Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,578)

Search Parameters:
Keywords = long-term trends

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 4024 KiB  
Review
Exploring Purpose-Driven Methods and a Multifaceted Approach in Dam Health Monitoring Data Utilization
by Zhanchao Li, Ebrahim Yahya Khailah, Xingyang Liu and Jiaming Liang
Buildings 2025, 15(15), 2803; https://doi.org/10.3390/buildings15152803 (registering DOI) - 7 Aug 2025
Abstract
Dam monitoring tracks environmental variables (water level, temperature) and structural responses (deformation, seepage, and stress) to assess safety and performance. Structural health monitoring (SHM) refers to the systematic observation and analysis of the structural condition over time, and it is essential in maintaining [...] Read more.
Dam monitoring tracks environmental variables (water level, temperature) and structural responses (deformation, seepage, and stress) to assess safety and performance. Structural health monitoring (SHM) refers to the systematic observation and analysis of the structural condition over time, and it is essential in maintaining the safety, functionality, and long-term performance of dams. This review examines monitoring data applications, covering structural health assessment methods, historical motivations, and key challenges. It discusses monitoring components, data acquisition processes, and sensor roles, stressing the need to integrate environmental, operational, and structural data for decision making. Key objectives include risk management, operational efficiency, safety evaluation, environmental impact assessment, and maintenance planning. Methodologies such as numerical modeling, statistical analysis, and machine learning are critically analyzed, highlighting their strengths and limitations and the demand for advanced predictive techniques. This paper also explores future trends in dam monitoring, offering insights for engineers and researchers to enhance infrastructure resilience. By synthesizing current practices and emerging innovations, this review aims to guide improvements in dam safety protocols, ensuring reliable and sustainable dam operations. The findings provide a foundation for the advancement of monitoring technologies and optimization of dam management strategies worldwide. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
12 pages, 707 KiB  
Article
Characteristics of Varicella Breakthrough Cases in Jinhua City, 2016–2024
by Zhi-ping Du, Zhi-ping Long, Meng-an Chen, Wei Sheng, Yao He, Guang-ming Zhang, Xiao-hong Wu and Zhi-feng Pang
Vaccines 2025, 13(8), 842; https://doi.org/10.3390/vaccines13080842 (registering DOI) - 7 Aug 2025
Abstract
Background: Varicella remains a prevalent vaccine-preventable disease, but breakthrough infections are increasingly reported. However, long-term, population-based studies investigating the temporal and demographic characteristics of breakthrough varicella remain limited. Methods: This retrospective study analyzed surveillance data from Jinhua City, China, from 2016 [...] Read more.
Background: Varicella remains a prevalent vaccine-preventable disease, but breakthrough infections are increasingly reported. However, long-term, population-based studies investigating the temporal and demographic characteristics of breakthrough varicella remain limited. Methods: This retrospective study analyzed surveillance data from Jinhua City, China, from 2016 to 2024. Varicella case records were obtained from the China Information System for Disease Control and Prevention (CISDCP), while vaccination data were retrieved from the Zhejiang Provincial Immunization Program Information System (ISIS). Breakthrough cases were defined as infections occurring more than 42 days after administration of the varicella vaccine. Differences in breakthrough interval were analyzed across subgroups defined by dose, sex, age, population category, and vaccination type. A bivariate cubic regression model was used to assess the combined effect of initial vaccination age and dose interval on the breakthrough interval. Results: Among 28,778 reported varicella cases, 7373 (25.62%) were classified as breakthrough infections, with a significant upward trend over the 9-year period (p < 0.001). Most cases occurred in school-aged children, especially those aged 6–15 years. One-dose recipients consistently showed shorter breakthrough intervals than two-dose recipients (M = 62.10 vs. 120.10 months, p < 0.001). Breakthrough intervals also differed significantly by sex, age group, population category, and vaccination type (p < 0.05). Regression analysis revealed a negative correlation between the initial vaccination age, the dose interval, and the breakthrough interval (R2 = 0.964, p < 0.001), with earlier and closely spaced vaccinations associated with longer protection. Conclusions: The present study demonstrates that a two-dose varicella vaccination schedule, when initiated at an earlier age and administered with a shorter interval between doses, provides more robust and longer-lasting protection. These results offer strong support for incorporating varicella vaccination into China’s National Immunization Program to enhance vaccine coverage and reduce the public health burden associated with breakthrough infections. Full article
(This article belongs to the Section Epidemiology and Vaccination)
28 pages, 19171 KiB  
Article
Spatiotemporal Evolution of Precipitation Concentration in the Yangtze River Basin (1960–2019): Associations with Extreme Heavy Precipitation and Validation Using GPM IMERG
by Tao Jin, Yuliang Zhou, Ping Zhou, Ziling Zheng, Rongxing Zhou, Yanqi Wei, Yuliang Zhang and Juliang Jin
Remote Sens. 2025, 17(15), 2732; https://doi.org/10.3390/rs17152732 - 7 Aug 2025
Abstract
Precipitation concentration reflects the uneven temporal distribution of rainfall. It plays a critical role in water resource management and flood–drought risk under climate change. However, its long-term trends, associations with atmospheric teleconnections as potential drivers, and links to extreme heavy precipitation events remain [...] Read more.
Precipitation concentration reflects the uneven temporal distribution of rainfall. It plays a critical role in water resource management and flood–drought risk under climate change. However, its long-term trends, associations with atmospheric teleconnections as potential drivers, and links to extreme heavy precipitation events remain poorly understood in complex basins like the Yangtze River Basin. This study analyzes these aspects using ground station data from 1960 to 2019 and conducts a comparison using the Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM (GPM IMERG) satellite product. We calculated three indices—Daily Precipitation Concentration Index (PCID), Monthly Precipitation Concentration Index (PCIM), and Seasonal Precipitation Concentration Index (SPCI)—to quantify rainfall unevenness, selected for their ability to capture multi-scale variability and associations with extremes. Key methods include Mann–Kendall trend tests for detecting changes, Hurst exponents for persistence, Pettitt detection for abrupt shifts, random forest modeling to assess atmospheric teleconnections, and hot spot analysis for spatial clustering. Results show a significant basin-wide decrease in PCID, driven by increased frequency of small-to-moderate rainfall events, with strong spatial synchrony to extreme heavy precipitation indices. PCIM is most strongly associated with El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). GPM IMERG captures PCIM patterns well but underestimates PCID trends and magnitudes, highlighting limitations in daily-scale resolution. These findings provide a benchmark for satellite product improvement and support adaptive strategies for extreme precipitation risks in changing climates. Full article
(This article belongs to the Special Issue Remote Sensing in Hydrometeorology and Natural Hazards)
Show Figures

