Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,971)

Search Parameters:
Keywords = long-time memory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4363 KiB  
Article
Method for Predicting Transformer Top Oil Temperature Based on Multi-Model Combination
by Lin Yang, Minghe Wang, Liang Chen, Fan Zhang, Shen Ma, Yang Zhang and Sixu Yang
Electronics 2025, 14(14), 2855; https://doi.org/10.3390/electronics14142855 (registering DOI) - 17 Jul 2025
Abstract
The top oil temperature of a transformer is a vital sign reflecting its operational condition. The accurate prediction of this parameter is essential for evaluating insulation performance and extending equipment lifespan. At present, the prediction of oil temperature is mainly based on single-feature [...] Read more.
The top oil temperature of a transformer is a vital sign reflecting its operational condition. The accurate prediction of this parameter is essential for evaluating insulation performance and extending equipment lifespan. At present, the prediction of oil temperature is mainly based on single-feature prediction. However, it overlooks the influence of other features. This has a negative effect on the prediction accuracy. Furthermore, the training dataset is often made up of data from a single transformer. This leads to the poor generalization of the prediction. To tackle these challenges, this paper leverages large-scale data analysis and processing techniques, and presents a transformer top oil temperature prediction model that combines multiple models. The Convolutional Neural Network was applied in this method to extract spatial features from multiple input variables. Subsequently, a Long Short-Term Memory network was employed to capture dynamic patterns in the time series. Meanwhile, a Transformer encoder enhanced feature interaction and global perception. The spatial characteristics extracted by the CNN and the temporal characteristics extracted by LSTM were further integrated to create a more comprehensive representation. The established model was optimized using the Whale Optimization Algorithm to improve prediction accuracy. The results of the experiment indicate that the maximum RMSE and MAPE of this method on the summer and winter datasets were 0.5884 and 0.79%, respectively, demonstrating superior prediction accuracy. Compared with other models, the proposed model improved prediction performance by 13.74%, 36.66%, and 43.36%, respectively, indicating high generalization capability and accuracy. This provides theoretical support for condition monitoring and fault warning of power equipment. Full article
Show Figures

Figure 1

21 pages, 4232 KiB  
Article
Fault Prediction of Hydropower Station Based On CNN-LSTM-GAN with Biased Data
by Bei Liu, Xiao Wang, Zhaoxin Zhang, Zhenjie Zhao, Xiaoming Wang and Ting Liu
Energies 2025, 18(14), 3772; https://doi.org/10.3390/en18143772 - 16 Jul 2025
Abstract
Fault prediction of hydropower station is crucial for the stable operation of generator set equipment, but the traditional method struggles to deal with data with an imbalanced distribution and untrustworthiness. This paper proposes a fault detection method based on a convolutional neural network [...] Read more.
Fault prediction of hydropower station is crucial for the stable operation of generator set equipment, but the traditional method struggles to deal with data with an imbalanced distribution and untrustworthiness. This paper proposes a fault detection method based on a convolutional neural network (CNNs) and long short-term memory network (LSTM) with a generative adversarial network (GAN). Firstly, a reliability mechanism based on principal component analysis (PCA) is designed to solve the problem of data bias caused by multiple monitoring devices. Then, the CNN-LSTM network is used to predict time series data, and the GAN is used to expand fault data samples to solve the problem of an unbalanced data distribution. Meanwhile, a multi-scale feature extraction network with time–frequency information is designed to improve the accuracy of fault detection. Finally, a dynamic multi-task training algorithm is proposed to ensure the convergence and training efficiency of the deep models. Experimental results show that compared with RNN, GRU, SVM, and threshold detection algorithms, the proposed fault prediction method improves the accuracy performance by 5.5%, 4.8%, 7.8%, and 9.3%, with at least a 160% improvement in the fault recall rate. Full article
(This article belongs to the Special Issue Optimal Schedule of Hydropower and New Energy Power Systems)
23 pages, 1631 KiB  
Article
Detecting Malicious Anomalies in Heavy-Duty Vehicular Networks Using Long Short-Term Memory Models
by Mark J. Potvin and Sylvain P. Leblanc
Sensors 2025, 25(14), 4430; https://doi.org/10.3390/s25144430 - 16 Jul 2025
Abstract
Utilizing deep learning models to detect malicious anomalies within the traffic of application layer J1939 protocol networks, found on heavy-duty commercial vehicles, is becoming a critical area of research in platform protection. At the physical layer, the controller area network (CAN) bus is [...] Read more.
Utilizing deep learning models to detect malicious anomalies within the traffic of application layer J1939 protocol networks, found on heavy-duty commercial vehicles, is becoming a critical area of research in platform protection. At the physical layer, the controller area network (CAN) bus is the backbone network for most vehicles. The CAN bus is highly efficient and dependable, which makes it a suitable networking solution for automobiles where reaction time and speed are of the essence due to safety considerations. Much recent research has been conducted on securing the CAN bus explicitly; however, the importance of protecting the J1939 protocol is becoming apparent. Our research utilizes long short-term memory models to predict the next binary data sequence of a J1939 packet. Our primary objective is to compare the performance of our J1939 detection system trained on data sub-fields against a published CAN system trained on the full data payload. We conducted a series of experiments to evaluate both detection systems by utilizing a simulated attack representation to generate anomalies. We show that both detection systems outperform one another on a case-by-case basis and determine that there is a clear requirement for a multifaceted security approach for vehicular networks. Full article
Show Figures

