Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (152)

Search Parameters:
Keywords = low thermal conductivity concrete

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 5957 KB  
Article
A Study on the Preparation and Performance Optimization of Alkali-Activated Fly Ash-Based Aerogel-Modified Foam Concrete
by Peng Liu, Wei Wu and Yanfeng Gong
Buildings 2026, 16(1), 206; https://doi.org/10.3390/buildings16010206 - 2 Jan 2026
Viewed by 185
Abstract
To address the energy and environmental challenges, this study targets the need for ultra-low energy buildings in China’s hot summer-cold winter region (HSCW) by developing high-performance alkali-activated foam concrete (AAFC) insulation material. Initially, a target performance indicator system was established. Subsequently, a mix [...] Read more.
To address the energy and environmental challenges, this study targets the need for ultra-low energy buildings in China’s hot summer-cold winter region (HSCW) by developing high-performance alkali-activated foam concrete (AAFC) insulation material. Initially, a target performance indicator system was established. Subsequently, a mix proportion design method based on the volume method was proposed, and preliminary mix proportions were designed and tested to achieve the target performance. Accordingly, eight factors, including alkali equivalent and SiO2 aerogel content, were selected for further optimization. A systematic optimization of performance was then conducted using an L32(48) orthogonal experimental design. Range analysis and analysis of variance indicated that foam content significantly affected all target properties. The water-to-binder ratio notably influenced mechanical performance and dry density. Alkali equivalent and activator modulus directly regulated the reaction process. Notably, the incorporation of 2.5 wt% SiO2 aerogel reduced the thermal conductivity to 0.1107 W/(m·K), highlighting its significant role in improving thermal insulation and effectively resolving the common trade-off between insulation and mechanical properties in FC. Furthermore, the waterproofing agent played a critical role in reducing water absorption and enhancing frost resistance. Finally, the optimal mix proportion was determined through matrix analysis, with all material properties meeting the expected targets. Test results confirmed that the optimized FC achieved a dry density of 576.34 kg/m3, compressive and flexural strengths of 5.83 MPa and 1.41 MPa, respectively, a drying shrinkage rate of only 0.614 mm/m, a mass water absorption of 3.87%, and strength and mass loss rates below 10.5% and 1.8% after freeze–thaw cycles. Therefore, this material presents a novel solution for the envelope structures of low-energy buildings. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 2069 KB  
Article
Suppression Mechanism of Early-Age Autogenous Shrinkage Cracking in Low Water-to-Binder Ratio Cement-Based Materials Incorporating Ground Granulated Blast-Furnace Slag and Silica Fume
by Shuangxi Li, Guanglang You, Gang Yu, Chunmeng Jiang, Xinguang Xia and Dongzheng Yu
Materials 2026, 19(1), 131; https://doi.org/10.3390/ma19010131 - 30 Dec 2025
Viewed by 295
Abstract
In hydraulic structures such as water control projects, spillway tunnels, and overflow dams that are subjected to high-velocity flow erosion, Concrete is required to exhibit high resistance to abrasion and cracking. While low water-to-binder ratio concrete can meet strength requirements, its inherent high [...] Read more.
In hydraulic structures such as water control projects, spillway tunnels, and overflow dams that are subjected to high-velocity flow erosion, Concrete is required to exhibit high resistance to abrasion and cracking. While low water-to-binder ratio concrete can meet strength requirements, its inherent high shrinkage propensity often leads to cracking, seriously compromising long-term safety and durability under severe operating conditions. To address this engineering challenge, this study focuses on optimizing concrete performance through the synergistic combination of slag (GGBS) and silica fume (SF). This study systematically investigated the effects of incorporating GGBS (20–24%) and SF (6–10%) in a low water-to-binder ratio system with a fixed 70% cement content on key concrete properties. The evaluation was conducted through comprehensive tests including compressive strength, drying shrinkage, autogenous shrinkage, and hydration heat analysis. The results demonstrate that the blended system successfully achieves a synergistic improvement in both “high strength” and “low cracking risk.” Specifically, the incorporation of silica fume significantly enhances the compressive strength at all ages, providing a solid mechanical foundation for resisting high-velocity flow erosion. More importantly, compared to the pure cement system, the blended system not only delays the onset but also reduces the rate of early-age shrinkage, and lowers its ultimate autogenous shrinkage value. This characteristic is crucial for controlling the combined effects of thermal and shrinkage stresses from the source and preventing early-age cracking. Simultaneously, hydration heat analysis reveals that the blended system retards the heat release process, which helps mitigate the risk of thermal cracking. This study elucidates the regulatory mechanism of the GGBS-SF combination and provides a critical mix design basis and theoretical support for producing high-strength, high-abrasion-resistant, and low-shrinkage concrete in high-velocity flow environments, offering direct practical implications for engineering applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 3106 KB  
Article
Shear Performance and Load–Slip Model of a Cross-Type FRP Rod Connector for Precast Concrete Sandwich Panels
by Ya Li, Weichen Xue and Jialin Yang
Buildings 2026, 16(1), 139; https://doi.org/10.3390/buildings16010139 - 27 Dec 2025
Viewed by 300
Abstract
A precast concrete sandwich panel (PCSP), consisting of inner and outer wythes, an insulation layer, and connectors, relies heavily on the shear behavior of these connectors, which governs the structural performance of the entire system. Owing to their low thermal conductivity, excellent durability, [...] Read more.
A precast concrete sandwich panel (PCSP), consisting of inner and outer wythes, an insulation layer, and connectors, relies heavily on the shear behavior of these connectors, which governs the structural performance of the entire system. Owing to their low thermal conductivity, excellent durability, and high strength, fiber-reinforced polymer (FRP) connectors offer strong potential for widespread application. This study introduces a novel cross-shaped FRP rod connector designed to provide improved anchorage performance, bidirectional shear resistance, and ease of installation. However, concern remains about the specific influence of embedment depth, outer-wythe thickness, and insulation-layer thickness on its shear performance. Moreover, no calculation model for shear capacity or shear–slip model has been established considering the shear-bending interaction within the connector. To evaluate its shear behavior, six groups of push-out tests were conducted, with key parameters including embedment depth, outer-wythe thickness, and insulation-layer thickness. The specimens exhibited two primary failure modes: connector fracture and concrete anchorage failure. The measured shear capacity per connector ranged from 5.63 kN to 14.19 kN, increasing with longer embedment depths, decreasing with increasing insulation thickness, and showing no clear dependence on outer-wythe thickness. Guided by test results and the Hashin failure criterion for composite materials, analytical formulas to estimate the shear capacity of FRP connectors were developed. The mean ratio of calculated to experimental values is 0.97, with a standard deviation of 0.06, indicating good agreement between the predicted and measured shear capacities. Furthermore, a theoretical shear–slip model was established. The correlation coefficients between the experimental and calculated load–slip curves for all specimens are greater than 0.98, indicating a high consistency in curve shape and variation trend. Full article
(This article belongs to the Special Issue The Latest Research on Building Materials and Structures)
Show Figures