Figure 1

19 pages, 3355 KiB  
Article
EU Energy Markets and Renewable Energy Sources—Are We Waiting for a Crisis?
by Tomasz Sieńko and Jerzy Szczepanik
Energies 2025, 18(15), 4201; https://doi.org/10.3390/en18154201 - 7 Aug 2025
Abstract
Interactions between the increased penetration of the power system by renewable energy sources (RESs) and the energy pricing mechanism in the EU (day-ahead market) can lead to many unexpected and paradoxical consequences. This article analyses the case of the long-term maintenance of prices [...] Read more.
Interactions between the increased penetration of the power system by renewable energy sources (RESs) and the energy pricing mechanism in the EU (day-ahead market) can lead to many unexpected and paradoxical consequences. This article analyses the case of the long-term maintenance of prices around zero on the day-ahead market in south-western Europe at a certain time of a day. This is an important case since, at the same time, this area generates electricity from a similar source mix as it is in the target for the EU. Zero or very low energy prices are becoming increasingly common across the EU. This can pose a problem for the stability of the electricity supply, as it translates into a lower power of used disposable power sources, which can be used as a reserve when the majority of the energy supply comes from renewable energy sources. Furthermore, this work refutes the most frequently proposed solution to the problem of excessively low prices based on energy storage systems. This work attempts to analyze the long-term low-price situation in Spain and extrapolate the expected consequences based on it; however, it is difficult to find all the factors that occur in the power system and influence the price market and vice versa. The issue is multidimensional and complex, and the analyzed situation revealed a number of trends. Therefore, a multifaceted problem remains. A constant electricity supply must be ensured at a reasonable price, thus avoiding the exposure of individual consumers to energy shortages or significant price increases, while, at the same time, the EU must reduce dependence on fossil fuels, and its legislation must push for reduced CO2 emissions. On the other hand, the EU must provide some type of market mechanism to support the achievement of these goals because the current pricing mechanism based on the day-ahead market does not seem to be effective. This article aims to spark a discussion about this problem; it does not provide any simple solutions to it. Full article
(This article belongs to the Special Issue Economic Analysis and Policies in the Energy Sector—2nd Edition)
Show Figures

