Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,254)

Search Parameters:
Keywords = long-range communications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 315 KiB  
Article
Development of a Multicultural Leadership Promotion Program for Youth in Thailand’s Three Southern Border Provinces
by Kasetchai Laeheem, Punya Tepsing and Khaled Hayisa-e
Youth 2025, 5(3), 82; https://doi.org/10.3390/youth5030082 (registering DOI) - 1 Aug 2025
Abstract
Thailand’s southern border provinces need youth-focused multicultural leadership programs integrating local religious–cultural elements, community involvement, and long-term evaluation to enhance social cohesion and sustainable development. This study aimed to develop and evaluate a program to foster multicultural leadership among youth in Thailand’s three [...] Read more.
Thailand’s southern border provinces need youth-focused multicultural leadership programs integrating local religious–cultural elements, community involvement, and long-term evaluation to enhance social cohesion and sustainable development. This study aimed to develop and evaluate a program to foster multicultural leadership among youth in Thailand’s three southern border provinces. The research was conducted in two phases. The first phase involved synthesizing key multicultural leadership characteristics, designing a structured program and assessing its relevance and coherence through expert evaluation. The second phase focused on empirical validation by implementing the program with 22 selected youth participants, employing repeated-measures analysis of variance to assess its effectiveness. Additionally, experts evaluated the program’s validity, appropriateness, cost-effectiveness, utility, and feasibility. The resulting program, “EARCA”, comprises five core components: Experiential Exposure, Active Exploration & Engagement, Reflective Thinking & Analysis, Concept Integration & Synthesis, and Application & Extension. Expert assessments confirmed its appropriateness at the highest level, with a consistency index ranging from 0.8 to 1.0. Statistical analyses demonstrated significant improvements in all dimensions of multicultural leadership among participants. Furthermore, the program was rated highly accurate, appropriate, cost-effective, practical, and feasible for real-world implementation. These findings offer valuable insights for policymakers and practitioners seeking to enhance multicultural leadership development through structured, evidence-based interventions. Full article
26 pages, 1033 KiB  
Article
Internet of Things Platform for Assessment and Research on Cybersecurity of Smart Rural Environments
by Daniel Sernández-Iglesias, Llanos Tobarra, Rafael Pastor-Vargas, Antonio Robles-Gómez, Pedro Vidal-Balboa and João Sarraipa
Future Internet 2025, 17(8), 351; https://doi.org/10.3390/fi17080351 (registering DOI) - 1 Aug 2025
Abstract
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and [...] Read more.
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and autonomous IoT solutions. To help overcome this gap, this paper presents the Smart Rural IoT Lab, a modular and reproducible testbed designed to replicate the deployment conditions in rural areas using open-source tools and affordable hardware. The laboratory integrates long-range and short-range communication technologies in six experimental scenarios, implementing protocols such as MQTT, HTTP, UDP, and CoAP. These scenarios simulate realistic rural use cases, including environmental monitoring, livestock tracking, infrastructure access control, and heritage site protection. Local data processing is achieved through containerized services like Node-RED, InfluxDB, MongoDB, and Grafana, ensuring complete autonomy, without dependence on cloud services. A key contribution of the laboratory is the generation of structured datasets from real network traffic captured with Tcpdump and preprocessed using Zeek. Unlike simulated datasets, the collected data reflect communication patterns generated from real devices. Although the current dataset only includes benign traffic, the platform is prepared for future incorporation of adversarial scenarios (spoofing, DoS) to support AI-based cybersecurity research. While experiments were conducted in an indoor controlled environment, the testbed architecture is portable and suitable for future outdoor deployment. The Smart Rural IoT Lab addresses a critical gap in current research infrastructure, providing a realistic and flexible foundation for developing secure, cloud-independent IoT solutions, contributing to the digital transformation of rural regions. Full article
Show Figures