Figure 1

26 pages, 9440 KB  
Article
Mitigating Urban Heat Island Effects Through Thermally Efficient Concrete Paver Blocks for Sustainable Infrastructure
by Tejas Joshi, Jeet Machchhoya, Urmil Dave, Plescan Costel and Vedanshi Shah
Infrastructures 2026, 11(1), 5; https://doi.org/10.3390/infrastructures11010005 - 21 Dec 2025
Viewed by 317
Abstract
Rapid urbanization and the widespread use of impervious materials have intensified the urban heat island (UHI) effect, raising surface temperatures and energy demands. Conventional concrete pavements contribute significantly due to their high thermal conductivity and low reflectivity. This study systematically investigates the development [...] Read more.
Rapid urbanization and the widespread use of impervious materials have intensified the urban heat island (UHI) effect, raising surface temperatures and energy demands. Conventional concrete pavements contribute significantly due to their high thermal conductivity and low reflectivity. This study systematically investigates the development of thermally efficient concrete paver blocks using sustainable alternative fine aggregates to mitigate heat accumulation while retaining a minimum compressive strength of 35–45 MPa (recommended for medium traffic). Unlike prior isolated studies, this research offers a comprehensive comparative analysis of three sand replacements—Vermiculite powder (12.5–50%), Perlite powder (20–80%), and Crushed Glass (7.5–30%)—in M30-grade concrete. Fresh and hardened properties were evaluated through slump, density, and compressive strength tests at 7, 14, and 28 days, while infrared thermography quantified surface temperature variations under controlled heat exposure. Results showed significant thermal improvements, with optimal mixes Vermiculite 25% (VC-25), Perlite 40% (PR-40), and Crushed Glass 15% (CG-15) reducing surface temperatures by 25.1 °C, 22.2 °C, and 18.2 °C, respectively, while maintaining compressive strengths of 47.8 MPa, 38.8 MPa, and ~58 MPa. VC-25 proved superior, achieving the lowest surface temperature (26.3 °C) and 48.8% lower heat absorption than conventional concrete. The study establishes optimal replacement thresholds balancing insulation and strength, supporting SDGs 11, 12, and 13 through climate-responsive, resource-efficient construction materials. Full article
(This article belongs to the Section Infrastructures Materials and Constructions)
Show Figures

