Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = longitudinal wheel force

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 11779 KiB  
Article
Dynamic Responses of a Single-Axle Trailer When Driving Over a Road Obstacle
by Dalibor Barta, Miroslav Blatnický, Alyona Lovska, Sławomir Kowalski, Aleš Slíva and Ján Dižo
Sensors 2025, 25(17), 5246; https://doi.org/10.3390/s25175246 (registering DOI) - 23 Aug 2025
Abstract
Trailers for passenger cars are often used for the transportation of goods. There are various trailer designs. Most trailers are equipped with axles, which include swinging arms and are suspended by rubber segments. Observations have revealed that empty trailers have unfavorable driving properties [...] Read more.
Trailers for passenger cars are often used for the transportation of goods. There are various trailer designs. Most trailers are equipped with axles, which include swinging arms and are suspended by rubber segments. Observations have revealed that empty trailers have unfavorable driving properties when they are driven on uneven roads, for example, the wheels could jump off the road. Such a situation is dangerous because it is not possible to transmit any contact forces (longitudinal, lateral, or vertical) between the wheel and the road. The goal of the present research was to measure acceleration generated in a single-axle trailer when driving over a road obstacle. Measurements were conducted in a non-public area to avoid the risk of accidents. Acceleration was recorded using two accelerometers placed on the single-axle trailer frame above the wheels’ axle of rotation. Tests were performed using a vehicle–trailer combination at the chosen driving speeds, and the results for driving speeds of 20 and 30 km/h are presented. Wood plates with a height of 25 and 50 mm were used as an artificial road obstacle. The single-axle trailer was loaded with gravel bags weighing 0 to 300 kg. The measurements revealed that heavier trailer loads and lower driving speeds are safer for trailer operation. Furthermore, the measurements also demonstrated that the wheels were significantly more likely to jump off the road with a 0 kg load and low driving speed. Full article
(This article belongs to the Special Issue Advanced Sensing and Analysis Technology in Transportation Safety)
Show Figures

Figure 1

21 pages, 2605 KiB  
Article
Design Evaluation of a Single Wheelset Roller Rig for Railroad Curving Dynamics and Creepage Studies
by Giovanni Mantovani, Nikhil Kumar and Mehdi Ahmadian
Designs 2025, 9(4), 99; https://doi.org/10.3390/designs9040099 - 20 Aug 2025
Viewed by 125
Abstract
This study presents a novel design for emulating wheelset curving dynamics by implementing a laterally constrained wheelset and two independently powered rollers. The new configuration extends the test capability of the existing Virginia Tech-Federal Railroad Administration (VT-FRA) roller rig from a single wheel [...] Read more.
This study presents a novel design for emulating wheelset curving dynamics by implementing a laterally constrained wheelset and two independently powered rollers. The new configuration extends the test capability of the existing Virginia Tech-Federal Railroad Administration (VT-FRA) roller rig from a single wheel to a wheelset (i.e., two wheels). The redesigned rig is intended for evaluating both the tangent track and curving dynamics of a wheelset on a railcar. Test data from earlier experiments with a single wheelset is analyzed to assess the control system’s ability to maintain the commanded roller speed. This evaluation determines whether the new system can accurately emulate curves. The study develops correction factors to account for the dissimilar contact patch sizes and longitudinal creep forces resulting from the dissimilar roller diameters. A novel force measurement method is proposed to resolve the creep forces at each contact patch independently. An assessment of the existing VT-FRA roller rig data indicates a maximum roller speed deviation of 0.37% from actual values, which is deemed to be within the intended accuracy for future tests with the redesigned rig. An analysis of the force measurements by a load platform demonstrates the feasibility of accurately determining the wheel–rail contact forces for the new design rig, identical to the original design. Despite the numerous challenges in integrating a new wheel and roller into the existing VT-FRA roller rig, the study demonstrates that such a redesign can be achieved within the space and kinematic constraints, while maintaining the intended measurement accuracy. Full article
(This article belongs to the Topic Vehicle Dynamics and Control, 2nd Edition)
Show Figures