Figure 1

20 pages, 2399 KiB  
Article
Exploring Novel Optical Soliton Molecule for the Time Fractional Cubic–Quintic Nonlinear Pulse Propagation Model
by Syed T. R. Rizvi, Atef F. Hashem, Azrar Ul Hassan, Sana Shabbir, A. S. Al-Moisheer and Aly R. Seadawy
Fractal Fract. 2025, 9(8), 497; https://doi.org/10.3390/fractalfract9080497 - 29 Jul 2025
Viewed by 200
Abstract
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions [...] Read more.
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions in medical science. The nonlinear effects exhibited by the model—such as self-focusing, self-phase modulation, and wave mixing—are influenced by the combined impact of the cubic and quintic nonlinear terms. To explore the dynamics of this model, we apply a robust analytical technique known as the sub-ODE method, which reveals a diverse range of soliton structures and offers deep insight into laser pulse interactions. The investigation yields a rich set of explicit soliton solutions, including hyperbolic, rational, singular, bright, Jacobian elliptic, Weierstrass elliptic, and periodic solutions. These waveforms have significant real-world relevance: bright solitons are employed in fiber optic communications for distortion-free long-distance data transmission, while both bright and dark solitons are used in nonlinear optics to study light behavior in media with intensity-dependent refractive indices. Solitons also contribute to advancements in quantum technologies, precision measurement, and fiber laser systems, where hyperbolic and periodic solitons facilitate stable, high-intensity pulse generation. Additionally, in nonlinear acoustics, solitons describe wave propagation in media where amplitude influences wave speed. Overall, this work highlights the theoretical depth and practical utility of soliton dynamics in fractional nonlinear systems. Full article
Show Figures

Figure 1

25 pages, 10205 KiB  
Article
RTLS-Enabled Bidirectional Alert System for Proximity Risk Mitigation in Tunnel Environments
by Fatima Afzal, Farhad Ullah Khan, Ayaz Ahmad Khan, Ruchini Jayasinghe and Numan Khan
Buildings 2025, 15(15), 2667; https://doi.org/10.3390/buildings15152667 - 28 Jul 2025
Viewed by 161
Abstract
Tunnel construction poses significant safety challenges due to confined spaces, limited visibility, and the dynamic movement of labourers and machinery. This study addresses a critical gap in real-time, bidirectional proximity monitoring by developing and validating a prototype early-warning system that integrates real-time location [...] Read more.
Tunnel construction poses significant safety challenges due to confined spaces, limited visibility, and the dynamic movement of labourers and machinery. This study addresses a critical gap in real-time, bidirectional proximity monitoring by developing and validating a prototype early-warning system that integrates real-time location systems (RTLS) with long-range (LoRa) wireless communication and ultra-wideband (UWB) positioning. The system comprises Arduino nano microcontrollers, organic light-emitting diode (OLED) displays, and piezo buzzers to detect and signal proximity breaches between workers and equipment. Using an action research approach, three pilot case studies were conducted in a simulated tunnel environment to test the system’s effectiveness in both static and dynamic risk scenarios. The results showed that the system accurately tracked proximity and generated timely alerts when safety thresholds were crossed, although minor delays of 5–8 s and slight positional inaccuracies were noted. These findings confirm the system’s capacity to enhance situational awareness and reduce reliance on manual safety protocols. The study contributes to the tunnel safety literature by demonstrating the feasibility of low-cost, real-time monitoring solutions that simultaneously track labour and machinery. The proposed RTLS framework offers practical value for safety managers and informs future research into automated safety systems in complex construction environments. Full article
(This article belongs to the Special Issue AI in Construction: Automation, Optimization, and Safety)
Show Figures