Figure 1

28 pages, 27592 KB  
Article
Food Industry Waste as Bio-Modifiers for Sustainable Concrete: Effects of Roasting Pretreatments and Oilseed Cake Types
by Sıddıka Yusra Özkılıç, Ayşe Büşra Madenci, Derya Arslan, Fatih Yılmaz, Emrah Madenci and Yasin Onuralp Özkılıç
J. Compos. Sci. 2025, 9(12), 699; https://doi.org/10.3390/jcs9120699 - 14 Dec 2025
Viewed by 339
Abstract
The use of food industry by-products in the production of construction materials is a great method to achieve sustainability and simultaneously reduce cement consumption. The present research analyzes the use of pomegranate seed cakes (untreated, oven-roasted, and microwave-treated), grape seeds, and black cumin [...] Read more.
The use of food industry by-products in the production of construction materials is a great method to achieve sustainability and simultaneously reduce cement consumption. The present research analyzes the use of pomegranate seed cakes (untreated, oven-roasted, and microwave-treated), grape seeds, and black cumin seeds for 0–15% cement replacement. In addition, the focus is on the thermal pretreatment methods and their compatibility with the microstructure of the cement, especially microwave processing due to its rapid heating, low energy demand, and improved microstructural compatibility. The outcomes suggest that microwave-treated pomegranate seed cakes resulted in the highest workability stability, lowest slump loss, and most uniform distribution in the cement matrix in comparison to untreated and oven-roasted pomegranate seed cakes. Comprehensive mechanical tests (compressive, flexural, and splitting tensile strength) and microstructural analyses (SEM, EDS, FTIR, XRD, BET) were conducted on both raw additives and concrete specimens. Although mechanical performance decreases with increasing organic content, mixtures containing 3–5% bio-modifier provided a favorable balance between workability, strength retention, and microstructural development. Microwave pretreatment not only improved the surface morphology but also made the interface more reactive, and by consuming around 80–85% less energy than the oven roasting, it strengthened the sustainability feature of the process. In a nutshell, the research proves that low-energy thermal pretreatment of food-grade waste can result in functional, eco-efficient cementitious composites, and at the same time, the integration of food engineering principles into environmentally friendly construction material design will become inevitable. Full article
Show Figures