Figure 1

33 pages, 7645 KiB  
Article
Evaluation of Rail Corrugation and Roughness Using In-Service Tramway Bogie Frame Vibrations: Addressing Challenges and Perspectives
by Krešimir Burnać, Ivo Haladin and Katarina Vranešić
Infrastructures 2025, 10(8), 209; https://doi.org/10.3390/infrastructures10080209 - 12 Aug 2025
Viewed by 218
Abstract
Rail corrugation and roughness represent typical irregularities on railway and tramway tracks, which cause increased dynamic forces, high-frequency vibrations, reduced riding comfort, shorter track lifespan, higher maintenance costs, and increased noise levels. Roughness and corrugation can be measured by evaluating the unevenness of [...] Read more.
Rail corrugation and roughness represent typical irregularities on railway and tramway tracks, which cause increased dynamic forces, high-frequency vibrations, reduced riding comfort, shorter track lifespan, higher maintenance costs, and increased noise levels. Roughness and corrugation can be measured by evaluating the unevenness of the rail longitudinal running surface, which can be conducted using handheld devices or trolleys (directly on the track). Alternatively, vehicle or track-based indirect methods offer practical solutions for determining the condition of the rail running surface. This paper presents a methodology for rail corrugation and roughness evaluation, using bogie frame vibration data from an instrumented in-service tramway vehicle operating on Zagreb’s tramway network. Furthermore, it investigates the effects of various factors on the evaluation method, including wheel roughness, lateral positioning, signal processing methods, horizontal geometry, wheel–rail contact force, and tramway vehicle vibroacoustic characteristics. It was concluded that a simplified methodology that did not include transfer functions or wheel roughness measurements yielded relatively good results for evaluating rail corrugation and roughness across several wavelength bands. To improve the presented methodology, future research should assess the vehicle’s vibroacoustic characteristics with experimental hammer impact tests, measure the influence of wheel roughness on wheel–rail contact and bogie vibrations, and refine the measurement campaign by increasing test runs, limiting speed variation, and conducting controlled tests. Full article
Show Figures

Figure 1

26 pages, 12786 KiB  
Article
EMB System Design and Clamping Force Tracking Control Research
by Junyi Zou, Haojun Yan, Yunbing Yan and Xianping Huang
Modelling 2025, 6(3), 72; https://doi.org/10.3390/modelling6030072 - 25 Jul 2025
Viewed by 438
Abstract
The electromechanical braking (EMB) system is an important component of intelligent vehicles and is also the core actuator for longitudinal dynamic control in autonomous driving motion control. Therefore, we propose a new mechanism layout form for EMB and a feedforward second-order linear active [...] Read more.
The electromechanical braking (EMB) system is an important component of intelligent vehicles and is also the core actuator for longitudinal dynamic control in autonomous driving motion control. Therefore, we propose a new mechanism layout form for EMB and a feedforward second-order linear active disturbance rejection controller based on clamping force. This solves the problem of excessive axial distance in traditional EMB and reduces the axial distance by 30%, while concentrating the PCB control board for the wheels on the EMB housing. This enables the ABS and ESP functions to be integrated into the EMB system, further enhancing the integration of line control and active safety functions. A feedforward second-order linear active disturbance rejection controller (LADRC) based on the clamping force of the brake caliper is proposed. Compared with the traditional clamping force control methods three-loop PID and adaptive fuzzy PID, it improves the response speed, steady-state error, and anti-interference ability. Moreover, the LADRC has more advantages in parameter adjustment. Simulation results show that the response speed is increased by 130 ms, the overshoot is reduced by 9.85%, and the anti-interference ability is increased by 41.2%. Finally, the feasibility of this control algorithm was verified through the EMB hardware-in-the-loop test bench. Full article
Show Figures

