Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = low head axial-flow turbine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5772 KB  
Article
Design of Low-Cost Axial-Flow Turbines for Very Low-Head Micro-Hydropower Plants
by Rodolfo Vitorino Correia Ramalho, Manoel José Mangabeira Pereira Filho, Manoel José dos Santos Sena, Rômulo Luis Santos Garreto Mendes, Siergberth Ugulino Neto, Davi Edson Sales e Souza, José Gustavo Coelho, Gilton Carlos de Andrade Furtado and André Luiz Amarante Mesquita
Processes 2025, 13(6), 1865; https://doi.org/10.3390/pr13061865 - 13 Jun 2025
Viewed by 3845
Abstract
In the Amazon, nearly one million people remain without reliable access to electricity. Moreover, the rural electricity grid is a mostly single-phase, ground-return type, with poor energy quality and high expenses. This study examines very low-head micro-hydropower (MHP) sites in the Amazon, emphasizing [...] Read more.
In the Amazon, nearly one million people remain without reliable access to electricity. Moreover, the rural electricity grid is a mostly single-phase, ground-return type, with poor energy quality and high expenses. This study examines very low-head micro-hydropower (MHP) sites in the Amazon, emphasizing the integration of multiple axial-flow turbines. It includes an analysis of flow duration curves and key curves, both upstream and downstream, to design an MHP plant with multiple units targeting maximized energy yield. The presence of multiple turbines is crucial due to the substantial annual flow variation in the Amazon rivers. One contribution of this work is its scalable framework for ultra-low-head and high flow variability in small rivers, which is applicable in similar hydrological configurations, such as those typical of the Amazon. The design applies the minimum pressure coefficient criterion to increase turbine efficiency. Computational Fluid Dynamics (CFD) simulations forecast turbine efficiency and flow behavior. The CFD model is validated using experimental data available in the literature on a similar turbine, which is similarly used in this study for cost reasons, with discrepancies under 5%, demonstrating robust predictions of turbine efficiency and head behavior as a function of flow. This study also explores the implications of including inlet guide vanes (IGVs). We use a case study of a small bridge in Vila do Janari, situated in the southeastern part of Pará state, where heads range from 1.4 to 2.4 m and turbine flow rates span from 0.23 to 0.92 m3/s. The optimal configuration shows the potential to generate 63 MWh/year. Full article
(This article belongs to the Special Issue Advances in Hydraulic Machinery and Systems)
Show Figures

Figure 1

24 pages, 5993 KB  
Article
A Comparative Analysis of Distributor and Rotor Single Regulation Strategies for Low Head Mini Hydraulic Turbines
by Dario Barsi, Francesca Satta, Marina Ubaldi and Pietro Zunino
Energies 2024, 17(10), 2304; https://doi.org/10.3390/en17102304 - 10 May 2024
Cited by 1 | Viewed by 1725
Abstract
Tubular axial turbines (TATs) play a crucial role in mini and micro hydropower setups that require simplified yet reliable solutions. In very low head scenarios, single regulation in TATs is common, due to economic impracticality of the sophisticated mechanisms involved in the conjugate [...] Read more.
Tubular axial turbines (TATs) play a crucial role in mini and micro hydropower setups that require simplified yet reliable solutions. In very low head scenarios, single regulation in TATs is common, due to economic impracticality of the sophisticated mechanisms involved in the conjugate distributor–rotor regulation typical of the Kaplan turbines. Distributor or rotor single regulation strategies offer operation flexibility, each with distinct advantages and disadvantages. Stator regulation is simpler, while rotor regulation is more complex but offers potential efficiency gains. The present paper analyzes energy losses associated with these regulation strategies using two approaches: 1D mean line turbomachinery equations and 3D Computational Fluid Dynamics (CFD). The 1D mean line approach is used for understanding the conceptual fluid dynamic aspects involved in the two different regulation approaches, thereby identifying the loss-generation mechanisms in off-design operation. Fully 3D CFD simulations allow for quantifying and deeply explaining the differences in the hydraulic efficiencies of the two regulation strategies. Attention is focused on the two main loss contributions: residual tangential kinetic energy at the rotor outlet and entropy generation. Rotor regulation, even if more complex, provides better results than distributor regulation in terms of both effectiveness (larger flow rate sensitivity to stagger angle variation) and turbine operating efficiency (lower off-design losses). Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