Figure 1

35 pages, 1231 KiB  
Review
Toward Intelligent Underwater Acoustic Systems: Systematic Insights into Channel Estimation and Modulation Methods
by Imran A. Tasadduq and Muhammad Rashid
Electronics 2025, 14(15), 2953; https://doi.org/10.3390/electronics14152953 - 24 Jul 2025
Viewed by 282
Abstract
Underwater acoustic (UWA) communication supports many critical applications but still faces several physical-layer signal processing challenges. In response, recent advances in machine learning (ML) and deep learning (DL) offer promising solutions to improve signal detection, modulation adaptability, and classification accuracy. These developments highlight [...] Read more.
Underwater acoustic (UWA) communication supports many critical applications but still faces several physical-layer signal processing challenges. In response, recent advances in machine learning (ML) and deep learning (DL) offer promising solutions to improve signal detection, modulation adaptability, and classification accuracy. These developments highlight the need for a systematic evaluation to compare various ML/DL models and assess their performance across diverse underwater conditions. However, most existing reviews on ML/DL-based UWA communication focus on isolated approaches rather than integrated system-level perspectives, which limits cross-domain insights and reduces their relevance to practical underwater deployments. Consequently, this systematic literature review (SLR) synthesizes 43 studies (2020–2025) on ML and DL approaches for UWA communication, covering channel estimation, adaptive modulation, and modulation recognition across both single- and multi-carrier systems. The findings reveal that models such as convolutional neural networks (CNNs), long short-term memory networks (LSTMs), and generative adversarial networks (GANs) enhance channel estimation performance, achieving error reductions and bit error rate (BER) gains ranging from 103 to 106. Adaptive modulation techniques incorporating support vector machines (SVMs), CNNs, and reinforcement learning (RL) attain classification accuracies exceeding 98% and throughput improvements of up to 25%. For modulation recognition, architectures like sequence CNNs, residual networks, and hybrid convolutional–recurrent models achieve up to 99.38% accuracy with latency below 10 ms. These performance metrics underscore the viability of ML/DL-based solutions in optimizing physical-layer tasks for real-world UWA deployments. Finally, the SLR identifies key challenges in UWA communication, including high complexity, limited data, fragmented performance metrics, deployment realities, energy constraints and poor scalability. It also outlines future directions like lightweight models, physics-informed learning, advanced RL strategies, intelligent resource allocation, and robust feature fusion to build reliable and intelligent underwater systems. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