Figure 1

22 pages, 2789 KiB  
Article
Longitudinal Tire Force Estimation Method for 4WIDEV Based on Data-Driven Modified Recursive Subspace Identification Algorithm
by Xiaoyu Wang, Te Chen and Jiankang Lu
Algorithms 2025, 18(7), 409; https://doi.org/10.3390/a18070409 - 3 Jul 2025
Cited by 1 | Viewed by 348
Abstract
For the longitudinal tire force estimation problem of four-wheel independent drive electric vehicles (4WIDEVs), traditional model-based observers have limitations such as high modeling complexity and strong parameter sensitivity, while pure data-driven methods are susceptible to noise interference and have insufficient generalization ability. Therefore, [...] Read more.
For the longitudinal tire force estimation problem of four-wheel independent drive electric vehicles (4WIDEVs), traditional model-based observers have limitations such as high modeling complexity and strong parameter sensitivity, while pure data-driven methods are susceptible to noise interference and have insufficient generalization ability. Therefore, this study proposes a joint estimation framework that integrates data-driven and modified recursive subspace identification algorithms. Firstly, based on the electromechanical coupling mechanism, an electric drive wheel dynamics model (EDWM) is constructed, and multidimensional driving data is collected through a chassis dynamometer experimental platform. Secondly, an improved proportional integral observer (PIO) is designed to decouple the longitudinal force from the system input into a state variable, and a subspace identification recursive algorithm based on correction term with forgetting factor (CFF-SIR) is introduced to suppress the residual influence of historical data and enhance the ability to track time-varying parameters. The simulation and experimental results show that under complex working conditions without noise and interference, with noise influence (5% white noise), and with interference (5% irregular signal), the mean and mean square error of longitudinal force estimation under the CFF-SIR algorithm are significantly reduced compared to the correction-based subspace identification recursive (C-SIR) algorithm, and the comprehensive estimation accuracy is improved by 8.37%. It can provide a high-precision and highly adaptive longitudinal force estimation solution for vehicle dynamics control and intelligent driving systems. Full article
Show Figures

Figure 1

23 pages, 8211 KiB  
Article
An Experimental Study of Wheel–Rail Creep Curves Under Dry Contact Conditions Using V-Track
by Gokul J. Krishnan, Jan Moraal, Zili Li and Zhen Yang
Lubricants 2025, 13(7), 287; https://doi.org/10.3390/lubricants13070287 - 26 Jun 2025
Viewed by 548
Abstract
Friction behaviour at the wheel–rail interface is of critical importance for railway operations and maintenance and is generally characterised by creep curves. The V-Track test rig was used in this study to measure both the lateral and longitudinal creep curves with uncontaminated dry [...] Read more.
Friction behaviour at the wheel–rail interface is of critical importance for railway operations and maintenance and is generally characterised by creep curves. The V-Track test rig was used in this study to measure both the lateral and longitudinal creep curves with uncontaminated dry interface conditions, utilising contact pressures representative of operational railway wheel–rail systems. The novelties of this study are threefold. 1. With proper representations of train/track components, the V-Track tests revealed the effects of structural dynamics on measuring wheel–rail creep curves in real life. 2. Pure lateral and longitudinal creepage conditions were produced with two distinct experimental principles—displacement- and force-controlled—on the V-Track, i.e., by carefully controlling the angle of attack and the traction/braking torque, respectively, and thus the coefficient of friction from lateral and longitudinal creep curves measured on the same platform could be cross-checked. 3. The uncertainties in the measured creep curves were analysed, which was rarely addressed in previous studies on creep curve measurements. In addition, the measured creep curves were compared against the theoretical creep curves obtained from Kalker’s CONTACT. The influence of wheel rolling speed and torque direction on the creep curve characteristics was then investigated. The measurement results and findings demonstrate the reliability of the V-Track to measure wheel–rail creep curves and study the wheel–rail frictional rolling contact. Full article
(This article belongs to the Special Issue Tribology in Railway Engineering)
Show Figures