Figure 1

22 pages, 1534 KiB  
Article
Predictability of Air Pollutants Based on Detrended Fluctuation Analysis: Ekibastuz Сoal-Mining Center in Northeastern Kazakhstan
by Oleksandr Kuchanskyi, Andrii Biloshchytskyi, Yurii Andrashko, Alexandr Neftissov, Svitlana Biloshchytska and Sergiy Bronin
Urban Sci. 2025, 9(7), 273; https://doi.org/10.3390/urbansci9070273 - 16 Jul 2025
Abstract
Environmental comfort and air pollution are among the most important indicators for assessing the population’s quality of life in urban agglomerations. This study aims to explore long-term memory in air pollution time series by analyzing the dynamics of the Hurst exponent and evaluating [...] Read more.
Environmental comfort and air pollution are among the most important indicators for assessing the population’s quality of life in urban agglomerations. This study aims to explore long-term memory in air pollution time series by analyzing the dynamics of the Hurst exponent and evaluating the predictability index. This type of statistical pre-forecast analysis is essential for developing accurate forecasting models for such time series. The effectiveness of air quality monitoring systems largely depends on the precision of these forecasts. The Ekibastuz coal-mining center, which houses one of the largest coal-fired power stations in Kazakhstan and the world, with a capacity of about 4000 MW, was chosen as an example for the study. Data for the period from 1 March 2023 to 31 December 2024 were collected and analyzed at the Ekibastuz coal-fired power station. During the specified period, 14 indicators (67,527 observations) were collected at 10 min intervals, including mass concentrations of CO, NO, NO2, SO2, PM2.5, and PM10, as well as current mass consumption of CO, NO, NO2, SO2, dust, and NOx. The detrended fluctuation analysis of a time series of air pollution indicators was used to calculate the Hurst exponent and identify long-term memory. Changes in the Hurst exponent in regards to dynamics were also investigated, and a predictability index was calculated to monitor emissions of pollutants in the air. Long-term memory is recorded in the structure of all the time series of air pollution indicators. Dynamic analysis of the Hurst exponent confirmed persistent time series characteristics, with an average Hurst exponent of about 0.7. Identifying the time series plots for which the Hurst exponent is falling (analysis of the indicator of dynamics), along with the predictability index, is a sign of an increase in the influence of random factors on the time series. This is a sign of changes in the dynamics of the pollutant release concentrations and may indicate possible excess emissions that need to be controlled. Calculating the dynamic changes in the Hurst exponent for the emission time series made it possible to identify two distinct clusters corresponding to periods of persistence and randomness in the operation of the coal-fired power station. The study shows that evaluating the predictability index helps fine-tune the parameters of time series forecasting models, which is crucial for developing reliable air pollution monitoring systems. The results obtained in this study allow us to conclude that the method of trended fluctuation analysis can be the basis for creating an indicator of the level of air pollution, which allows us to quickly respond to possible deviations from the established standards. Environmental services can use the results to build reliable monitoring systems for air pollution from coal combustion emissions, especially near populated areas. Full article
Show Figures