Figure 1

24 pages, 2199 KiB  
Review
Smart Walking Aids with Sensor Technology for Gait Support and Health Monitoring: A Scoping Review
by Stefan Resch, Aya Zirari, Thi Diem Quynh Tran, Luca Marco Bauer and Daniel Sanchez-Morillo
Technologies 2025, 13(8), 346; https://doi.org/10.3390/technologies13080346 - 7 Aug 2025
Abstract
Smart walking aids represent a growing trend in assistive technologies designed to support individuals with mobility impairments in their daily lives and rehabilitation. Previous research has introduced sensor-integrated systems that provide user feedback to enhance safety and functional mobility. However, a comprehensive overview [...] Read more.
Smart walking aids represent a growing trend in assistive technologies designed to support individuals with mobility impairments in their daily lives and rehabilitation. Previous research has introduced sensor-integrated systems that provide user feedback to enhance safety and functional mobility. However, a comprehensive overview of their technological and functional characteristics is lacking. To address this gap, this scoping review systematically mapped the current state of research in sensor-based walking aids, focusing on device types, sensor technologies, application contexts, target populations, and reported outcomes. In addition, integrated artificial intelligence (AI)-based approaches for functional support and health monitoring were examined. Following PRISMA-ScR guidelines, 35 peer-reviewed articles were identified from three databases: ACM Digital Library, IEEE Xplore, and Web of Science. Extracted data were thematically analyzed and synthesized across device types (e.g., walking canes, crutches, walkers, rollators) and use cases, including gait training, fall prevention, and daily support. Findings show that, while many prototypes show promising features, few have been evaluated in clinical settings or over extended periods. A lack of standardized methods for sensor location assessment, often the superficial implementation of feedback modalities, and limited integration with other assistive technologies were identified. In addition, system validation and user testing lack consensus, with few long-term studies and often incomplete demographic data. Diversity in data communication approaches and the heterogeneous use of AI algorithms were also notable. The review highlights key challenges and research opportunities to guide the future development of intelligent, user-centered mobility systems. Full article
Show Figures

Figure 1

12 pages, 1620 KiB  
Article
Maxillary Sinus Puncture: A Traditional Procedure in Decline—Insights from SHIP
by Fabian Paperlein, Johanna Klinger-König, Chia-Jung Busch, Christian Scharf and Achim Georg Beule
J. Clin. Med. 2025, 14(15), 5578; https://doi.org/10.3390/jcm14155578 - 7 Aug 2025
Abstract
Background: Maxillary sinus puncture (MSP), once a cornerstone for diagnosing and treating acute rhinosinusitis (ARS), has declined with the rise in less invasive techniques. This study explores MSP trends, its association with age, and long-term effects on quality of life using data from [...] Read more.
Background: Maxillary sinus puncture (MSP), once a cornerstone for diagnosing and treating acute rhinosinusitis (ARS), has declined with the rise in less invasive techniques. This study explores MSP trends, its association with age, and long-term effects on quality of life using data from the Study of Health in Pomerania (SHIP). Methods: Data from SHIP-START-2 (n = 2332), SHIP-START-3 (n = 1717), and SHIP-TREND-0 (n = 4420) cohorts were analyzed to assess MSP prevalence, demographic correlations, and quality- of-life impacts using SNOT-20-D, EQ-5D-3L, and SF-12. Results: MSP prevalence was higher in older SHIP-START cohorts (11.2% in START-2) compared to SHIP-TREND-0 (9.5%), reflecting its historical decline. The procedure was more frequently reported by participants aged > 60 years (e.g., 14.0% in START-2) than by younger groups (<40 years: 3.5% in START-2). MSP was associated with increased SNOT-20-D scores across cohorts (e.g., +0.28 in START-2, p < 0.001) and minor reductions in EQ-5D-3L and SF-12 mental health scores, indicating greater symptom burden but limited general health impact. The age- and time-related decline in MSP highlights its diminishing role in modern practice. Conclusions: While MSP offers diagnostic insights and serves as an indicator for ARS, its modest impact on long-term quality-of-life underscores the need for alternative, minimally invasive techniques for sinonasal conditions. Full article
Show Figures