Figure 1

27 pages, 4248 KiB  
Article
Study of the Influence of the Two-Drive-Axle Bogie Parameters on the Three-Axle Vehicle Handling
by Vasyl Mateichyk, Anatolii Soltus, Eduard Klimov, Miroslaw Smieszek, Nataliia Kostian, Liudmyla Tarandushka and Nazar Marchuk
Machines 2025, 13(5), 394; https://doi.org/10.3390/machines13050394 - 9 May 2025
Viewed by 441
Abstract
The presence of a bogie in three-axle vehicles when moving along a curved trajectory leads to deterioration in its handling and maneuverability. The paper developed a mathematical model of the elastic bogie wheel while moving along a curvilinear trajectory, according to which the [...] Read more.
The presence of a bogie in three-axle vehicles when moving along a curved trajectory leads to deterioration in its handling and maneuverability. The paper developed a mathematical model of the elastic bogie wheel while moving along a curvilinear trajectory, according to which the bogie wheel simultaneously participates in curvilinear and plane-parallel motion with a slip angle. Such movement of the bogie wheels develops significant lateral and longitudinal forces on the steered wheels, which leads to the movement of the steered wheels with slip, redistribution of the load on them, tire twisting, and a decrease in the steering angle of the outside steered wheel due to the elasticity of the steering trapezoid. Based on the mathematical model of the bogie wheel, an analytical dependence was obtained to determine the minimum turning radius of a three-axle vehicle. The reliability of the analytical dependencies characterizing the movement of the bogie wheel along a curvilinear trajectory was determined by comparing the minimum turning radii of a three-axle vehicle with the intermediate axle lowered and raised. It has been established that the minimum turning radius of a vehicle with a bogie increases compared to a two-axle vehicle and depends on the cornering stiffnesses of the tires of the bogie and steered wheels, the bogie and vehicle wheelbases, the kinematic and elastic parameters of the steering trapezoid, the direction of turning of the steered wheels, and the load on the steered and the bogie wheels. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

27 pages, 8138 KiB  
Article
Trajectory Tracking Control Strategy of 20-Ton Heavy-Duty AGV Considering Load Transfer
by Xia Li, Shengzhan Chen, Xiaojie Chen, Benxue Liu, Chengming Wang and Yufeng Su
Appl. Sci. 2025, 15(8), 4512; https://doi.org/10.3390/app15084512 - 19 Apr 2025
Viewed by 559
Abstract
During the operation of outdoor heavy-duty Automated Guided Vehicle (AGV), the stability and safety of AGV are easily reduced due to load transfer. In order to solve this problem, a trajectory tracking control strategy considering load transfer is proposed to realize the trajectory [...] Read more.
During the operation of outdoor heavy-duty Automated Guided Vehicle (AGV), the stability and safety of AGV are easily reduced due to load transfer. In order to solve this problem, a trajectory tracking control strategy considering load transfer is proposed to realize the trajectory tracking of AGV and the adaptive distribution of driving torque. The three-degree-of-freedom (3-DOF) kinematics model and pose error model of heavy-duty AGV vehicles are established. The lateral load transfer and longitudinal load transfer rules are analyzed. The vehicle trajectory tracking control strategy is composed of an improved model predictive controller (IMPC) and drive motor torque adaptive distribution controller considering load transfer. By optimizing the lateral acceleration of the vehicle body, the IMPC controller improves the problem of large driving force difference between the left and right sides of the wheel caused by the lateral transfer of the load and the problem of large wheel adhesion rate caused by the longitudinal transfer of the load is improved by the speed controller and the torque proportional distribution controller. The joint simulation platform of MATLAB/Simulink and CarSim is built to simulate and analyze the trajectory tracking of heavy-duty AGV under different pavement adhesion coefficients. The simulation results have shown that compared with the control strategy without considering load transfer, on the two types of pavements with different adhesion coefficients, the maximum lateral acceleration is reduced by 19.7%, and the maximum tire adhesion rate is reduced by 11.5%. Full article
Show Figures