Figure 1

19 pages, 2294 KB  
Article
Seasonal and Diurnal Dynamics of Urban Surfaces: Toward Nature-Supportive Strategies for SUHI Mitigation
by Syed Zaki Ahmed, Daniele La Rosa and Shanmuganathan Jayakumar
Land 2025, 14(12), 2412; https://doi.org/10.3390/land14122412 - 12 Dec 2025
Viewed by 350
Abstract
Rapid urban growth in South Indian coastal cities such as Chennai has intensified the Urban Heat Island (UHI) effect, with paved parking lots, walkways, and open spaces acting as major heat reservoirs. This study specifically compares conventional construction materials with natural and low-thermal-inertia [...] Read more.
Rapid urban growth in South Indian coastal cities such as Chennai has intensified the Urban Heat Island (UHI) effect, with paved parking lots, walkways, and open spaces acting as major heat reservoirs. This study specifically compares conventional construction materials with natural and low-thermal-inertia alternatives to evaluate their relative ability to mitigate Surface Urban Heat Island (SUHI) effects. Unlike previous studies that examine isolated materials or single seasons, this pilot provides a unified, multi-season comparison of nine urban surfaces, offering new evidence on their comparative cooling performance. To assess practical mitigation strategies, a field pilot was conducted using nine surface types commonly employed in the region—concrete, interlocking tiles, parking tiles, white cooling tiles, white-painted concrete, natural grass, synthetic turf, barren soil, and a novel 10% coconut-shell biochar concrete. The rationale of this comparison is to evaluate how conventional, reflective, vegetated, and low-thermal-inertia surfaces differ in their capacity to reduce surface heating, thereby identifying practical, material-based strategies for SUHI mitigation in tropical cities. Surface temperatures were measured at four times of day (pre-dawn, noon, sunset, night) across three months (winter, transition, summer). Results revealed sharp noon-time contrasts: synthetic turf and barren soil peaked above 45–70 °C in summer, while reflective coatings and natural grass remained 25–35 °C cooler. High thermal-mass materials such as concrete and interlocked tiles retained heat into the evening, whereas grass and reflective tiles cooled rapidly, lowering late-day and nocturnal heat loads. Biochar concrete performed thermally similarly to conventional concrete but offered co-benefits of ~10% cement reduction, carbon sequestration, and sustainable reuse of locally abundant coconut shell waste. Full article
Show Figures

Figure 1

19 pages, 2056 KB  
Article
Evaluating the Performance and Efficiency of Sandwich-Insulated Concrete Block Products in the Saudi Market
by Hani Alanazi, Abdullah Alzlfawi and Mohammed Albuaymi
Buildings 2025, 15(22), 4172; https://doi.org/10.3390/buildings15224172 - 19 Nov 2025
Viewed by 834
Abstract
The sandwich-insulated concrete block is one of the innovative building units developed to enhance thermal insulation in buildings. However, there are still some drawbacks that hinder the optimum utilization of these types of insulating blocks. Therefore, this study aims to conduct a systematic [...] Read more.
The sandwich-insulated concrete block is one of the innovative building units developed to enhance thermal insulation in buildings. However, there are still some drawbacks that hinder the optimum utilization of these types of insulating blocks. Therefore, this study aims to conduct a systematic and comparative assessment of the performance of the sandwich-insulated concrete block available in the local market. To accurately assess the efficiency of the insulated concrete blocks, several samples from various sources available in the local market were collected and examined. Visual inspection, dimensional tolerance, compressive strength, physical properties, thermal performance, and environmental resistance tests have been conducted in accordance with local and international standards. The obtained experimental results revealed that the mixture proportion of the concrete shell plays a crucial role in the properties and performance of the whole insulated concrete block. Blocks with volcanic aggregates exhibited lower compressive strength, ranging between 3.19 and 5.26 MPa, but better thermal conductivity with an average of 0.25 W/m·K. In comparison, normal aggregate blocks showed higher compressive strength up to 8.12 MPa but slightly reduced thermal insulation around 0.44 W/m·K. Water absorption varied widely from 5% to 16%, and chloride contents in volcanic aggregates exceeded the permissible 1% limit. Broken edges and cracks were mainly observed in low-strength blocks, emphasizing the importance of proper curing and material selection. Durability assessments revealed that accelerated weathering experiments demonstrated the susceptibility of expanded and extruded polystyrene to UV-induced degradation. Nevertheless, all tested polystyrene samples showed high resistance to fungal attack, with varying antibacterial activity. Full article
(This article belongs to the Special Issue Advances in Green Building and Environmental Comfort)
Show Figures