Figure 1

19 pages, 371 KiB  
Review
Human Breast Milk as a Biological Matrix for Assessing Maternal and Environmental Exposure to Dioxins and Dioxin-like Polychlorinated Biphenyls: A Narrative Review of Determinants
by Artemisia Kokkinari, Evangelia Antoniou, Kleanthi Gourounti, Maria Dagla, Aikaterini Lykeridou, Stefanos Zervoudis, Eirini Tomara and Georgios Iatrakis
Pollutants 2025, 5(3), 25; https://doi.org/10.3390/pollutants5030025 - 7 Aug 2025
Abstract
(1) Background: Dioxins and dioxin-like polychlorinated biphenyls (dl-PCBs) are persistent organic pollutants (POPs), characterized by high toxicity and strong lipophilicity, which promote their bioaccumulation in human tissues. Their detection in breast milk raises concerns about early-life exposure during lactation. Although dietary intake is [...] Read more.
(1) Background: Dioxins and dioxin-like polychlorinated biphenyls (dl-PCBs) are persistent organic pollutants (POPs), characterized by high toxicity and strong lipophilicity, which promote their bioaccumulation in human tissues. Their detection in breast milk raises concerns about early-life exposure during lactation. Although dietary intake is the primary route of maternal exposure, environmental pathways—including inhalation, dermal absorption, and residential proximity to contaminated sites—may also significantly contribute to the maternal body burden. (2) Methods: This narrative review examined peer-reviewed studies investigating maternal and environmental determinants of dioxin and dl-PCB concentrations in human breast milk. A comprehensive literature search was conducted in PubMed, Scopus, and Web of Science (2000–2024), identifying a total of 325 records. Following eligibility screening and full-text assessment, 20 studies met the inclusion criteria. (3) Results: The included studies consistently identified key exposure determinants, such as high consumption of animal-based foods (e.g., meat, fish, dairy), living near industrial facilities or waste sites, and maternal characteristics including age, parity, and body mass index (BMI). Substantial geographic variability was observed, with higher concentrations reported in regions affected by industrial activity, military pollution, or inadequate waste management. One longitudinal study from Japan demonstrated a declining trend in dioxin levels in breast milk, suggesting the potential effectiveness of regulatory interventions. (4) Conclusions: These findings highlight that maternal exposure to dioxins is influenced by identifiable environmental and behavioral factors, which can be mitigated through public health policies, targeted dietary guidance, and environmental remediation. Breast milk remains a critical bioindicator of human exposure. Harmonized, long-term research is needed to clarify health implications and minimize contaminant transfer to infants, particularly among vulnerable populations. Full article
Show Figures

Figure 1

22 pages, 3135 KiB  
Article
Nonstationary Streamflow Variability and Climate Drivers in the Amur and Yangtze River Basins: A Comparative Perspective Under Climate Change
by Qinye Ma, Jue Wang, Nuo Lei, Zhengzheng Zhou, Shuguang Liu, Aleksei N. Makhinov and Aleksandra F. Makhinova
Water 2025, 17(15), 2339; https://doi.org/10.3390/w17152339 - 6 Aug 2025
Abstract
Climate-driven hydrological extremes and anthropogenic interventions are increasingly altering streamflow regimes worldwide. While prior studies have explored climate or regulation effects separately, few have integrated multiple teleconnection indices and reservoir chronologies within a cross-basin comparative framework. This study addresses this gap by assessing [...] Read more.
Climate-driven hydrological extremes and anthropogenic interventions are increasingly altering streamflow regimes worldwide. While prior studies have explored climate or regulation effects separately, few have integrated multiple teleconnection indices and reservoir chronologies within a cross-basin comparative framework. This study addresses this gap by assessing long-term streamflow nonstationarity and its drivers at two key stations—Khabarovsk on the Amur River and Datong on the Yangtze River—representing distinct hydroclimatic settings. We utilized monthly discharge records, meteorological data, and large-scale climate indices to apply trend analysis, wavelet transform, percentile-based extreme diagnostics, lagged random forest regression, and slope-based attribution. The results show that Khabarovsk experienced an increase in winter baseflow from 513 to 1335 m3/s and a notable reduction in seasonal discharge contrast, primarily driven by temperature and cold-region reservoir regulation. In contrast, Datong displayed increased discharge extremes, with flood discharges increasing by +71.9 m3/s/year, equivalent to approximately 0.12% of the mean flood discharge annually, and low discharges by +24.2 m3/s/year in recent decades, shaped by both climate variability and large-scale hydropower infrastructure. Random forest models identified temperature and precipitation as short-term drivers, with ENSO-related indices showing lagged impacts on streamflow variability. Attribution analysis indicated that Khabarovsk is primarily shaped by cold-region reservoir operations in conjunction with temperature-driven snowmelt dynamics, while Datong reflects a combined influence of both climate variability and regulation. These insights may provide guidance for climate-responsive reservoir scheduling and basin-specific regulation strategies, supporting the development of integrated frameworks for adaptive water management under climate change. Full article
(This article belongs to the Special Issue Risks of Hydrometeorological Extremes)
Show Figures