39 pages, 714 KiB  
Review
Exploring the Evolving Role of Pharmaceutical Services in Community Pharmacies: Insights from the USA, England, and Portugal
by M. Luísa G. Cunha Leal, Ana Rita Rodrigues, Victoria Bell and Mário Forrester
Healthcare 2025, 13(15), 1786; https://doi.org/10.3390/healthcare13151786 - 23 Jul 2025
Viewed by 461
Abstract
Chronic diseases are a leading cause of death worldwide and have a significant negative impact on public health, overall well-being, national economies, and the long-term sustainability of already burdened health systems. In addressing some of the current health challenges, the contribution of pharmacists [...] Read more.
Chronic diseases are a leading cause of death worldwide and have a significant negative impact on public health, overall well-being, national economies, and the long-term sustainability of already burdened health systems. In addressing some of the current health challenges, the contribution of pharmacists and community pharmacies is of particular significance. Pharmacists play a vital role in the medication use process, enhancing the efficacy of pharmacological interventions and facilitating the delivery of health services. Community pharmacies occupy a key position within the healthcare system, acting as a primary point of contact with the public and frequently representing the most accessible healthcare facility for patients. In recent times, community pharmacies have undergone a process of adaptation, shifting from a narrow focus on the dispensing of medications towards a more comprehensive approach that is patient-centered and incorporates a range of healthcare services, while also prioritizing the quality of the services provided. This work aims to explore the role of pharmacists in the provision of pharmaceutical services in three countries with distinct healthcare systems, examining how these services operate, the requirements for their delivery, the associated remuneration structures, and the extent of out-of-pocket costs for patients—ultimately analyzing their impact on health outcomes. Full article
19 pages, 1116 KiB  
Article
Long-Range Sensing with CP-OFDM Waveform: Sensing Algorithm and Sequence Design
by Boyu Yao, Jiahao Bai, Jingxuan Huang, Xinyi Wang, Chenhao Yin and Zesong Fei
Electronics 2025, 14(15), 2928; https://doi.org/10.3390/electronics14152928 - 22 Jul 2025
Viewed by 148
Abstract
Integrated sensing and communication (ISAC) has become a key enabler in 5G-Advanced (5G-A) and future 6G systems, with Orthogonal Frequency Division Multiplexing (OFDM) widely adopted as the underlying waveform. However, due to the inherent structure of OFDM signals, traditional sensing algorithms often suffer [...] Read more.
Integrated sensing and communication (ISAC) has become a key enabler in 5G-Advanced (5G-A) and future 6G systems, with Orthogonal Frequency Division Multiplexing (OFDM) widely adopted as the underlying waveform. However, due to the inherent structure of OFDM signals, traditional sensing algorithms often suffer from a limited sensing range in practical applications. To address this issue, we propose a delay compensation algorithm that mitigates the impact of delay and ensures the gain of range-Doppler processing. Furthermore, we analyze the issue of ambiguous targets in CP-OFDM systems, considering both single-target and multi-target scenarios. To improve the detection probability and suppress the accumulated echo energy corresponding to ambiguous targets, we propose a sequence design criterion, in which part of the original signal is replaced with a designed sequence. Simulation results demonstrate that the proposed algorithm effectively improves detection range and ensures unambiguous target identification, while achieving effective suppression of ambiguous target energy. Compared with a conventional algorithm, it achieves a processing gain of up to 20 dB. Moreover, the results show that different redundancy ratios can be selected in varying scenarios to balance communication and sensing performance in ISAC systems. Full article
(This article belongs to the Special Issue Integration of Communication, Sensing and Computing for 6G)
Show Figures

Figure 1

15 pages, 6089 KiB  
Article
Molecular Fingerprint of Cold Adaptation in Antarctic Icefish PepT1 (Chionodraco hamatus): A Comparative Molecular Dynamics Study
by Guillermo Carrasco-Faus, Valeria Márquez-Miranda and Ignacio Diaz-Franulic
Biomolecules 2025, 15(8), 1058; https://doi.org/10.3390/biom15081058 - 22 Jul 2025
Viewed by 212
Abstract
Cold environments challenge the structural and functional integrity of membrane proteins, requiring specialized adaptations to maintain activity under low thermal energy. Here, we investigate the molecular basis of cold tolerance in the peptide transporter PepT1 from the Antarctic icefish (Chionodraco hamatus, [...] Read more.
Cold environments challenge the structural and functional integrity of membrane proteins, requiring specialized adaptations to maintain activity under low thermal energy. Here, we investigate the molecular basis of cold tolerance in the peptide transporter PepT1 from the Antarctic icefish (Chionodraco hamatus, ChPepT1) using molecular dynamics simulations, binding free energy calculations (MM/GBSA), and dynamic network analysis. We compare ChPepT1 to its human ortholog (hPepT1), a non-cold-adapted variant, to reveal key features enabling psychrophilic function. Our simulations show that ChPepT1 displays enhanced global flexibility, particularly in domains adjacent to the substrate-binding site and the C-terminal domain (CTD). While hPepT1 loses substrate binding affinity as temperature increases, ChPepT1 maintains stable peptide interactions across a broad thermal range. This thermodynamic buffering results from temperature-sensitive rearrangement of hydrogen bond networks and more dynamic lipid interactions. Importantly, we identify a temperature-responsive segment (TRS, residues 660–670) within the proximal CTD that undergoes an α-helix to coil transition, modulating long-range coupling with transmembrane helices. Dynamic cross-correlation analyses further suggest that ChPepT1, unlike hPepT1, reorganizes its interdomain communication in response to temperature shifts. Our findings suggest that cold tolerance in ChPepT1 arises from a combination of structural flexibility, resilient substrate binding, and temperature-sensitive interdomain dynamics. These results provide new mechanistic insight into thermal adaptation in membrane transporters and offer a framework for engineering proteins with enhanced functionality in extreme environments. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