Figure 1

22 pages, 3873 KiB  
Article
Harnessing YOLOv11 for Enhanced Detection of Typical Autism Spectrum Disorder Behaviors Through Body Movements
by Ayman Noor, Hanan Almukhalfi, Arthur Souza and Talal H. Noor
Diagnostics 2025, 15(14), 1786; https://doi.org/10.3390/diagnostics15141786 - 15 Jul 2025
Viewed by 70
Abstract
Background/Objectives: Repetitive behaviors such as hand flapping, body rocking, and head shaking characterize Autism Spectrum Disorder (ASD) while functioning as early signs of neurodevelopmental variations. Traditional diagnostic procedures require extensive manual observation, which takes significant time, produces subjective results, and remains unavailable [...] Read more.
Background/Objectives: Repetitive behaviors such as hand flapping, body rocking, and head shaking characterize Autism Spectrum Disorder (ASD) while functioning as early signs of neurodevelopmental variations. Traditional diagnostic procedures require extensive manual observation, which takes significant time, produces subjective results, and remains unavailable to many regions. The research introduces a real-time system for the detection of ASD-typical behaviors by analyzing body movements through the You Only Look Once (YOLOv11) deep learning model. Methods: The system’s multi-layered design integrates monitoring, network, cloud, and typical ASD behavior detection layers to facilitate real-time video acquisition, wireless data transfer, and cloud analysis along with ASD-typical behavior classification. We gathered and annotated our own dataset comprising 72 videos, yielding a total of 13,640 images representing four behavior classes that include hand flapping, body rocking, head shaking, and non_autistic. Results: YOLOv11 demonstrates superior performance compared to baseline models like the sub-sampling (CNN) (MobileNet-SSD) and Long Short-Term Memory (LSTM) by achieving 99% accuracy along with 96% precision and 97% in recall and the F1-score. Conclusions: The results indicate that our system provides a scalable solution for real-time ASD screening, which might help clinicians, educators, and caregivers with early intervention, as well as ongoing behavioral monitoring. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

17 pages, 2550 KiB  
Article
Solar and Wind 24 H Sequenced Prediction Using L-Transform Component and Deep LSTM Learning in Representation of Spatial Pattern Correlation
by Ladislav Zjavka
Atmosphere 2025, 16(7), 859; https://doi.org/10.3390/atmos16070859 - 15 Jul 2025
Viewed by 126
Abstract
Spatiotemporal correlations between meteo-inputs and wind–solar outputs in an optimal regional scale are crucial for developing robust models, reliable in mid-term prediction time horizons. Modelling border conditions is vital for early recognition of progress in chaotic atmospheric processes at the destination of interest. [...] Read more.
Spatiotemporal correlations between meteo-inputs and wind–solar outputs in an optimal regional scale are crucial for developing robust models, reliable in mid-term prediction time horizons. Modelling border conditions is vital for early recognition of progress in chaotic atmospheric processes at the destination of interest. This approach is used in differential and deep learning; artificial intelligence (AI) techniques allow for reliable pattern representation in long-term uncertainty and regional irregularities. The proposed day-by-day estimation of the RE production potential is based on first data processing in detecting modelling initialisation times from historical databases, considering correlation distance. Optimal data sampling is crucial for AI training in statistically based predictive modelling. Differential learning (DfL) is a recently developed and biologically inspired strategy that combines numerical derivative solutions with neurocomputing. This hybrid approach is based on the optimal determination of partial differential equations (PDEs) composed at the nodes of gradually expanded binomial trees. It allows for modelling of highly uncertain weather-related physical systems using unstable RE. The main objective is to improve its self-evolution and the resulting computation in prediction time. Representing relevant patterns by their similarity factors in input–output resampling reduces ambiguity in RE forecasting. Node-by-node feature selection and dynamical PDE representation of DfL are evaluated along with long-short-term memory (LSTM) recurrent processing of deep learning (DL), capturing complex spatio-temporal patterns. Parametric C++ executable software with one-month spatial metadata records is available to compare additional modelling strategies. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in Atmospheric Sciences)
Show Figures