Figure 1

20 pages, 4021 KiB  
Article
Mumps Epidemiology in the Autonomous Province of Vojvodina, Serbia: Long-Term Trends, Immunization Gaps, and Conditions Favoring Future Outbreaks
by Mioljub Ristić, Vladimir Vuković, Smiljana Rajčević, Marko Koprivica, Nikica Agbaba and Vladimir Petrović
Vaccines 2025, 13(8), 839; https://doi.org/10.3390/vaccines13080839 - 6 Aug 2025
Abstract
Background/Objectives: Mumps remains a relevant vaccine-preventable disease globally, especially in settings where immunization coverage fluctuates or vaccine-induced immunity wanes. This study aimed to assess long-term trends in mumps incidence, vaccination coverage, clinical outcomes, and demographic characteristics in the Autonomous Province of Vojvodina [...] Read more.
Background/Objectives: Mumps remains a relevant vaccine-preventable disease globally, especially in settings where immunization coverage fluctuates or vaccine-induced immunity wanes. This study aimed to assess long-term trends in mumps incidence, vaccination coverage, clinical outcomes, and demographic characteristics in the Autonomous Province of Vojvodina (AP Vojvodina), Serbia, over a 47-year period. Methods: We conducted a retrospective observational study using surveillance data from the Institute of Public Health of Vojvodina. Analyses included annual mumps incidence rates (1978–2024), coverage with mumps-containing vaccines (MuCVs; 1986–2024), monthly case counts, and individual-level case data for the 1997–2024 period. Variables analyzed included age, month of notification, gender, vaccination status, presence of clinical complications, and the method used for case confirmation. Results: Following the introduction of MuCV in 1986, the mumps incidence markedly declined, with limited resurgences in 2000, 2009, and 2012. Between 1997 and 2024, a total of 1358 cases were reported, with 62.7% occurring in males. Over time, the age distribution shifted, with adolescents and young adults being increasingly affected during the later (2011–2024) observed period. In 2012, the highest age-specific incidence was observed among individuals aged 10–19 and 20–39 years (49.1 and 45.5 per 100,000, respectively). Vaccination coverage for both MuCV doses was suboptimal in several years. The proportion of unvaccinated cases decreased over time, while the proportion with unknown vaccination status increased. Mumps-related complications—such as orchitis, pancreatitis, and meningitis—were rare and predominantly affected unvaccinated individuals: 84.2% of orchitis, 40.0% of pancreatitis, and all meningitis cases. Only two pancreatitis cases (40.0%) were reported after one MMR dose, while fully vaccinated individuals (two doses) had one orchitis case (5.3%) and no other complications. Laboratory confirmation was applied more consistently from 2009 onward, with 49.6% of cases confirmed that year (58 out of 117), and, in several years after 2020, only laboratory-confirmed cases were reported, indicating improved diagnostic capacity. Conclusions: Despite substantial progress in controlling mumps, gaps in vaccine coverage, waning immunity, and incomplete vaccination records continue to pose a risk for mumps transmission. Strengthening routine immunization, ensuring high two-dose MuCV coverage, improving vaccination record keeping, and enhancing laboratory-based case confirmation are critical. Consideration should be given to booster doses in high-risk populations and to conducting a seroepidemiological study to estimate the susceptible population for mumps in AP Vojvodina. Full article
(This article belongs to the Special Issue Vaccination and Infectious Disease Epidemics)
Show Figures