Figure 1

25 pages, 7154 KB  
Article
Performance Optimization of Expanded Polystyrene Lightweight Concrete Using a Multi-Objective Physically Interpretable Algorithm with Random Forest
by Sen Li, Di Hu, Fei Yu, Qiang Jin and Zihua Li
Buildings 2025, 15(21), 3944; https://doi.org/10.3390/buildings15213944 - 1 Nov 2025
Viewed by 788
Abstract
Expanded polystyrene (EPS) concrete has broad application potential in energy-efficient buildings due to its low density and excellent thermal insulation performance. However, a significant nonlinear trade-off exists between its compressive strength and thermal conductivity. Existing studies are mainly based on empirical mix design [...] Read more.
Expanded polystyrene (EPS) concrete has broad application potential in energy-efficient buildings due to its low density and excellent thermal insulation performance. However, a significant nonlinear trade-off exists between its compressive strength and thermal conductivity. Existing studies are mainly based on empirical mix design or single-objective optimization, and the employed modeling methods generally lack interpretability. To address this challenge, this study proposes a multi-objective optimization model (MOPIA-RA) based on physics-informed constraints and an intelligent evolutionary algorithm, aiming to solve the nonlinear contradiction among compressive strength, thermal conductivity, and production cost encountered in practical engineering. A comprehensive dataset covering different cementitious materials, EPS contents, and particle sizes was established based on experimental data, and a surrogate model (PIA-RA) was developed using this dataset. Finally, the Shapley additive explanation (SHAP) method was used to quantitatively evaluate the effects of key materials on compressive strength and thermal conductivity. The results show that the proposed PIA-RA model achieved coefficients of determination (R2) of 0.95 and 0.98 for predicting compressive strength and thermal conductivity, respectively; EPS particle size was the main factor affecting performance, with a contribution rate of 69%, while EPS content also played an important regulatory role, with a contribution rate of 29%. Based on the constructed MOPIA-RA model, it is possible to effectively resolve the multi-objective trade-offs among strength, thermal performance, and cost in EPS concrete and achieve precise mix design. The proposed MOPIA-RA model not only realizes multi-objective optimization among compressive strength, thermal performance, and cost, but also establishes a physics-informed and interpretable methodology for concrete material design. This model provides a scientific basis for the mix-design optimization of EPS concrete. Full article
Show Figures

Figure 1

19 pages, 3974 KB  
Article
Silica Enrichment and Aerated Light Concrete for Sustainable Construction from Multiple Geographic Locations Within the UAE and UK
by Noura AlSuwaidi, Shamma Alfalasi, Ruwda Al Tayyari, Khalid Al Buraimi, Mohammad AlQassimi, Ahmed Aidan, Mousa Attom, Ahmed Khalil and Sameer Al-Asheh
Buildings 2025, 15(21), 3869; https://doi.org/10.3390/buildings15213869 - 26 Oct 2025
Viewed by 820
Abstract
This study presents a sustainable and time-efficient method for producing aerated lightweight concrete (ALC) by addressing two key challenges: long drying times and limited high-silica sand. The proposed approach combines rapid drying, reducing curing time from 24–48 h to less than one hour, [...] Read more.
This study presents a sustainable and time-efficient method for producing aerated lightweight concrete (ALC) by addressing two key challenges: long drying times and limited high-silica sand. The proposed approach combines rapid drying, reducing curing time from 24–48 h to less than one hour, with recycled glass powder to enrich locally available silica-poor sand. The concrete mixtures were characterized using scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), along with experimentally determined key parameters such as compressive strength, dry density, porosity, and thermal conductivity. Comparative testing was conducted using sand samples from the UAE and UK to represent contrasting climatic and geological conditions, silica-poor desert versus silica-rich quartz, to evaluate adaptability and performance. Two mixes were tested: untreated and glass enriched. The modified mix achieved higher compressive strength, better thermal insulation, and lower environmental impact, while rapid drying maintained structural integrity. The method offers a scalable, low-carbon solution aligned with circular economic principles. Full article
(This article belongs to the Special Issue Study on Concrete Structures—2nd Edition)
Show Figures