13 pages, 5492 KB  
Article
A Comparative Study on the Cam Relationship for the Optimal Vibration and Efficiency of a Kaplan Turbine
by Sen Deng, Weiqiang Zhao, Tianbao Huang, Ming Xia and Zhengwei Wang
J. Mar. Sci. Eng. 2024, 12(2), 241; https://doi.org/10.3390/jmse12020241 - 30 Jan 2024
Cited by 3 | Viewed by 3490
Abstract
Kaplan turbines are generally used in working conditions with a high flow and low head. These are a type of axial-flow hydro turbine that can adjust the opening of the guide vanes and blades simultaneously in order to achieve higher efficiency under a [...] Read more.
Kaplan turbines are generally used in working conditions with a high flow and low head. These are a type of axial-flow hydro turbine that can adjust the opening of the guide vanes and blades simultaneously in order to achieve higher efficiency under a wider range of loads. Different combinations of the opening of the guide vanes and blades (cam relationship) will lead to changes in the efficiency of the turbine unit as well as its vibration characteristics. A bad cam relationship will cause the low efficiency or unstable operation of the turbine. In this study, the relative efficiency and vibration of a large-scale Kaplan turbine with 200 MW output were tested with different guide vane and blade openings. The selection of the cam relationship curve for both optimal efficiency and optimal vibration is discussed. Compared with the cam relationship given by the model test, the prototype cam relationship improves the efficiency and reduces the vibration level. Compared to the optimal efficiency cam relationship, the optimal vibration cam relationship reduces the efficiency of the machine by 1% to 2%, while with the optimal efficiency cam relationship, the vibration of the unit increases significantly. This research provides guidance for the optimization of the regulation of a large adjustable-blade Kaplan turbine unit and improves the overall economic benefits and safety performance of the Kaplan turbine power station. Full article
(This article belongs to the Special Issue Advancement in the Multiphase Flow in Fluid Machinery)
Show Figures

Figure 1

19 pages, 85954 KB  
Article
Study on Pressure Pulsation and Force Characteristics of Kaplan Turbine
by Chengming Liu, Tao Chen, Wenzhe Kang, Jianjun Kang, Lingjiu Zhou, Ran Tao and Zhengwei Wang
Water 2023, 15(13), 2421; https://doi.org/10.3390/w15132421 - 30 Jun 2023
Cited by 11 | Viewed by 3013
Abstract
With the continuous increase in the size and power generation of turbines, the operational characteristics of turbines under off-design conditions are gradually receiving attention. In this paper, the Reynolds time-averaged method (RANS) is applied to the unsteady calculation of three different flow rate [...] Read more.
With the continuous increase in the size and power generation of turbines, the operational characteristics of turbines under off-design conditions are gradually receiving attention. In this paper, the Reynolds time-averaged method (RANS) is applied to the unsteady calculation of three different flow rate of a large Kaplan turbine under three heads: high head, rated head and low head. The focus is on the internal flow pattern of the turbine and the hydraulic excitation characteristics under low flow conditions. The unsteady characteristics of pressure pulsation, axial force of runner, radial force of runner and hydraulic torques along blade shank (τb) for six blades are analyzed. The results show that the pressure pulsation in the vaneless space is larger under low flow conditions, and frequencies of 0.33–1 fn ( fn is the rotating frequency of the runner) can be observed at monitoring points at different heights in the vaneless space. The analysis of the flow field under low flow conditions reveals the presence of larger scale vortices in the vaneless space. The position and intensity of vortices fluctuate periodically and cause larger amplitude pressure fluctuations. The frequency of 0.33–1 fn can also be observed for axial force, radial force, and τb for six blades due to the influence of vortices in the vaneless space. The low-frequency pulsations of pressure, force and τb are much greater under the low head and high head condition than that under rated head condition. The amplitude of pulsation of various parameters is the smallest under the low flow and rated head compared to that under the low flow conditions of other heads. The flow passage under low head is more influenced by the flow rate. Low-frequency pulsations occur under both the low flow and medium flow conditions. The asymmetry of the flow in the vaneless space causes unbalanced force and hydraulic instability of the runner, which seriously threatens the safe and stable operation of the turbine. Full article
Show Figures