Figure 1

15 pages, 6454 KiB  
Article
xLSTM-Based Urban Traffic Flow Prediction for Intelligent Transportation Governance
by Chung-I Huang, Jih-Sheng Chang, Jun-Wei Hsieh, Jyh-Horng Wu and Wen-Yi Chang
Appl. Sci. 2025, 15(14), 7859; https://doi.org/10.3390/app15147859 - 14 Jul 2025
Viewed by 99
Abstract
Urban traffic congestion poses persistent challenges to mobility, public safety, and governance efficiency in metropolitan areas. This study proposes an intelligent traffic flow forecasting framework based on an extended Long Short-Term Memory (xLSTM) model, specifically designed for real-time congestion prediction and proactive police [...] Read more.
Urban traffic congestion poses persistent challenges to mobility, public safety, and governance efficiency in metropolitan areas. This study proposes an intelligent traffic flow forecasting framework based on an extended Long Short-Term Memory (xLSTM) model, specifically designed for real-time congestion prediction and proactive police dispatch support. Utilizing a real-world dataset collected from over 300 vehicle detector (VD) sensors, the proposed model integrates vehicle volume, speed, and lane occupancy data at five-minute intervals. Methodologically, the xLSTM model incorporates matrix-based memory cells and exponential gating mechanisms to enhance spatio-temporal learning capabilities. Model performance is evaluated using multiple metrics, including congestion classification accuracy, F1-score, MAE, RMSE, and inference latency. The xLSTM model achieves a congestion prediction accuracy of 87.3%, an F1-score of 0.882, and an average inference latency of 41.2 milliseconds—outperforming baseline LSTM, GRU, and Transformer-based models in both accuracy and speed. These results validate the system’s suitability for real-time deployment in police control centers, where timely prediction of traffic congestion enables anticipatory patrol allocation and dynamic signal adjustment. By bridging AI-driven forecasting with public safety operations, this research contributes a validated and scalable approach to intelligent transportation governance, enhancing the responsiveness of urban mobility systems and advancing smart city initiatives. Full article
Show Figures