24 pages, 4549 KiB  
Review
Research on Tbps and Kilometer-Range Transmission of Terahertz Signals
by Jianjun Yu and Jiali Chen
Micromachines 2025, 16(7), 828; https://doi.org/10.3390/mi16070828 - 20 Jul 2025
Viewed by 504
Abstract
THz communication stands as a pivotal technology for 6G networks, designed to address the critical challenge of data demands surpassing current microwave and millimeter-wave (mmWave) capabilities. However, realizing Tbps and kilometer-range transmission confronts the “dual attenuation dilemma” comprising severe free-space path loss (FSPL) [...] Read more.
THz communication stands as a pivotal technology for 6G networks, designed to address the critical challenge of data demands surpassing current microwave and millimeter-wave (mmWave) capabilities. However, realizing Tbps and kilometer-range transmission confronts the “dual attenuation dilemma” comprising severe free-space path loss (FSPL) (>120 dB/km) and atmospheric absorption. This review comprehensively summarizes our group′s advancements in overcoming fundamental challenges of long-distance THz communication. Through systematic photonic–electronic co-optimization, we report key enabling technologies including photonically assisted THz signal generation, polarization-multiplexed multiple-input multiple-output (MIMO) systems with maximal ratio combining (MRC), high-gain antenna–lens configurations, and InP amplifier systems for complex weather resilience. Critical experimental milestones encompass record-breaking 1.0488 Tbps throughput using probabilistically shaped 64QAM (PS-64QAM) in the 330–500 GHz band; 30.2 km D-band transmission (18 Gbps with 543.6 Gbps·km capacity–distance product); a 3 km fog-penetrating link at 312 GHz; and high-sensitivity SIMO-validated 100 Gbps satellite-terrestrial communication beyond 36,000 km. These findings demonstrate THz communication′s viability for 6G networks requiring extreme-capacity backhaul and ultra-long-haul connectivity. Full article
Show Figures

Figure 1

21 pages, 383 KiB  
Article
Mapping the Unmet Informational Needs of Young Portuguese Female Cancer Survivors: Psychometric Validation of a Multidimensional Scale
by Luana Almeida, Ana Bártolo, Sara Monteiro, Isabel S. Silva, Ana Conde, Alexandra M. Araújo, Luiz Lourenço and Isabel M. Santos
Healthcare 2025, 13(14), 1757; https://doi.org/10.3390/healthcare13141757 - 20 Jul 2025
Viewed by 340
Abstract
Background/Objectives: Young female cancer survivors often face specific informational needs related to the physical and emotional effects of cancer and its impact on life plans, particularly fertility and parenthood. However, few tools are tailored to assess these needs during this critical life stage. [...] Read more.
Background/Objectives: Young female cancer survivors often face specific informational needs related to the physical and emotional effects of cancer and its impact on life plans, particularly fertility and parenthood. However, few tools are tailored to assess these needs during this critical life stage. This study aimed to (i) validate a multidimensional measure—the Satisfaction with Information Provided to Young Oncology Patients Scale (SIPYF-CPS)—to assess the specific informational needs of young adult female cancer survivors; and (ii) explore preferences regarding the provision of information and counseling. Methods: A total of 124 women (M[age] = 38.18; SD = 5.49; range 21–45), 76.6% diagnosed with breast cancer, participated in the study. Psychometric analyses included exploratory factor analysis and correlation coefficients to assess reliability and construct validity. Convergent validity was evaluated through standardized measures of anxiety, reproductive concerns, and quality of life. Results: A final 22-item measure demonstrated strong reliability and validity, capturing four factors: (i) Disease-Related Information, (ii) Symptoms and Functional Limitations, (iii) Implications for Fertility and Parenthood, and (iv) Support Services. Participants expressed low satisfaction with information on fertility preservation, sexual health, and support services. Lower satisfaction was moderately associated with higher anxiety and depression while positively related to quality of life. Most participants preferred phased, face-to-face communication throughout the illness trajectory. Conclusions: The SIPYF-CPS is a valid, multidimensional tool that captures the complex and evolving informational needs of young female cancer survivors. Its clinical use may promote earlier, personalized, and emotionally responsive communication—supporting psychological well-being, informed decision-making, and long-term survivorship care. Full article
(This article belongs to the Special Issue Multidisciplinary Approaches in Cancer Healthcare)
Show Figures