Figure 1

27 pages, 10100 KB  
Article
Mathematic Modelling of a Reversible Hydropower System: Dynamic Effects in Turbine Mode
by Helena M. Ramos, Oscar E. Coronado-Hernández, Pedro A. Morgado and Mariana Simão
Water 2023, 15(11), 2034; https://doi.org/10.3390/w15112034 - 27 May 2023
Cited by 8 | Viewed by 3553
Abstract
Over the past few years, there has been significant interest in the importance of reversible hydro-pumping systems due to their favorable flexibility and economic and environmental characteristics. When designing reversible lines, it is crucial to consider dynamic effects and corresponding extreme pressures that [...] Read more.
Over the past few years, there has been significant interest in the importance of reversible hydro-pumping systems due to their favorable flexibility and economic and environmental characteristics. When designing reversible lines, it is crucial to consider dynamic effects and corresponding extreme pressures that may occur during normal and emergency operating scenarios. This research describes essentially the turbine operation, although various boundary elements are mathematically formulated and presented to provide an understanding of the system complexity. Different numerical approaches are presented, based on the 1D method of characteristics (MOC) for the long hydraulic circuit, the dynamic turbine runner simulation technique for the behavior of the power station in turbine mode and the interaction with the fluid in the penstock, and a CFD model (2D and 3D) to analyze the flow behavior crossing the runner through the velocity fields and pressure contours. Additionally, the simulation results have been validated by experimental tests on different setups characterized by long conveyance systems, consisting of a small scale of pumps as turbines (at IST laboratory) and classical reaction turbines (at LNEC laboratory). Mathematical models, together with an intensive campaign of experiments, allow for the estimation of dynamic effects related to the extreme transient pressures, the fluid-structure interaction with rotational speed variation, and the change in the flow. In some cases, the runaway conditions can cause an overspeed of 2–2.5 of the rated rotational speed (NR) and an overpressure of 40–65% of the rated head (HR), showing significant impacts on the pressure wave propagation along the entire hydraulic circuit. Sensitivity analyses based on systematic numerical simulations of PATs (radial and axial types) and reaction turbines (Francis and Kaplan types) and comparisons with experiments are discussed. These evaluations demonstrate that the full-load rejection scenario can be dangerous for turbomachinery with low specific-speed (ns) values, in particular when associated with long penstocks and fast guide vane (or control valve) closing maneuver. Full article
(This article belongs to the Special Issue Hydropower and Pumping Systems)
Show Figures

Figure 1

21 pages, 9307 KB  
Article
Flow Regulation of Low Head Hydraulic Propeller Turbines by Means of Variable Rotational Speed: Aerodynamic Motivations
by Dario Barsi, Robert Fink, Peter Odry, Marina Ubaldi and Pietro Zunino
Machines 2023, 11(2), 202; https://doi.org/10.3390/machines11020202 - 1 Feb 2023
Cited by 3 | Viewed by 4416
Abstract
To date, hydraulic energy is still, among the renewable ones, the most widespread and most exploited to produce electricity. With the current trend to exploit any renewable source available, the limits for the economic convenience of hydroelectric power plants have significantly changed, making [...] Read more.
To date, hydraulic energy is still, among the renewable ones, the most widespread and most exploited to produce electricity. With the current trend to exploit any renewable source available, the limits for the economic convenience of hydroelectric power plants have significantly changed, making it interesting and convenient to use even small heads and low flow rates. In the specific applications of hydraulic turbines operating with low heads, the Kaplan turbine plays the predominant role among the available machines, also given the possibility of carrying out an “on cam” regulation, acting simultaneously on the geometry of the rotor and distributor rows, thus allowing a wide flow rate adjustment range. However, for applications characterized by very low heads and low available powers, it may not be convenient to use complex regulating devices. For this reason, these plants usually use axial machines characterized by a partial regulation (of the distributor or of the rotor), significantly reducing the operating range of the machine compared to the case of double regulation. In the last decade, the development of reliable and less expensive permanent magnet generators and power electronic converters and related new control strategies has paved the way for the concept of regulating hydraulic turbines by means of variable rotational speed. This regulation principle is based on the possibility of acting in the case of using synchronous permanent magnets electric generators and electronic power converters and on the variation of the rotational speed of the machine while keeping the grid frequency constant. The concept can be applied both to pure propellers with fixed a rotor and fixed distributor and to hydraulic axial turbines with regulation based on the modification of the variable guide vane opening angle. Although this new regulation approach, even in the case of the combined guide vane and rotational speed regulation, does not allow to recover most of the energy losses due to the variation of the operating conditions as effectively as the Kaplan double regulation does, the variation of the rotation speed, coupled with the variation of the opening of the distributor row, allows to reduce the tangential kinetic energy losses generated at the turbine exit during the off-design operations of a fixed blade opening angle rotor. At the same time, this type of regulation offers a simple and thus low-cost solution. The present study develops the theory underlying this regulation concept, based on the use of the turbomachinery fundamental equations, and reports the results of the off-design CFD analysis carried out for different combinations of rotation speeds and openings of the distributor, showing the improvement of the hydraulic efficiency over a large range of operating conditions with respect to the single regulation approach. Full article
(This article belongs to the Special Issue 10th Anniversary of Machines—Feature Papers in Turbomachinery)
Show Figures