Figure 1

23 pages, 4515 KiB  
Article
Monitoring Post-Fire Deciduous Shrub Cover Using Machine Learning and Multiscale Remote Sensing
by Hannah Trommer and Timothy Assal
Land 2025, 14(8), 1603; https://doi.org/10.3390/land14081603 - 6 Aug 2025
Abstract
Wildfire and drought are key drivers of shrubland expansion in southwestern US landscapes. Stand-replacing fires in conifer forests induce shrub-dominated stages, and changing climatic patterns may cause a long-term shift to deciduous shrubland. We assessed change in deciduous fractional shrub cover (DFSC) in [...] Read more.
Wildfire and drought are key drivers of shrubland expansion in southwestern US landscapes. Stand-replacing fires in conifer forests induce shrub-dominated stages, and changing climatic patterns may cause a long-term shift to deciduous shrubland. We assessed change in deciduous fractional shrub cover (DFSC) in the eastern Jemez Mountains from 2019 to 2023 using topographic and Sentinel-2 satellite data and evaluated the impact of spatial scale on model performance. First, we built a 10 m and a 20 m random forest model. The 20 m model outperformed the 10 m model, achieving an R-squared value of 0.82 and an RMSE of 7.85, compared to the 10 m model (0.76 and 9.99, respectively). We projected the 20 m model to the other years of the study using imagery from the respective years, yielding yearly DFSC predictions. DFSC decreased from 2019 to 2022, coinciding with severe drought and a 2022 fire, followed by an increase in 2023, particularly within the 2022 fire footprint. Overall, DFSC trends showed an increase, with elevation being a key variable influencing these trends. This framework revealed vegetation dynamics in a semi-arid system and provided a close look at post-fire regeneration in deciduous resprouting shrubs and could be applied to similar systems. Full article
(This article belongs to the Section Land – Observation and Monitoring)
Show Figures

Figure 1

21 pages, 1827 KiB  
Article
System Dynamics Modeling of Cement Industry Decarbonization Pathways: An Analysis of Carbon Reduction Strategies
by Vikram Mittal and Logan Dosan
Sustainability 2025, 17(15), 7128; https://doi.org/10.3390/su17157128 - 6 Aug 2025
Abstract
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption [...] Read more.
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption of low-carbon fuels, the use of carbon capture and storage (CCS) technologies, and the integration of supplementary cementitious materials (SCMs) to reduce the clinker content. The effectiveness of these measures depends on a complex set of interactions involving technological feasibility, market dynamics, and regulatory frameworks. This study presents a system dynamics model designed to assess how various decarbonization approaches influence long-term emission trends within the cement industry. The model accounts for supply chains, production technologies, market adoption rates, and changes in cement production costs. This study then analyzes a number of scenarios where there is large-scale sustained investment in each of three carbon mitigation strategies. The results show that CCS by itself allows the cement industry to achieve carbon neutrality, but the high capital investment results in a large cost increase for cement. A combined approach using alternative fuels and SCMs was found to achieve a large carbon reduction without a sustained increase in cement prices, highlighting the trade-offs between cost, effectiveness, and system-wide interactions. Full article
Show Figures