Figure 1

35 pages, 2297 KiB  
Article
Secure Cooperative Dual-RIS-Aided V2V Communication: An Evolutionary Transformer–GRU Framework for Secrecy Rate Maximization in Vehicular Networks
by Elnaz Bashir, Francisco Hernando-Gallego, Diego Martín and Farzaneh Shoushtari
World Electr. Veh. J. 2025, 16(7), 396; https://doi.org/10.3390/wevj16070396 - 14 Jul 2025
Viewed by 57
Abstract
The growing demand for reliable and secure vehicle-to-vehicle (V2V) communication in next-generation intelligent transportation systems has accelerated the adoption of reconfigurable intelligent surfaces (RIS) as a means of enhancing link quality, spectral efficiency, and physical layer security. In this paper, we investigate the [...] Read more.
The growing demand for reliable and secure vehicle-to-vehicle (V2V) communication in next-generation intelligent transportation systems has accelerated the adoption of reconfigurable intelligent surfaces (RIS) as a means of enhancing link quality, spectral efficiency, and physical layer security. In this paper, we investigate the problem of secrecy rate maximization in a cooperative dual-RIS-aided V2V communication network, where two cascaded RISs are deployed to collaboratively assist with secure data transmission between mobile vehicular nodes in the presence of eavesdroppers. To address the inherent complexity of time-varying wireless channels, we propose a novel evolutionary transformer-gated recurrent unit (Evo-Transformer-GRU) framework that jointly learns temporal channel patterns and optimizes the RIS reflection coefficients, beam-forming vectors, and cooperative communication strategies. Our model integrates the sequence modeling strength of GRUs with the global attention mechanism of transformer encoders, enabling the efficient representation of time-series channel behavior and long-range dependencies. To further enhance convergence and secrecy performance, we incorporate an improved gray wolf optimizer (IGWO) to adaptively regulate the model’s hyper-parameters and fine-tune the RIS phase shifts, resulting in a more stable and optimized learning process. Extensive simulations demonstrate the superiority of the proposed framework compared to existing baselines, such as transformer, bidirectional encoder representations from transformers (BERT), deep reinforcement learning (DRL), long short-term memory (LSTM), and GRU models. Specifically, our method achieves an up to 32.6% improvement in average secrecy rate and a 28.4% lower convergence time under varying channel conditions and eavesdropper locations. In addition to secrecy rate improvements, the proposed model achieved a root mean square error (RMSE) of 0.05, coefficient of determination (R2) score of 0.96, and mean absolute percentage error (MAPE) of just 0.73%, outperforming all baseline methods in prediction accuracy and robustness. Furthermore, Evo-Transformer-GRU demonstrated rapid convergence within 100 epochs, the lowest variance across multiple runs. Full article
Show Figures

Figure 1

24 pages, 5534 KiB  
Article
Enhancing Healthcare Assistance with a Self-Learning Robotics System: A Deep Imitation Learning-Based Solution
by Yagna Jadeja, Mahmoud Shafik, Paul Wood and Aaisha Makkar
Electronics 2025, 14(14), 2823; https://doi.org/10.3390/electronics14142823 - 14 Jul 2025
Viewed by 198
Abstract
This paper presents a Self-Learning Robotic System (SLRS) for healthcare assistance using Deep Imitation Learning (DIL). The proposed SLRS solution can observe and replicate human demonstrations, thereby acquiring complex skills without the need for explicit task-specific programming. It incorporates modular components for perception [...] Read more.
This paper presents a Self-Learning Robotic System (SLRS) for healthcare assistance using Deep Imitation Learning (DIL). The proposed SLRS solution can observe and replicate human demonstrations, thereby acquiring complex skills without the need for explicit task-specific programming. It incorporates modular components for perception (i.e., advanced computer vision methodologies), actuation (i.e., dynamic interaction with patients and healthcare professionals in real time), and learning. The innovative approach of implementing a hybrid model approach (i.e., deep imitation learning and pose estimation algorithms) facilitates autonomous learning and adaptive task execution. The environmental awareness and responsiveness were also enhanced using both a Convolutional Neural Network (CNN)-based object detection mechanism using YOLOv8 (i.e., with 94.3% accuracy and 18.7 ms latency) and pose estimation algorithms, alongside a MediaPipe and Long Short-Term Memory (LSTM) framework for human action recognition. The developed solution was tested and validated in healthcare, with the aim to overcome some of the current challenges, such as workforce shortages, ageing populations, and the rising prevalence of chronic diseases. The CAD simulation, validation, and verification tested functions (i.e., assistive functions, interactive scenarios, and object manipulation) of the system demonstrated the robot’s adaptability and operational efficiency, achieving an 87.3% task completion success rate and over 85% grasp success rate. This approach highlights the potential use of an SLRS for healthcare assistance. Further work will be undertaken in hospitals, care homes, and rehabilitation centre environments to generate complete holistic datasets to confirm the system’s reliability and efficiency. Full article
Show Figures