Figure 1

7 pages, 1091 KiB  
Communication
New Records of Feather Mites (Acariformes: Analgoidea) on Passerines (Aves: Passeriformes) from Greenland
by Nevena Kolarova, Christoffer Sjöholm, Jannika Boström, Susanne Åkesson and Mihaela Ilieva
Birds 2025, 6(3), 38; https://doi.org/10.3390/birds6030038 - 18 Jul 2025
Viewed by 239
Abstract
Feather mites play an important role in bird communities, covering a wide spectrum of associations with their hosts, ranging from parasitic to mutualistic relations. As a result of long co-evolution with their warm-blooded hosts, this diverse group of arthropods can be found in [...] Read more.
Feather mites play an important role in bird communities, covering a wide spectrum of associations with their hosts, ranging from parasitic to mutualistic relations. As a result of long co-evolution with their warm-blooded hosts, this diverse group of arthropods can be found in a wide range of environments where their hosts occur, including the high Arctic. The feather mite fauna of Greenland is poorly known. Herein, we present new data on feather mites found on three species of passerine birds, which were captured on Disko Island (Qeqertarsuaq), West Greenland. The feather mite species Analges longispinosus was found on Snow Bunting (Plectrophenax nivalis); Proctophyllodes plectrophenax on Snow Bunting and Lapland Longspur (Calcarius lapponicus); and Proctophyllodes hipposideros on Northern Wheatear (Oenanthe oenanthe). The two Proctophyllodes species represent new records for Greenland. Further studies are needed to reveal the diversity of feather mite species in this remote Arctic region. Full article
Show Figures

Figure 1

18 pages, 9419 KiB  
Article
STNet: Prediction of Underwater Sound Speed Profiles with an Advanced Semi-Transformer Neural Network
by Wei Huang, Junpeng Lu, Jiajun Lu, Yanan Wu, Hao Zhang and Tianhe Xu
J. Mar. Sci. Eng. 2025, 13(7), 1370; https://doi.org/10.3390/jmse13071370 - 18 Jul 2025
Viewed by 234
Abstract
The real-time acquisition of an accurate underwater sound velocity profile (SSP) is crucial for tracking the propagation trajectory of underwater acoustic signals, making it play a key role in ocean communication positioning. SSPs can be directly measured by instruments or inverted leveraging sound [...] Read more.
The real-time acquisition of an accurate underwater sound velocity profile (SSP) is crucial for tracking the propagation trajectory of underwater acoustic signals, making it play a key role in ocean communication positioning. SSPs can be directly measured by instruments or inverted leveraging sound field data. Although measurement techniques provide a good accuracy, they are constrained by limited spatial coverage and require a substantial time investment. The inversion method based on the real-time measurement of acoustic field data improves operational efficiency but loses the accuracy of SSP estimation and suffers from limited spatial applicability due to its stringent requirements for ocean observation infrastructures. To achieve accurate long-term ocean SSP estimation independent of real-time underwater data measurements, we propose a semi-transformer neural network (STNet) specifically designed for simulating sound velocity distribution patterns from the perspective of time series prediction. The proposed network architecture incorporates an optimized self-attention mechanism to effectively capture long-range temporal dependencies within historical sound velocity time-series data, facilitating an accurate estimation of current SSPs or prediction of future SSPs. Through the architectural optimization of the transformer framework and integration of a time encoding mechanism, STNet could effectively improve computational efficiency. For long-term forecasting (using the Pacific Ocean as a case study), STNet achieved an annual average RMSE of 0.5811 m/s, outperforming the best baseline model, H-LSTM, by 26%. In short-term forecasting for the South China Sea, STNet further reduced the RMSE to 0.1385 m/s, demonstrating a 51% improvement over H-LSTM. Comparative experimental results revealed that STNet outperformed state-of-the-art models in predictive accuracy and maintained good computational efficiency, demonstrating its potential for enabling accurate long-term full-depth ocean SSP forecasting. Full article
Show Figures