Figure 1

22 pages, 1982 KB  
Review
A Review on the Valorization of Recycled Glass Fiber-Reinforced Polymer (rGFRP) in Mortar and Concrete: A Sustainable Alternative to Landfilling
by Mohamed Wendlassida Kaboré, Didier Perrin, Rachida Idir, Patrick Ienny, Éric Garcia-Diaz and Youssef El Bitouri
Polymers 2025, 17(19), 2664; https://doi.org/10.3390/polym17192664 - 1 Oct 2025
Cited by 1 | Viewed by 1937
Abstract
The recycling of glass fiber-reinforced polymer (GFRP) in cementitious materials is an interesting way of managing the end of life of this type of material. As the solutions of landfilling and incinerating have reached their limits, the material recovery by recycling approach appears [...] Read more.
The recycling of glass fiber-reinforced polymer (GFRP) in cementitious materials is an interesting way of managing the end of life of this type of material. As the solutions of landfilling and incinerating have reached their limits, the material recovery by recycling approach appears to be suitable to develop cement-based materials with enhanced properties. Different recycling methods, including mechanical, thermal and chemical recycling, are commonly used for the recovery of fibers and resins. Mechanical recycling is more suitable due to its low cost and ease of implementation. Moreover, mechanical recycling has limited environmental impact and is ideal for use with cementitious materials (fiber and resin). Several studies are being conducted to find the best incorporation method, notably the incorporation of recycled GFRP of different sizes (small, medium, large and coarse) and shapes (fibrous, cubic, random) as a substitute for sand and/or aggregate in mortars and concretes or as reinforcement materials. This article aims to establish a state of the art perspective on the incorporation of rGFRP into cement-based materials. The benefits of this incorporation are highlighted as well as the limitations. The various challenges to be overcome to make this incorporation useful from a practical point of view are reported. Full article
Show Figures

Figure 1

22 pages, 4360 KB  
Article
An Experimental Study on the Thermal Insulation Properties of Concrete Containing Wood-Based Biochar
by Ji-Hun Park, Kwang-Mo Lim, Gum-Sung Ryu, Kyung-Taek Koh and Kyong-Chul Kim
Appl. Sci. 2025, 15(19), 10560; https://doi.org/10.3390/app151910560 - 29 Sep 2025
Cited by 1 | Viewed by 1321
Abstract
The applicability of biochar as a coarse aggregate substitute in concrete to increase sustainability and multifunctionality was investigated. Biochar, a porous carbon-rich byproduct from biomass pyrolysis, was incorporated at various replacement ratios (5–20%) under four water-to-binder (w/b) conditions (0.25–0.40). [...] Read more.
The applicability of biochar as a coarse aggregate substitute in concrete to increase sustainability and multifunctionality was investigated. Biochar, a porous carbon-rich byproduct from biomass pyrolysis, was incorporated at various replacement ratios (5–20%) under four water-to-binder (w/b) conditions (0.25–0.40). The key physical, mechanical, thermal, and microstructural properties, including the unit weight, porosity, compressive strength, flexural strength, and thermal conductivity, were evaluated via SEM and EDS analyses. The results revealed that although increasing the biochar content reduced the mechanical strength, it significantly improved the thermal insulation performance because of the porous structure of the biochar. At low w/b ratios and 5–10% biochar content, sufficient mechanical properties were retained, indicating a viable design range. Higher replacement ratios (>15%) led to excessive porosity, reduced hydration, and impaired durability. This study quantitatively analyzed the interproperty correlations, confirming that the strength and thermal performance are closely linked to the internal matrix density and porosity. These findings suggest that biochar-based concrete has potential for use in thermal energy storage systems, high-temperature insulation, and low-carbon construction. The low-carbon effect is achieved both by sequestering stable carbon within the concrete matrix and by partially replacing cement, thereby reducing CO2 emissions from cement production. Moreover, the results highlight a strong correlation between increased porosity, enhanced thermal insulation, and reduced strength, thereby offering a solid foundation for sustainable material design. In particular, the term ‘high temperature’ in this context refers to exposure conditions above approximately 200~400 °C, as reported in previous studies. However, this should be considered as a potential application to be validated in future experiments rather than a confirmed outcome of this study. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