Figure 1

27 pages, 3705 KiB  
Article
A Method for Selecting the Appropriate Source Domain Buildings for Building Energy Prediction in Transfer Learning: Using the Euclidean Distance and Pearson Coefficient
by Chuyi Luo, Liang Xia and Sung-Hugh Hong
Energies 2025, 18(14), 3706; https://doi.org/10.3390/en18143706 - 14 Jul 2025
Viewed by 78
Abstract
Building energy prediction faces challenges such as data scarcity while Transfer Learning (TL) demonstrates significant potential by leveraging source building energy data to enhance target building energy prediction. However, the accuracy of TL heavily relies on selecting appropriate source buildings as the source [...] Read more.
Building energy prediction faces challenges such as data scarcity while Transfer Learning (TL) demonstrates significant potential by leveraging source building energy data to enhance target building energy prediction. However, the accuracy of TL heavily relies on selecting appropriate source buildings as the source data. This study proposes a novel, easy-to-understand, statistics-based visualization method that combines the Euclidean distance and Pearson correlation coefficient for selecting source buildings in TL for target building electricity prediction. Long Short-Term Memory, the Gated Recurrent Unit, and the Convolutional Neural Network were applied to verify the appropriateness of the source domain buildings. The results showed the source building, selected via the method proposed by this research, could reduce 65% of computational costs, while the RMSE was approximately 6.5 kWh, and the R2 was around 0.92. The method proposed in this study is well suited for scenes requiring rapid response times and exhibiting low tolerance for prediction errors. Full article
(This article belongs to the Special Issue Innovations in Low-Carbon Building Energy Systems)
Show Figures

Figure 1

27 pages, 9802 KiB  
Article
Flight-Safe Inference: SVD-Compressed LSTM Acceleration for Real-Time UAV Engine Monitoring Using Custom FPGA Hardware Architecture
by Sreevalliputhuru Siri Priya, Penneru Shaswathi Sanjana, Rama Muni Reddy Yanamala, Rayappa David Amar Raj, Archana Pallakonda, Christian Napoli and Cristian Randieri
Drones 2025, 9(7), 494; https://doi.org/10.3390/drones9070494 - 14 Jul 2025
Viewed by 244
Abstract
Predictive maintenance (PdM) is a proactive strategy that enhances safety, minimizes unplanned downtime, and optimizes operational costs by forecasting equipment failures before they occur. This study presents a novel Field Programmable Gate Array (FPGA)-accelerated predictive maintenance framework for UAV engines using a Singular [...] Read more.
Predictive maintenance (PdM) is a proactive strategy that enhances safety, minimizes unplanned downtime, and optimizes operational costs by forecasting equipment failures before they occur. This study presents a novel Field Programmable Gate Array (FPGA)-accelerated predictive maintenance framework for UAV engines using a Singular Value Decomposition (SVD)-optimized Long Short-Term Memory (LSTM) model. The model performs binary classification to predict the likelihood of imminent engine failure by processing normalized multi-sensor data, including temperature, pressure, and vibration measurements. To enable real-time deployment on resource-constrained UAV platforms, the LSTM’s weight matrices are compressed using Singular Value Decomposition (SVD), significantly reducing computational complexity while preserving predictive accuracy. The compressed model is executed on a Xilinx ZCU-104 FPGA and uses a pipelined, AXI-based hardware accelerator with efficient memory mapping and parallelized gate calculations tailored for low-power onboard systems. Unlike prior works, this study uniquely integrates a tailored SVD compression strategy with a custom hardware accelerator co-designed for real-time, flight-safe inference in UAV systems. Experimental results demonstrate a 98% classification accuracy, a 24% reduction in latency, and substantial FPGA resource savings—specifically, a 26% decrease in BRAM usage and a 37% reduction in DSP consumption—compared to the 32-bit floating-point SVD-compressed FPGA implementation, not CPU or GPU. These findings confirm the proposed system as an efficient and scalable solution for real-time UAV engine health monitoring, thereby enhancing in-flight safety through timely fault prediction and enabling autonomous engine monitoring without reliance on ground communication. Full article
(This article belongs to the Special Issue Advances in Perception, Communications, and Control for Drones)
Show Figures