Figure 1

20 pages, 3714 KiB  
Article
Seed Mixes in Landscape Design and Management: An Untapped Conservation Tool for Pollinators in Cities
by Cláudia Fernandes, Ana Medeiros, Catarina Teixeira, Miguel Porto, Mafalda Xavier, Sónia Ferreira and Ana Afonso
Land 2025, 14(7), 1477; https://doi.org/10.3390/land14071477 - 16 Jul 2025
Viewed by 898
Abstract
Urban green spaces are increasingly recognized as important habitats for pollinators, and wildflower seed mixes marketed as pollinator-friendly are gaining popularity, though their actual conservation value remains poorly understood. This study provides the first systematic screening of commercially available seed mixes in Portugal, [...] Read more.
Urban green spaces are increasingly recognized as important habitats for pollinators, and wildflower seed mixes marketed as pollinator-friendly are gaining popularity, though their actual conservation value remains poorly understood. This study provides the first systematic screening of commercially available seed mixes in Portugal, evaluating their taxonomic composition, origin, life cycle traits, and potential to support pollinator communities. A total of 229 seed mixes were identified. Although these have a predominance of native species (median 86%), the taxonomic diversity was limited, with 91% of mixes comprising species from only one or two families, predominantly Poaceae and Fabaceae, potentially restricting the range of floral resources available to pollinators. Only 21 seed mixes met the criteria for being pollinator-friendly, based on a three-step decision tree prioritizing native species, extended flowering periods, and visual diversity. These showed the highest percentage of native species (median 87%) and a greater representation of flowering plants. However, 76% of all mixes still included at least one non-native species, although none is considered invasive. Perennial species dominated all seed mix types, indicating the potential for the long-term persistence of wildflower meadows in urban spaces. Despite their promise, the ecological quality and transparency of the seed mix composition remain inconsistent, with limited certification or information on species origin. This highlights the need for clearer labeling, regulatory guidance, and ecologically informed formulations. Seed mixes, if properly designed and implemented, represent a largely untapped yet cost-effective tool for enhancing the pollinator habitats and biodiversity within urban landscapes. Full article
Show Figures