Figure 1

14 pages, 1870 KiB  
Article
Analysis of Risk Factors for High-Risk Lymph Node Metastasis in Papillary Thyroid Microcarcinoma
by Yi-Hsiang Chiu, Shu-Ting Wu, Yung-Nien Chen, Wen-Chieh Chen, Lay-San Lim, Yvonne Ee Wern Chiew, Ping-Chen Kuo, Ya-Chen Yang, Shun-Yu Chi and Chen-Kai Chou
Cancers 2025, 17(15), 2585; https://doi.org/10.3390/cancers17152585 - 6 Aug 2025
Abstract
Background: Papillary thyroid microcarcinoma (PTMC) is associated with certain features that carry an increased risk of local recurrence, underscoring the importance of preoperative risk assessment. This study investigated the clinicopathological factors associated with high-risk lymph node metastasis (HRLNM) and patient outcomes. HRLNM is [...] Read more.
Background: Papillary thyroid microcarcinoma (PTMC) is associated with certain features that carry an increased risk of local recurrence, underscoring the importance of preoperative risk assessment. This study investigated the clinicopathological factors associated with high-risk lymph node metastasis (HRLNM) and patient outcomes. HRLNM is defined as ≥5 metastatic lymph nodes and/or lateral neck metastasis. Methods: We conducted a retrospective review of 985 patients with PTMC who underwent thyroidectomy at the Kaohsiung Chang Gung Memorial Hospital from 2013 to 2022. Results: Among the 985 patients, 100 (10.2%) had lymph node metastasis (LNM), and 27% of these were classified as having HRLNM. Male sex (OR 3.61, p = 0.04) and extranodal extension (OR 3.76, p = 0.043) were independent predictors of HRLNM. Patients with LNM exhibited lower rates of excellent treatment response (75% vs. 87%, p = 0.001), higher recurrence rates (9.0% vs. 0.6%, p = 0.001), and an increased risk of distant metastasis (2.0% vs. 0%). Recurrence-free survival (RFS) was significantly shorter in patients with LNM (120.9 vs. 198.6 months, p < 0.001). Although HRLNM showed a trend toward reduced RFS (113.5 vs. 124.6 months, p = 0.177), its impact on long-term survival remains uncertain. Conclusions: Male sex and extranodal extension were significant risk factors for HRLNM in patients with PTMC. These findings highlight the need for individualized risk stratification to guide treatment strategies and improve patient outcomes. Full article
Show Figures

Figure 1

19 pages, 5212 KiB  
Article
Assessing the Land Surface Temperature Trend of Lake Drūkšiai’s Coastline
by Jūratė Sužiedelytė Visockienė, Eglė Tumelienė and Rosita Birvydienė
Land 2025, 14(8), 1598; https://doi.org/10.3390/land14081598 - 5 Aug 2025
Abstract
This study investigates long-term land surface temperature (LST) trends along the shoreline of Lake Drūkšiai, a transboundary lake in eastern Lithuania that formerly served as a cooling reservoir for the Ignalina Nuclear Power Plant (INPP). Although the INPP was decommissioned in 2009, its [...] Read more.
This study investigates long-term land surface temperature (LST) trends along the shoreline of Lake Drūkšiai, a transboundary lake in eastern Lithuania that formerly served as a cooling reservoir for the Ignalina Nuclear Power Plant (INPP). Although the INPP was decommissioned in 2009, its legacy continues to influence the lake’s thermal regime. Using Landsat 8 thermal infrared imagery and NDVI-based methods, we analysed spatial and temporal LST variations from 2013 to 2024. The results indicate persistent temperature anomalies and elevated LST values, particularly in zones previously affected by thermal discharges. The years 2020 and 2024 exhibited the highest average LST values; some years (e.g., 2018) showed lower readings due to localised environmental factors such as river inflow and seasonal variability. Despite a slight stabilisation observed in 2024, temperatures remain higher than those recorded in 2013, suggesting that pre-industrial thermal conditions have not yet been restored. These findings underscore the long-term environmental impacts of industrial activity and highlight the importance of satellite-based monitoring for the sustainable management of land, water resources, and coastal zones. Full article
Show Figures