37 pages, 2119 KB  
Review
Recycled Components in 3D Concrete Printing Mixes: A Review
by Marcin Maroszek, Magdalena Rudziewicz and Marek Hebda
Materials 2025, 18(19), 4517; https://doi.org/10.3390/ma18194517 - 28 Sep 2025
Cited by 2 | Viewed by 2739
Abstract
Rapid population growth and accelerating urbanization are intensifying the demand for construction materials, particularly concrete, which is predominantly produced with Portland cement and natural aggregates. This reliance imposes substantial environmental burdens through resource depletion and greenhouse gas emissions. Within the framework of sustainable [...] Read more.
Rapid population growth and accelerating urbanization are intensifying the demand for construction materials, particularly concrete, which is predominantly produced with Portland cement and natural aggregates. This reliance imposes substantial environmental burdens through resource depletion and greenhouse gas emissions. Within the framework of sustainable construction, recycled aggregates and industrial by-products such as fly ash, slags, crushed glass, and other secondary raw materials have emerged as viable substitutes in concrete production. At the same time, three-dimensional concrete printing (3DCP) offers opportunities to optimize material use and minimize waste, yet it requires tailored mix designs with controlled rheological and mechanical performance. This review synthesizes current knowledge on the use of recycled construction and demolition waste, industrial by-products, and geopolymers in concrete mixtures for 3D printing applications. Particular attention is given to pozzolanic activity, particle size effects, mechanical strength, rheology, thermal conductivity, and fire resistance of recycled-based composites. The environmental assessment is considered through life-cycle analysis (LCA), emphasizing carbon footprint reduction strategies enabled by recycled constituents and low-clinker formulations. The analysis demonstrates that recycled-based 3D printable concretes can maintain or enhance structural performance while mix-level (cradle-to-gate, A1–A3) LCAs of printable mixes report CO2 reductions typically in the range of ~20–50% depending on clinker substitution and recycled constituents—with up to ~48% for fine recycled aggregates when accompanied by cement reduction and up to ~62% for mixes with recycled concrete powder, subject to preserved printability. This work highlights both opportunities and challenges, outlining pathways for advancing durable, energy-efficient, and environmentally responsible 3D-printed construction materials. Full article
(This article belongs to the Special Issue Research on Alkali-Activated Materials (Second Edition))
Show Figures

Figure 1

37 pages, 9734 KB  
Review
Valorization of River Sediments in Sustainable Cementitious Gel Materials: A Review of Characteristics, Activation, and Performance
by Yuanxun Zheng, Yuxiao Xie, Yu Zhang, Cong Wan, Li Miao and Peng Zhang
Gels 2025, 11(9), 755; https://doi.org/10.3390/gels11090755 - 18 Sep 2025
Viewed by 792
Abstract
River sediments have attracted increasing attention as alternative raw materials for sustainable cementitious materials due to their abundant availability and silica–alumina-rich composition. In this study, a systematic literature search was conducted in Web of Science and Google Scholar using combinations of the keywords [...] Read more.
River sediments have attracted increasing attention as alternative raw materials for sustainable cementitious materials due to their abundant availability and silica–alumina-rich composition. In this study, a systematic literature search was conducted in Web of Science and Google Scholar using combinations of the keywords “river sediment,” “cementitious materials,” “activation,” and “pozzolanic activity,” covering publications up to July 2025. In addition, a citation network tool (Connected Papers) was employed to trace related works and ensure comprehensive coverage of emerging studies. This review systematically examines the properties of river sediments from diverse regions, along with activation and modification techniques such as alkali/acid activation, thermal calcination, and mechanical milling. Their applications in various cementitious systems are analyzed, with mix design models compared to elucidate the effects of replacing fine aggregates, coarse aggregates, and cement on workability, strength, and durability. Multi-scale characterization via XRD, FTIR, and TG-DSC reveals the mechanisms of C–S–H and C–A–S–H gel formation, pore refinement, and interfacial transition zone densification. The review highlights three key findings: (1) moderate sediment replacement (20–30%) improves strength without compromising flowability; (2) alkali–water glass activation and calcination at 600–850 °C effectively enhance pozzolanic activity; and (3) combining the minimum paste thickness theory with additives such as water reducers, fibers, or biochar enables high-performance and low-carbon concrete design. This review provides a comprehensive theoretical foundation and technical pathway for the high-value utilization of river sediments, carbon reduction in concrete, and sustainable resource recycling. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

