric nanogenerators, these sensors offer superior characteristics such as high [...] Read more.
Electrospun nanofiber-based triboelectric nanogenerators (TENGs) have emerged as a highly promising class of self-powered sensors for a broad range of applications, particularly in intelligent sensing technologies. By combining the advantages of electrospinning and triboelectric nanogenerators, these sensors offer superior characteristics such as high sensitivity, mechanical flexibility, lightweight structure, and biocompatibility, enabling their integration into wearable electronics and biomedical interfaces. This review presents a comprehensive overview of recent progress in electrospun nanofiber-based TENGs, covering their working principles, operating modes, and material composition. Both pure polymer and composite nanofibers are discussed, along with various electrospinning techniques that enable control over morphology and performance at the nanoscale. We explore their practical implementations in both contact-type and non-contact-type sensing, such as human–machine interaction, physiological signal monitoring, gesture recognition, and voice detection. These applications demonstrate the potential of TENGs to enable intelligent, low-power, and real-time sensing systems. Furthermore, this paper points out critical challenges and future directions, including durability under long-term operation, scalable and cost-effective fabrication, and seamless integration with wireless communication and artificial intelligence technologies. With ongoing advancements in nanomaterials, fabrication techniques, and system-level integration, electrospun nanofiber-based TENGs are expected to play a pivotal role in shaping the next generation of self-powered, intelligent sensing platforms across diverse fields such as healthcare, environmental monitoring, robotics, and smart wearable systems. Full article
(This article belongs to the Special Issue Self-Powered Flexible Sensors Based on Triboelectric Nanogenerators)
Show Figures

Figure 1

Back to TopTop