Figure 1

11 pages, 1947 KiB  
Article
Quantitative Magnetic Resonance Imaging and Patient-Reported Outcomes in Patients Undergoing Hip Labral Repair or Reconstruction
by Kyle S. J. Jamar, Adam Peszek, Catherine C. Alder, Trevor J. Wait, Caleb J. Wipf, Carson L. Keeter, Stephanie W. Mayer, Charles P. Ho and James W. Genuario
J. Imaging 2025, 11(8), 261; https://doi.org/10.3390/jimaging11080261 - 5 Aug 2025
Abstract
This study evaluates the relationship between preoperative cartilage quality, measured by T2 mapping, and patient-reported outcomes following labral tear treatment. We retrospectively reviewed patients aged 14–50 who underwent primary hip arthroscopy with either labral repair or reconstruction. Preoperative T2 values of femoral, acetabular, [...] Read more.
This study evaluates the relationship between preoperative cartilage quality, measured by T2 mapping, and patient-reported outcomes following labral tear treatment. We retrospectively reviewed patients aged 14–50 who underwent primary hip arthroscopy with either labral repair or reconstruction. Preoperative T2 values of femoral, acetabular, and labral tissue were assessed from MRI by blinded reviewers. International Hip Outcome Tool (iHOT-12) scores were collected preoperatively and up to two years postoperatively. Associations between T2 values and iHOT-12 scores were analyzed using univariate mixed linear models. Twenty-nine patients were included (mean age of 32.5 years, BMI 24 kg/m2, 48.3% female, and 22 repairs). Across all patients, higher T2 values were associated with higher iHOT-12 scores at baseline and early postoperative timepoints (three months for cartilage and six months for labrum; p < 0.05). Lower T2 values were associated with higher 12- and 24-month iHOT-12 scores across all structures (p < 0.001). Similar trends were observed within the repair and reconstruction subgroups, with delayed negative associations correlating with worse tissue quality. T2 mapping showed time-dependent correlations with iHOT-12 scores, indicating that worse cartilage or labral quality predicts poorer long-term outcomes. These findings support the utility of T2 mapping as a preoperative tool for prognosis in hip preservation surgery. Full article
(This article belongs to the Special Issue New Developments in Musculoskeletal Imaging)
Show Figures

Figure 1

24 pages, 3176 KiB  
Article
Influence of Seasonality and Pollution on the Presence of Antibiotic Resistance Genes and Potentially Pathogenic Bacteria in a Tropical Urban River
by Kenia Barrantes-Jiménez, Bradd Mendoza-Guido, Eric Morales-Mora, Luis Rivera-Montero, José Montiel-Mora, Luz Chacón-Jiménez, Keilor Rojas-Jiménez and María Arias-Andrés
Antibiotics 2025, 14(8), 798; https://doi.org/10.3390/antibiotics14080798 - 5 Aug 2025
Abstract
Background/Objectives: This study examines how seasonality, pollution, and sample type (water and sediment) influence the presence and distribution of antibiotic resistance genes (ARGs), with a focus on antibiotic resistance genes (ARGs) located on plasmids (the complete set of plasmid-derived sequences, including ARGs) in [...] Read more.
Background/Objectives: This study examines how seasonality, pollution, and sample type (water and sediment) influence the presence and distribution of antibiotic resistance genes (ARGs), with a focus on antibiotic resistance genes (ARGs) located on plasmids (the complete set of plasmid-derived sequences, including ARGs) in a tropical urban river. Methods: Samples were collected from three sites along a pollution gradient in the Virilla River, Costa Rica, during three seasonal campaigns (wet 2021, dry 2022, and wet 2022). ARGs in water and sediment were quantified by qPCR, and metagenomic sequencing was applied to analyze chromosomal and plasmid-associated resistance profiles in sediments. Tobit and linear regression models, along with multivariate ordination, were used to assess spatial and seasonal trends. Results: During the wet season of 2021, the abundance of antibiotic resistance genes (ARGs) such as sul-1, intI-1, and tetA in water samples decreased significantly, likely due to dilution, while intI-1 and tetQ increased in sediments, suggesting particle-bound accumulation. In the wet season 2022, intI-1 remained low in water, qnrS increased, and sediments showed significant increases in tetQ, tetA, and qnrS, along with decreases in sul-1 and sul-2. Metagenomic analysis revealed spatial differences in plasmid-associated ARGs, with the highest abundance at the most polluted site (Site 3). Bacterial taxa also showed spatial differences, with greater plasmidome diversity and a higher representation of potential pathogens in the most contaminated site. Conclusions: Seasonality and pollution gradients jointly shape ARG dynamics in this tropical river. Plasmid-mediated resistance responds rapidly to environmental change and is enriched at polluted sites, while sediments serve as long-term reservoirs. These findings support the use of plasmid-based monitoring for antimicrobial resistance surveillance in aquatic systems. Full article
(This article belongs to the Special Issue Origins and Evolution of Antibiotic Resistance in the Environment)
Show Figures

Graphical abstract

Back to TopTop