20 pages, 5316 KB  
Article
Analysis and Research on Thermal Insulation Performance of Autoclaved Aerated Concrete Sandwich Perimeter Wall in Hot-Summer and Cold-Winter Regions Under Low Temperature Environment
by Jinsong Tu, Lintao Fang, Cairui Yu, Gulei Chen, Jing Lan and Rui Zhang
Buildings 2025, 15(18), 3332; https://doi.org/10.3390/buildings15183332 - 15 Sep 2025
Viewed by 2024
Abstract
This study examines the dynamic response of autoclaved aerated concrete (AAC) under solar radiation and ambient temperature coupling. A comparative analysis is conducted between traditional sintered bricks (brick), AAC, and autoclaved aerated concrete sandwich insulated wall panels (ATIM), using three thermal engineering models. [...] Read more.
This study examines the dynamic response of autoclaved aerated concrete (AAC) under solar radiation and ambient temperature coupling. A comparative analysis is conducted between traditional sintered bricks (brick), AAC, and autoclaved aerated concrete sandwich insulated wall panels (ATIM), using three thermal engineering models. The experimental group focuses on the south wall, with differentiated designs: Model A (brick), Model B (AAC), and Model C (ATIM). Temperature data collectors assess heat transfer and internal temperature regulation in winter. The results show that the AAC sandwich system significantly reduces thermal fluctuations, with a 26% and 14.8% attenuation in temperature amplitude compared to brick and AAC. The thermal inertia index of the AAC sandwich structure system is 51.5% and 14.58% higher than that of traditional brick walls and AAC walls, respectively. The heat consumption index of ATIM is, on average, 14% lower than that of AAC and 74.5% lower than that of the brick system. The study confirms that the AAC sandwich rock wool wall structure enhances temperature stability and energy efficiency, supporting green building and low-carbon energy-saving goals. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 1922 KB  
Article
Simulation of Snow and Ice Melting on Energy-Efficient and Environmentally Friendly Thermally Conductive Asphalt Pavement
by Wenbo Peng, Yalina Ma, Lei Xi, Hezhou Huang, Lifei Zheng, Zhi Chen and Wentao Li
Sustainability 2025, 17(18), 8190; https://doi.org/10.3390/su17188190 - 11 Sep 2025
Viewed by 1197
Abstract
Conventional asphalt pavement snow and ice removal methods suffer from issues such as time-consuming operations, high costs, and pollution from chemical de-icing agents. Commonly used thermally conductive asphalt concrete (TCAC) faces problems including limited filler diversity, high filler content, and elevated costs. To [...] Read more.
Conventional asphalt pavement snow and ice removal methods suffer from issues such as time-consuming operations, high costs, and pollution from chemical de-icing agents. Commonly used thermally conductive asphalt concrete (TCAC) faces problems including limited filler diversity, high filler content, and elevated costs. To address these challenges, this study developed a thermally conductive asphalt concrete incorporating carbon fiber–silicon carbide composite fillers to provide a low-cost, energy-saving winter pavement snow melting solution and enhance eco-friendly de-icing performance. Finite element simulation software was employed to model its snow and ice melting performance, investigating the factors influencing this capability. Thermal conductivity was measured using the transient plane source (TPS) technique. The results show that with 0.3% carbon fiber, thermal conductivity reaches 1.43 W/(m·°C), 72.3% higher than ordinary asphalt concrete. Finite element simulations in finite element simulation software were used to model snow and ice melting, and strong agreement with field test data (correlation coefficients > 0.9) confirmed model reliability. Then, the finite element simulation software was used to study the effects of wind speed, temperature, laying power, and spacing on the snow and ice melting of TCAC. The simulation results show that the heating rate increases with TCAC thermal conductivity. Raising the power of the embedded carbon fiber heating cord reduces de-icing time but shows a threshold effect. In this study, asphalt pavement with high thermal conductivity was prepared using a low content of thermal conductive filler, providing a theoretical basis for sustainable pavement design, reducing energy use and environmental damage. TCAC technology promotes greener winter road maintenance, offering a low-impact alternative to chemical de-icing, and supports long-term infrastructure sustainability. Full article
Show Figures

Figure 1

Back to TopTop