Figure 1

21 pages, 49497 KB  
Article
Numerical Study for Flow Loss Characteristic of an Axial-Flow Pump as Turbine via Entropy Production Analysis
by Fan Yang, Zhongbin Li, Yiping Cai, Dongjin Jiang, Fangping Tang and Shengjie Sun
Processes 2022, 10(9), 1695; https://doi.org/10.3390/pr10091695 - 26 Aug 2022
Cited by 21 | Viewed by 3031
Abstract
Low-head vertical axial-flow pump as turbine (PAT) devices play a vital part in the development of clean energy for hydropower in plain areas. The traditional method of evaluating the flow loss in hydraulic machinery is calculated by the pressure drop method, the limitation [...] Read more.
Low-head vertical axial-flow pump as turbine (PAT) devices play a vital part in the development of clean energy for hydropower in plain areas. The traditional method of evaluating the flow loss in hydraulic machinery is calculated by the pressure drop method, the limitation of which is that the location of the occurrence of large losses cannot be accurately determined. In this paper, entropy production theory is introduced to evaluate the irreversible losses in the axial-flow PAT from the perspective of the second law of thermodynamics. A three-dimensional model of the axial-flow PAT is established and solved numerically using the Reynolds time-averaged equation, and the turbulence model is adopted as Shear Stress Transport–Curvature Correction (SST-CC) model. The validity of the entropy production theory to evaluate the energy loss distribution of the axial-flow PAT is illustrated by comparing the flow loss calculated by the pressure drop and the entropy production theory, respectively. The entropy production by turbulent dissipative dominates the total entropy production in the whole flow conduit, and the turbulent dissipative entropy accounts for the smallest percentage of the whole conduit entropy production at the optimal working condition Qbep, which is 51%. The impeller and the dustpan-shaped conduit are the essential sources of hydraulic loss in the entire flow conduit of the axial-flow PAT, and most of the energy loss of the impeller occurs at the blade leading edge, the trailing edge, and the flow separation zone near the suction surface. The energy loss of the dustpan-shaped conduit results from the high-speed flow from the impeller outlet to dustpan-shaped conduit to form a vortex, backflow and other chaotic flow patterns. Flow impact, flow separation, vortex and backflow are the main causes of high entropy production and energy loss. Full article
(This article belongs to the Topic Latest Developments in Fluid Mechanics and Energy)
Show Figures