Figure 1

24 pages, 26654 KiB  
Article
Short-Term Electric Load Forecasting Using Deep Learning: A Case Study in Greece with RNN, LSTM, and GRU Networks
by Vasileios Zelios, Paris Mastorocostas, George Kandilogiannakis, Anastasios Kesidis, Panagiota Tselenti and Athanasios Voulodimos
Electronics 2025, 14(14), 2820; https://doi.org/10.3390/electronics14142820 - 14 Jul 2025
Viewed by 213
Abstract
The increasing volatility in energy markets, particularly in Greece where electricity costs reached a peak of 236 EUR/MWh in 2022, underscores the urgent need for accurate short-term load forecasting models. In this study, the application of deep learning techniques, specifically Recurrent Neural Network [...] Read more.
The increasing volatility in energy markets, particularly in Greece where electricity costs reached a peak of 236 EUR/MWh in 2022, underscores the urgent need for accurate short-term load forecasting models. In this study, the application of deep learning techniques, specifically Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), to forecast hourly electricity demand is investigated. The proposed models were trained on historical load data from the Greek power system spanning the years 2013 to 2016. Various deep learning architectures were implemented and their forecasting performances using statistical metrics such as Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) were evaluated. The experiments utilized multiple time horizons (1 h, 2 h, 24 h) and input sequence lengths (6 h to 168 h) to assess model accuracy and robustness. The best performing GRU model achieved an RMSE of 83.2 MWh and a MAPE of 1.17% for 1 h ahead forecasting, outperforming both LSTM and RNN in terms of both accuracy and computational efficiency. The predicted values were integrated into a dynamic Power BI dashboard, to enable real-time visualization and decision support. These findings demonstrate the potential of deep learning architectures, particularly GRUs, for operational load forecasting and their applicability to intelligent energy systems in a market-strained environment. Full article
Show Figures