Figure 1

19 pages, 5202 KiB  
Article
Optimizing Energy/Current Fluctuation of RF-Powered Secure Adiabatic Logic for IoT Devices
by Bendito Freitas Ribeiro and Yasuhiro Takahashi
Sensors 2025, 25(14), 4419; https://doi.org/10.3390/s25144419 - 16 Jul 2025
Viewed by 390
Abstract
The advancement of Internet of Things (IoT) technology has enabled battery-powered devices to be deployed across a wide range of applications; however, it also introduces challenges such as high energy consumption and security vulnerabilities. To address these issues, adiabatic logic circuits offer a [...] Read more.
The advancement of Internet of Things (IoT) technology has enabled battery-powered devices to be deployed across a wide range of applications; however, it also introduces challenges such as high energy consumption and security vulnerabilities. To address these issues, adiabatic logic circuits offer a promising solution for achieving energy efficiency and enhancing the security of IoT devices. Adiabatic logic circuits are well suited for energy harvesting systems, especially in applications such as sensor nodes, RFID tags, and other IoT implementations. In these systems, the harvested bipolar sinusoidal RF power is directly used as the power supply for the adiabatic logic circuit. However, adiabatic circuits require a peak detector to provide bulk biasing for pMOS transistors. To meet this requirement, a diode-connected MOS transistor-based voltage doubler circuit is used to convert the sinusoidal input into a usable DC signal. In this paper, we propose a novel adiabatic logic design that maintains low power consumption while optimizing energy and current fluctuations across various input transitions. By ensuring uniform and complementary current flow in each transition within the logic circuit’s functional blocks, the design reduces energy variation and enhances resistance against power analysis attacks. Evaluation under different clock frequencies and load capacitances demonstrates that the proposed adiabatic logic circuit exhibits lower fluctuation and improved security, particularly at load capacitances of 50 fF and 100 fF. The results show that the proposed circuit achieves lower power dissipation compared to conventional designs. As an application example, we implemented an ultrasonic transmitter circuit within a LoRaWAN network at the end-node sensor level, which serves as both a communication protocol and system architecture for long-range communication systems. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Sensors 2025)
Show Figures

Figure 1

35 pages, 2297 KiB  
Article
Secure Cooperative Dual-RIS-Aided V2V Communication: An Evolutionary Transformer–GRU Framework for Secrecy Rate Maximization in Vehicular Networks
by Elnaz Bashir, Francisco Hernando-Gallego, Diego Martín and Farzaneh Shoushtari
World Electr. Veh. J. 2025, 16(7), 396; https://doi.org/10.3390/wevj16070396 - 14 Jul 2025
Viewed by 221
Abstract
The growing demand for reliable and secure vehicle-to-vehicle (V2V) communication in next-generation intelligent transportation systems has accelerated the adoption of reconfigurable intelligent surfaces (RIS) as a means of enhancing link quality, spectral efficiency, and physical layer security. In this paper, we investigate the [...] Read more.
The growing demand for reliable and secure vehicle-to-vehicle (V2V) communication in next-generation intelligent transportation systems has accelerated the adoption of reconfigurable intelligent surfaces (RIS) as a means of enhancing link quality, spectral efficiency, and physical layer security. In this paper, we investigate the problem of secrecy rate maximization in a cooperative dual-RIS-aided V2V communication network, where two cascaded RISs are deployed to collaboratively assist with secure data transmission between mobile vehicular nodes in the presence of eavesdroppers. To address the inherent complexity of time-varying wireless channels, we propose a novel evolutionary transformer-gated recurrent unit (Evo-Transformer-GRU) framework that jointly learns temporal channel patterns and optimizes the RIS reflection coefficients, beam-forming vectors, and cooperative communication strategies. Our model integrates the sequence modeling strength of GRUs with the global attention mechanism of transformer encoders, enabling the efficient representation of time-series channel behavior and long-range dependencies. To further enhance convergence and secrecy performance, we incorporate an improved gray wolf optimizer (IGWO) to adaptively regulate the model’s hyper-parameters and fine-tune the RIS phase shifts, resulting in a more stable and optimized learning process. Extensive simulations demonstrate the superiority of the proposed framework compared to existing baselines, such as transformer, bidirectional encoder representations from transformers (BERT), deep reinforcement learning (DRL), long short-term memory (LSTM), and GRU models. Specifically, our method achieves an up to 32.6% improvement in average secrecy rate and a 28.4% lower convergence time under varying channel conditions and eavesdropper locations. In addition to secrecy rate improvements, the proposed model achieved a root mean square error (RMSE) of 0.05, coefficient of determination (R2) score of 0.96, and mean absolute percentage error (MAPE) of just 0.73%, outperforming all baseline methods in prediction accuracy and robustness. Furthermore, Evo-Transformer-GRU demonstrated rapid convergence within 100 epochs, the lowest variance across multiple runs. Full article
Show Figures

Figure 1

Back to TopTop