Figure 1

14 pages, 2812 KB  
Article
A New Low-Cost Technology Based on Pump as Turbines for Energy Recovery in Peripheral Water Networks Branches
by Armando Carravetta, Giuseppe Del Giudice, Oreste Fecarotta, Maria Cristina Morani and Helena M. Ramos
Water 2022, 14(10), 1526; https://doi.org/10.3390/w14101526 - 10 May 2022
Cited by 17 | Viewed by 4560
Abstract
The recovery of excess energy in water supply networks has been a topic of paramount importance in recent literature. In pressurized systems, a pump used in inverse mode (Pump As Turbine, PAT) demonstrated to be a very economical and reliable solution, compared to [...] Read more.
The recovery of excess energy in water supply networks has been a topic of paramount importance in recent literature. In pressurized systems, a pump used in inverse mode (Pump As Turbine, PAT) demonstrated to be a very economical and reliable solution, compared to traditional energy production devices (EPDs). Due to the large variability of flow rate and head drop within water distribution networks, the operation of PATs could be performed by a series-parallel regulation system based on an electronic or a hydraulic principle. Despite the low cost of the PATs and of regulation and control systems, a great barrier to the diffusion of a small hydro power plant in water distribution is represented by the necessity of additional civil works to host the whole plant. Based on laboratory and numerical experiments, the present paper proposes a new low-cost technology, overcoming most of the limitations of the present technologies when low energy is available and high discharge variation occurs. The operating conditions of the plant are properly optimized with reference to the working conditions of a case study. Despite the laboratory prototype having exhibited a significantly low efficiency (i.e., 16%), due to the use of small centrifugal pumps suitable for the analyzed case study, in larger power plants relying on more efficient semi-axial submersed pumps, the energy conversion ratio can increase up to 40%. The results of this research could be useful for network managers and technicians interested in increasing the energy efficiency of the network and in recovering energy in the peripheral branches of the network were a large variability of small flow rates are present. Full article
Show Figures

Figure 1

23 pages, 9323 KB  
Article
Prediction of the Influence of Runner Tip Clearance on the Performance of Tubular Turbine
by Yanzhao Wu, Xiaohang Wang, Xiaolong Yang, Junfeng Ding, Di Zhu, Ran Tao, Huanmao Wang and Ruofu Xiao
J. Mar. Sci. Eng. 2022, 10(2), 136; https://doi.org/10.3390/jmse10020136 - 20 Jan 2022
Cited by 11 | Viewed by 3025
Abstract
Tubular turbine is a type of turbine with low-head. Due to the fact that the runner of a tubular turbine is of axial-flow type, there will be a certain width of blade tip between the blade and the chamber. In order to explore [...] Read more.
Tubular turbine is a type of turbine with low-head. Due to the fact that the runner of a tubular turbine is of axial-flow type, there will be a certain width of blade tip between the blade and the chamber. In order to explore the influence of tip clearance width on the flow inside the turbine, taking the model tubular turbine as the research object, six different tip clearance widths were compared and analyzed. The research shows that the increase in blade tip clearance width affects the performance of the turbine, reduces the minimum pressure at blade tip and causes cavitation in advance. Larger tip clearance width significantly increases pressure pulsation intensity inside the turbine, especially in the vaneless region between the runner and guide vane and the area of the runner tip. However, the increase in tip clearance width can greatly reduce the axial force for about 100 N and radial excitation force for about 50% of rotating parts. Therefore, during the design and processing of tubular turbines, the blade tip clearance width should be carefully selected to ensure safe and stable operation of the unit. Full article
(This article belongs to the Special Issue Experiments and Numerical Analysis of Flow)
Show Figures

Figure 1

13 pages, 35829 KB  
Review
A Brief History of the Kaplan Turbine Invention
by Martin Polák
Energies 2021, 14(19), 6211; https://doi.org/10.3390/en14196211 - 29 Sep 2021
Cited by 10 | Viewed by 10079
Abstract
One of the most important milestones in the history of hydropower is the invention of the Kaplan turbine. It is a machine stemming from the Francis turbine, which Viktor Kaplan was originally trying to improve. However, it gradually developed into the creation of [...] Read more.
One of the most important milestones in the history of hydropower is the invention of the Kaplan turbine. It is a machine stemming from the Francis turbine, which Viktor Kaplan was originally trying to improve. However, it gradually developed into the creation of a completely new solution of an impeller with an axial flow rate and adjustable blades. The first patent relating to the new invention dates from 1913. Shortly afterwards, the Kaplan turbine became the most widely used type of device for the use of low heads and variable flow rates. That meant a significant expansion of the potential of economically usable hydropower. The article briefly introduces the history of turbine development. The overall picture is then completed by a few less-known historical documents. Full article
(This article belongs to the Special Issue Energy―History and Time Trends)
Show Figures