Figure 1

19 pages, 4650 KiB  
Article
Simulation Analysis of an Electric Locomotive with a Hydraulic Wheelset Guidance System for Improved Performance in Curved Tracks
by Jan Kalivoda
Machines 2025, 13(4), 321; https://doi.org/10.3390/machines13040321 - 14 Apr 2025
Viewed by 510
Abstract
A reduction of forces acting between the railway track and the vehicle is one of the key issues in the design of modern rolling stock. Because the capabilities of reducing wheel–rail contact forces in track curves by conventional methods are encountered at their [...] Read more.
A reduction of forces acting between the railway track and the vehicle is one of the key issues in the design of modern rolling stock. Because the capabilities of reducing wheel–rail contact forces in track curves by conventional methods are encountered at their limits, innovative approaches in the design of vehicle suspension and wheelset guidance occur. Among them, an active wheelset steering appears to be very promising. However, an active wheelset steering system is rather complicated and expensive and raises many safety issues. Therefore, a passive hydraulic system that links longitudinal motions of axle boxes is proposed. The system is relatively simple and, compared to the active wheelset steering, does not need any energy supply or sensor system for the detection of a track shape. Two arrangements of the hydraulic system had been proposed and implemented in a simulation model. The simulation model is based on a cosimulation of two separate models, a multibody model of an electric locomotive, and a model of the hydraulic system. The goal of this study is to evaluate the contribution of the hydraulic system to the natural radial alignment of wheelsets in curves and thus to reduce the wear of wheels and to determine the parameters of the hydraulic system to maximize the wear reduction benefits while minimizing a decrease in critical speed. Simulations of a vehicle running in various scenarios, including a run in a real track section of a length of 20 km, have been performed. As a criterion for the wear of wheels and rails, a T-gamma wear number was used, from which a sum of frictional work in wheel–rail contacts was calculated. The results of the simulations and the comparison of hydraulic axle box connection systems and a standard locomotive are presented and discussed in the paper. The results obtained confirmed a significant potential benefit of the proposed hydraulic system in reducing wheel wear on curved tracks. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

18 pages, 4586 KiB  
Article
Experimental Study on Fatigue Performance of CRTS III Ballastless Track-Girder System Considering Transverse Wheel–Rail Force
by Peng Liu, Yong Liu, Jingxiang Huang, Jiuwen Bao, Jun Liu and Xiang Cheng
Coatings 2025, 15(4), 399; https://doi.org/10.3390/coatings15040399 - 27 Mar 2025
Viewed by 491
Abstract
The CRTS III (China Railway Track System Type III)-girder is susceptible to fatigue damage under high-frequency train loads. However, existing research lacks sufficient focus on the CRTS III-girder and the transverse wheel–rail forces encountered during train operation. To better replicate the stress conditions [...] Read more.
The CRTS III (China Railway Track System Type III)-girder is susceptible to fatigue damage under high-frequency train loads. However, existing research lacks sufficient focus on the CRTS III-girder and the transverse wheel–rail forces encountered during train operation. To better replicate the stress conditions experienced by high-speed railway track systems, a 1:4 scale CRTS III-girder was fabricated following the principle of mid-span concrete stress equivalence. Subsequently, 9 million transverse and vertical fatigue load cycles were applied to the specimen, leading to the following conclusions: First, no visible cracks appeared on the CRTS III-girder surface during the experiment, indicating strong fatigue resistance under train loads. Second, the box girder primarily exhibited a linear elastic response with minimal stiffness variation. Meanwhile, the upper ballastless track structure experienced a highly complex stress state, with significant variations observed across different layers under cyclic fatigue loading. Third, under fatigue loading, the longitudinal strain of the mid-span track slab and the self-compacting concrete (SCC) layer exhibited an overall decreasing trend, with reduction rates of −66% and −57.9%, respectively. Conversely, the longitudinal strain of the base plate and the top and bottom of the box girder gradually increased, with respective increases of 38.6%, 10.4%, and 12.2%. Finally, the connection between the base plate and the box girder remained robust, showing no relative slippage in the transverse, longitudinal, or vertical directions. The sliding layer exhibited stable performance in the longitudinal direction, with no significant degradation observed under cyclic fatigue loading. However, with increasing load cycles, the transverse relative displacement of the sliding layer gradually increased, reaching a maximum of 0.1 mm. This displacement, in turn, contributed to transverse rail movement, potentially affecting driving safety. Full article
Show Figures