Figure 1

33 pages, 7266 KiB  
Article
Temperature Prediction and Fault Warning of High-Speed Shaft of Wind Turbine Gearbox Based on Hybrid Deep Learning Model
by Min Zhang, Jijie Wei, Zhenli Sui, Kun Xu and Wenyong Yuan
J. Mar. Sci. Eng. 2025, 13(7), 1337; https://doi.org/10.3390/jmse13071337 - 13 Jul 2025
Viewed by 195
Abstract
Gearbox failure represents one of the most time-consuming maintenance challenges in wind turbine operations. Abnormal temperature variations in the gearbox high-speed shaft (GHSS) serve as reliable indicators of potential faults. This study proposes a Spatio-Temporal Attentive (STA) synergistic architecture for GHSS fault detection [...] Read more.
Gearbox failure represents one of the most time-consuming maintenance challenges in wind turbine operations. Abnormal temperature variations in the gearbox high-speed shaft (GHSS) serve as reliable indicators of potential faults. This study proposes a Spatio-Temporal Attentive (STA) synergistic architecture for GHSS fault detection and early warning by utilizing the in situ monitoring data from a wind farm. This comprehensive architecture involves five modules: data preprocessing, multi-dimensional spatial feature extraction, temporal dependency modeling, global relationship learning, and hyperparameter optimization. It was achieved by using real-time monitoring data to predict the GHSS temperature in 10 min, with an accuracy of 1 °C. Compared to the long short-term memory (LSTM) and convolutional neural network and LSTM hybrid models, the STA architecture reduces the root mean square error of the prediction by approximately 37% and 13%, respectively. Furthermore, the architecture establishes a normal operating condition model and provides benchmark eigenvalues for subsequent fault warnings. The model was validated to issue early warnings up to seven hours before the fault alert is triggered by the supervisory control and data acquisition system of the wind turbine. By offering reliable, cost-effective prognostics without additional hardware, this approach significantly improves wind turbine health management and fault prevention. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 910 KiB  
Article
Robust Gas Demand Prediction Using Deep Neural Networks: A Data-Driven Approach to Forecasting Under Regulatory Constraints
by Kostiantyn Pavlov, Olena Pavlova, Tomasz Wołowiec, Svitlana Slobodian, Andriy Tymchyshak and Tetiana Vlasenko
Energies 2025, 18(14), 3690; https://doi.org/10.3390/en18143690 - 12 Jul 2025
Viewed by 164
Abstract
Accurate gas consumption forecasting is critical for modern energy systems due to complex consumer behavior and regulatory requirements. Deep neural networks (DNNs), such as Seq2Seq with attention, TiDE, and Temporal Fusion Transformers, are promising for modeling complex temporal relationships and non-linear dependencies. This [...] Read more.
Accurate gas consumption forecasting is critical for modern energy systems due to complex consumer behavior and regulatory requirements. Deep neural networks (DNNs), such as Seq2Seq with attention, TiDE, and Temporal Fusion Transformers, are promising for modeling complex temporal relationships and non-linear dependencies. This study compares state-of-the-art architectures using real-world data from over 100,000 consumers to determine their practical viability for forecasting gas consumption under operational and regulatory conditions. Particular attention is paid to the impact of data quality, feature attribution, and model reliability on performance. The main use cases for natural gas consumption forecasting are tariff setting by regulators and system balancing for suppliers and operators. The study used monthly natural gas consumption data from 105,527 households in the Volyn region of Ukraine from January 2019 to April 2023 and meteorological data on average monthly air temperature. Missing values were replaced with zeros or imputed using seasonal imputation and the K-nearest neighbors. The results showed that previous consumption is the dominant feature for all models, confirming their autoregressive origin and the high importance of historical data. Temperature and category were identified as supporting features. Improvised data consistently improved the performance of all models. Seq2SeqPlus showed high accuracy, TiDE was the most stable, and TFT offered flexibility and interpretability. Implementing these models requires careful integration with data management, regulatory frameworks, and operational workflows. Full article
Show Figures

Figure 1

27 pages, 9028 KiB  
Article
Quasi-Optimized LSTM Approach for River Water Level Forecasting
by Chung-Soo Kim, Kah-Hoong Kok and Cho-Rong Kim
Water 2025, 17(14), 2087; https://doi.org/10.3390/w17142087 - 12 Jul 2025
Viewed by 206
Abstract
This study explores the application of a Long Short-Term Memory (LSTM) model for river water level forecasting, emphasizing the critical role of hyper-parameters optimization. Similar to physical and numerical rainfall-runoff models, LSTM relies on parameters to drive its data-driven modeling process. The performance [...] Read more.
This study explores the application of a Long Short-Term Memory (LSTM) model for river water level forecasting, emphasizing the critical role of hyper-parameters optimization. Similar to physical and numerical rainfall-runoff models, LSTM relies on parameters to drive its data-driven modeling process. The performance of such models is highly sensitive to the chosen hyper-parameters, making their optimization essential. To address this, three algorithms—Grid Search, Random Search, and Bayesian Search—were applied to identify the most effective hyper-parameter combinations. Cross-correlation analysis revealed that average rainfall had a stronger influence on river water levels than upstream point rainfall, leading to its selection as the model input. The optimization focused on five key hyper-parameters: neuron units, learning rate, dropout rate, number of epochs, and batch size. Results showed that, while Grid Search required the most computational time, both Random and Bayesian Search were more efficient. Notably, Bayesian Search yielded the best predictive performance with minimal time cost, making it the preferred optimization method. Additionally, reproducible LSTM simulations were conducted to ensure the consistency and practical applicability of the forecasting in real-world scenarios. Overall, Bayesian Search is recommended for optimizing LSTM models due to its balance of accuracy and computational efficiency in hydrological forecasting. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

Back to TopTop