Figure 1

20 pages, 25296 KB  
Article
Optimization of Low Head Axial-Flow Turbines for an Overtopping BReakwater for Energy Conversion: A Case Study
by Antonio Mariani, Gaetano Crispino, Pasquale Contestabile, Furio Cascetta, Corrado Gisonni, Diego Vicinanza and Andrea Unich
Energies 2021, 14(15), 4618; https://doi.org/10.3390/en14154618 - 30 Jul 2021
Cited by 11 | Viewed by 2879
Abstract
Overtopping-type wave power conversion devices represent one of the most promising technology to combine reliability and competitively priced electricity supplies from waves. While satisfactory hydraulic and structural performance have been achieved, the selection of the hydraulic turbines and their regulation is a complex [...] Read more.
Overtopping-type wave power conversion devices represent one of the most promising technology to combine reliability and competitively priced electricity supplies from waves. While satisfactory hydraulic and structural performance have been achieved, the selection of the hydraulic turbines and their regulation is a complex process due to the very low head and a variable flow rate in the overtopping breakwater set-ups. Based on the experience acquired on the first Overtopping BReakwater for Energy Conversion (OBREC) prototype, operating since 2016, an activity has been carried out to select the most appropriate turbine dimension and control strategy for such applications. An example of this multivariable approach is provided and illustrated through a case study in the San Antonio Port, along the central coast of Chile. In this site the deployment of a breakwater equipped with OBREC modules is specifically investigated. Axial-flow turbines of different runner diameter are compared, proposing the optimal ramp height and turbine control strategy for maximizing system energy production. The energy production ranges from 20.5 MWh/y for the smallest runner diameter to a maximum of 34.8 MWh/y for the largest runner diameter. Full article
Show Figures

Figure 1

13 pages, 5013 KB  
Article
Optimization of the Runner for Extremely Low Head Bidirectional Tidal Bulb Turbine
by Yongyao Luo, Xin Liu, Zhengwei Wang, Yexiang Xiao, Chenglian He and Yiyang Zhang
Energies 2017, 10(6), 787; https://doi.org/10.3390/en10060787 - 7 Jun 2017
Cited by 11 | Viewed by 8797
Abstract
This paper presents a multi-objective optimization procedure for bidirectional bulb turbine runners which is completed using ANSYS Workbench. The optimization procedure is able to check many more geometries with less manual work. In the procedure, the initial blade shape is parameterized, the inlet [...] Read more.
This paper presents a multi-objective optimization procedure for bidirectional bulb turbine runners which is completed using ANSYS Workbench. The optimization procedure is able to check many more geometries with less manual work. In the procedure, the initial blade shape is parameterized, the inlet and outlet angles (β1, β2), as well as the starting and ending wrap angles (θ1, θ2) for the five sections of the blade profile, are selected as design variables, and the optimization target is set to obtain the maximum of the overall efficiency for the ebb and flood turbine modes. For the flow analysis, the ANSYS CFX code, with a SST (Shear Stress Transport) k-ω turbulence model, has been used to evaluate the efficiency of the turbine. An efficient response surface model relating the design parameters and the objective functions is obtained. The optimization strategy was used to optimize a model bulb turbine runner. Model tests were carried out to validate the final designs and the design procedure. For the four-bladed turbine, the efficiency improvement is 5.5% in the ebb operation direction, and 2.9% in the flood operation direction, as well as 4.3% and 4.5% for the three-bladed turbine. Numerical simulations were then performed to analyze the pressure pulsation in the pressure and suction sides of the blade for the prototype turbine with optimal four-bladed and three-bladed runners. The results show that the runner rotational frequency (fn) is the dominant frequency of the pressure pulsations in the blades for ebb and flood turbine modes, and the gravitational effect, rather than rotor-stator interaction (RSI), plays an important role in a low head horizontal axial turbine. The amplitudes of the pressure pulsations on the blade side facing the guide vanes varies little with the water head. However, the amplitudes of the pressure pulsations on the blade side facing the diffusion tube linearly increase with the water head. These results could provide valuable insight for reducing the pressure amplitudes in the bidirectional bulb turbine. Full article
(This article belongs to the Special Issue Marine Energy)
Show Figures

Figure 1

Back to TopTop