Figure 1

31 pages, 9859 KiB  
Article
Design of Manual Handling Carts: A Novel Approach Combining Corrective Forces and Modelling to Prevent Injuries
by Stephane Gille
Safety 2025, 11(1), 25; https://doi.org/10.3390/safety11010025 - 10 Mar 2025
Viewed by 1425
Abstract
Design standards for manual handling equipment tend to measure maximal loads and moving forces using a smooth, flat, horizontal steel plate; yet, in everyday use, such equipment is used on floor coverings. Such test methods therefore overestimate the maximal loads acceptable for operators, [...] Read more.
Design standards for manual handling equipment tend to measure maximal loads and moving forces using a smooth, flat, horizontal steel plate; yet, in everyday use, such equipment is used on floor coverings. Such test methods therefore overestimate the maximal loads acceptable for operators, which increases the risk of injury including the development of musculoskeletal disorders. This study presents a new approach for calculating the pushing force for manually handled equipment moving longitudinally on resilient floor coverings from the pushing force measured on a steel plate. This method combines corrective forces with the pushing force model presented in this study. Corrective force abaci, which describe corrective forces as functions of the hardness of the floor covering’s base foam, are provided for each type of tread and bearing in the cart’s wheels. These abaci have been elaborated from pushing force measurements obtained with 44 wheel designs (of varying diameters, treads and bearings) tested on five different floors on a custom-built test bench. A mean deviation between experimental results and model predictions of 5.1% is obtained for pushing forces. These results permit us to account for the real conditions in which manual handling equipment is used and help in reducing the incidence of musculoskeletal disorders. Full article
Show Figures

Figure 1

26 pages, 3217 KiB  
Article
Fault-Tolerant Collaborative Control of Four-Wheel-Drive Electric Vehicle for One or More In-Wheel Motors’ Faults
by Han Feng, Yukun Tao, Jianbo Feng, Yule Zhang, Hongtao Xue, Tiansi Wang, Xing Xu and Peng Chen
Sensors 2025, 25(5), 1540; https://doi.org/10.3390/s25051540 - 1 Mar 2025
Cited by 10 | Viewed by 1317
Abstract
A fault-tolerant collaborative control strategy for four-wheel-drive electric vehicles is proposed to address hidden safety issues caused by one or more in-wheel motor faults; the basic design scheme is that the control system is divided into two layers of motion tracking and torque [...] Read more.
A fault-tolerant collaborative control strategy for four-wheel-drive electric vehicles is proposed to address hidden safety issues caused by one or more in-wheel motor faults; the basic design scheme is that the control system is divided into two layers of motion tracking and torque distribution, and three systems, including driving, braking, and front-wheel steering are controlled collaboratively for four-wheel torque distribution. In the layer of motion tracking, a vehicle model with two-degree-of-freedom is employed to predict the control reference values of the longitudinal force and additional yaw moment required; four types of sensors, such as wheel speed, acceleration, gyroscope, and steering wheel angle, are used to calculate the actual values. At the torque distribution layer, SSOD and MSCD distribution schemes are designed to cope with two operating conditions, namely sufficient and insufficient output capacity after local hub motor failure, respectively, focusing on the objective function, constraints, and control variables of the MSCD control strategy. Finally, two operating environments, a straight-line track, and a DLC track, are set up to verify the effectiveness of the proposed control method. The results indicate that, compared with traditional methods, the average errors of the center of mass sideslip angle and yaw rate are reduced by at least 12.9% and 5.88%, respectively, in the straight-line track environment. In the DLC track environment, the average errors of the center of mass sideslip angle and yaw rate are reduced by at least 6% and 4.5%, respectively. The proposed fault-tolerant controller ensures that the four-wheel-drive electric vehicle meets the requirements of handling stability and safety under one or more hub motor failure conditions. Full article
(This article belongs to the Special Issue Intelligent Maintenance and Fault Diagnosis of Mobility Equipment)
Show Figures

Figure 1

27 pages, 4076 KiB  
Article
Horizontal and Vertical Coordinated Control of Three-Axis Heavy Vehicles
by Lanchun Zhang, Fei Huang, Hao Cui, Yaqi Wang and Lin Yang
Machines 2025, 13(2), 123; https://doi.org/10.3390/machines13020123 - 7 Feb 2025
Viewed by 871
Abstract
In order to coordinate the transverse motion control and longitudinal motion control in the tracking control process and ensure the yaw stability and roll stability in the tracking process, a transverse and longitudinal coordinated control method of three-axis heavy vehicles is designed based [...] Read more.
In order to coordinate the transverse motion control and longitudinal motion control in the tracking control process and ensure the yaw stability and roll stability in the tracking process, a transverse and longitudinal coordinated control method of three-axis heavy vehicles is designed based on model predictive control. The lateral motion controller is designed based on the phase plane method. The upper controller calculates the front wheel angle and additional yaw moment, which ensures the yaw stability while tracking the vehicle. The lower controller calculates the driving force and braking force of the three-axis heavy vehicle. The velocity planning method is designed with the coupling point of longitudinal velocity to coordinate the lateral and longitudinal motion controllers and prevent vehicle rollover. By building the vehicle model in Trucksim (2016.1) and establishing the horizontal and vertical coordination control in Matlab (R2016b), the designed horizontal and vertical coordination control method is simulated and verified. The simulation results show that the designed method can accurately track the reference trajectory while ensuring the yaw stability and roll stability of the three-axis heavy vehicle. Full article
Show Figures

Figure 1

13 pages, 4126 KiB  
Article
Developing an Algorithm Limiting the Longitudinal Acceleration of an Electric Vehicle
by Akop Antonyan, Aleksandr Klimov, Andrey Buchkin, Andrey Keller, Sergey Shadrin, Daria Makarova and Yury Furletov
Vehicles 2025, 7(1), 7; https://doi.org/10.3390/vehicles7010007 - 21 Jan 2025
Viewed by 914
Abstract
The electric traction drive is increasingly being applied as a device providing traction force on driving wheels. This is due to its reliable torque transmission to the driving wheels, step-less regulation of the traction force on the driving wheels depending on the driving [...] Read more.
The electric traction drive is increasingly being applied as a device providing traction force on driving wheels. This is due to its reliable torque transmission to the driving wheels, step-less regulation of the traction force on the driving wheels depending on the driving conditions, and increased design capabilities. In terms of power, the electric traction drive has maximum torque at low speeds, which internal combustion engines lack. This property of the electric drive is not applied in urban vehicles, as not all passengers are comfortable with intensive acceleration. In modern vehicles with an electric traction drive, the maximum acceleration can be limited by software, which is the focus of this study. This paper aims to develop an algorithm capable of recognizing when the permissible longitudinal acceleration exceeds the limit and generating an action to maintain the acceptable acceleration level. The electric traction drive of a large-class electric bus was used as a control object. An algorithm and a control law are hereby developed, which reduce longitudinal acceleration using PI control. Both simulation modeling and full-scale tests on the electric bus were carried out to evaluate the performance and efficiency of the algorithm. In this paper, the authors also introduce the cumulative velocity concept and prove the operability and efficiency of the developed method. Full article
Show Figures

Figure 1

30 pages, 15012 KiB  
Article
Research on Lateral Stability Control of Four-Wheel Independent Drive Electric Vehicle Based on State Estimation
by Yu-Jie Ma, Chih-Keng Chen and Hongbin Ren
Sensors 2025, 25(2), 474; https://doi.org/10.3390/s25020474 - 15 Jan 2025
Viewed by 1221
Abstract
This paper proposes a hierarchical framework-based solution to address the challenges of vehicle state estimation and lateral stability control in four-wheel independent drive electric vehicles. First, based on a three-degrees-of-freedom four-wheel vehicle model combined with the Magic Formula Tire model (MF-T), a hierarchical [...] Read more.
This paper proposes a hierarchical framework-based solution to address the challenges of vehicle state estimation and lateral stability control in four-wheel independent drive electric vehicles. First, based on a three-degrees-of-freedom four-wheel vehicle model combined with the Magic Formula Tire model (MF-T), a hierarchical estimation method is designed. The upper layer employs the Kalman Filter (KF) and Extended Kalman Filter (EKF) to estimate the vertical load of the wheels, while the lower layer utilizes EKF in conjunction with the upper-layer results to further estimate the lateral forces, longitudinal velocity, and lateral velocity, achieving accurate vehicle state estimation. On this basis, a hierarchical lateral stability control system is developed. The upper controller determines stability requirements based on driver inputs and vehicle states, switches between handling assistance mode and stability control mode, and generates yaw moment and speed control torques transmitted to the lower controller. The lower controller optimally distributes these torques to the four wheels. Through closed-loop Double Lane Change (DLC) tests under low-, medium-, and high-road-adhesion conditions, the results demonstrate that the proposed hierarchical estimation method offers high computational efficiency and superior estimation accuracy. The hierarchical control system significantly enhances vehicle handling and stability under low and medium road adhesion conditions. Full article
Show Figures

Figure 1

Back to TopTop