Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = localized sinkhole

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7171 KiB  
Article
CFD–DEM Analysis of Internal Soil Erosion Induced by Infiltration into Defective Buried Pipes
by Jun Xu, Fei Wang and Bryce Vaughan
Geosciences 2025, 15(7), 253; https://doi.org/10.3390/geosciences15070253 - 3 Jul 2025
Viewed by 385
Abstract
Internal soil erosion caused by water infiltration around defective buried pipes poses a significant threat to the long-term stability of underground infrastructures such as pipelines and highway culverts. This study employs a coupled computational fluid dynamics–discrete element method (CFD–DEM) framework to simulate the [...] Read more.
Internal soil erosion caused by water infiltration around defective buried pipes poses a significant threat to the long-term stability of underground infrastructures such as pipelines and highway culverts. This study employs a coupled computational fluid dynamics–discrete element method (CFD–DEM) framework to simulate the detachment, transport, and redistribution of soil particles under varying infiltration pressures and pipe defect geometries. Using ANSYS Fluent (CFD) and Rocky (DEM), the simulation resolves both the fluid flow field and granular particle dynamics, capturing erosion cavity formation, void evolution, and soil particle transport in three dimensions. The results reveal that increased infiltration pressure and defect size in the buried pipe significantly accelerate the process of erosion and sinkhole formation, leading to potentially unstable subsurface conditions. Visualization of particle migration, sinkhole development, and soil velocity distributions provides insight into the mechanisms driving localized failure. The findings highlight the importance of considering fluid–particle interactions and defect characteristics in the design and maintenance of buried structures, offering a predictive basis for assessing erosion risk and infrastructure vulnerability. Full article
Show Figures

Figure 1

26 pages, 5141 KiB  
Article
Multi-Hazard Assessment in Post-Mining Landscape and Potential for Geotourism Development (On the Example of the Central Spiš Region in Slovakia)
by Vladimír Čech, Radoslav Klamár, Juliana Krokusová and Jana Vašková
Land 2025, 14(5), 1000; https://doi.org/10.3390/land14051000 - 5 May 2025
Viewed by 630
Abstract
The presented article is focused on a spatial analysis and identification of high and medium risk areas and their impact on potential for geotourism development in the Central Spiš region in Slovakia. To achieve this goal, we used a combination of two methods: [...] Read more.
The presented article is focused on a spatial analysis and identification of high and medium risk areas and their impact on potential for geotourism development in the Central Spiš region in Slovakia. To achieve this goal, we used a combination of two methods: the multi-hazard assessment method and the quantitative Geosite Assessment Model. The research results show that the geosites with the highest potential for the development of geotourism are also located in the low treat zone. These are mainly GS9 adit Pavol (overall point value 16.25), GS1 adit Rochus (15.25) and GS8 adit Peter (14.00). On the other hand, geosites with a low point value for the development of geotourism, such as GS10 sinkhole Baniská (7.75) and GS5 tailings impoundment Markušovce (10.50), are located in the high treat zone. The obtained results show that even in the significantly anthropogenically burdened and economically underdeveloped post-mining landscape of the studied area, it is possible to identify positive impulses for further development. This concerns in particular the use of evaluated geosites in geotourism, with the aim of simultaneously supporting the protection of local cultural heritage, the natural environment and the socioeconomic development of the local community. Full article
Show Figures

Figure 1

20 pages, 5880 KiB  
Article
Sinkhole Risk-Based Sensor Placement for Leakage Localization in Water Distribution Networks with a Data-Driven Approach
by Gabriele Medio, Giada Varra, Çağrı Alperen İnan, Luca Cozzolino and Renata Della Morte
Sustainability 2024, 16(12), 5246; https://doi.org/10.3390/su16125246 - 20 Jun 2024
Cited by 1 | Viewed by 2184
Abstract
Leakages from damaged or deteriorated buried pipes in urban water distribution networks may cause significant socio-economic and environmental impacts, such as depletion of water resources and sinkhole events. Sinkholes are often caused by internal erosion and fluidization of the soil surrounding leaking pipes, [...] Read more.
Leakages from damaged or deteriorated buried pipes in urban water distribution networks may cause significant socio-economic and environmental impacts, such as depletion of water resources and sinkhole events. Sinkholes are often caused by internal erosion and fluidization of the soil surrounding leaking pipes, with the formation of soil cavities that may eventually collapse. This in turn causes road disruption and building foundation damage, with possible victims. While the loss of precious water resources is a well-known problem, less attention has been paid to anthropogenic sinkhole events generated by leakages in water distribution systems. With a view to improving urban smart resilience and sustainability of urban areas, this study introduces an innovative framework to localize leakages based on a Machine learning model (for the training and evaluation of candidate sets of pressure sensors) and a Genetic algorithm (for the optimal sensor set positioning) with the goal of detecting and mitigating potential hydrogeological urban disruption due to water leakage in the most sensitive/critical locations. The application of the methodology on a synthetic case study from literature and a real-world case scenario shows that the methodology also contributes to reducing the depletion of water resources. Full article
Show Figures

Figure 1

16 pages, 10605 KiB  
Article
Identification and Mitigation of Subsidence in Karstic Areas with Sustainable Geotechnical Structures: A Case Study in Gallur (Spain)
by Alberto Gracia, Francisco Javier Torrijo, Julio Garzón-Roca and Miguel Pérez-Picallo
Sustainability 2024, 16(9), 3643; https://doi.org/10.3390/su16093643 - 26 Apr 2024
Viewed by 1592
Abstract
In various areas of the Ebro valley in Spain, including the region discussed here, the risk of sinkholes is becoming particularly severe, particularly impacting urban areas and roadways where land subsidence from karstic processes is common. However, knowledge of the area, its geological–geotechnical [...] Read more.
In various areas of the Ebro valley in Spain, including the region discussed here, the risk of sinkholes is becoming particularly severe, particularly impacting urban areas and roadways where land subsidence from karstic processes is common. However, knowledge of the area, its geological–geotechnical configuration, and the carrying out of specific research studies are allowing solutions to be tested in an attempt to resolve these situations. A case in point is the examination of settlement issues along a stretch of the access road leading to the city of Gallur from the east (known as Camino Real) in the Zaragoza province, Spain. Numerous surface manifestations of recent subsidence and/or collapse activities have been observed, manifesting as craters and ground undercuts, some several meters in diameter. The prevalence of highly karstifiable materials in the area, evident from the existence of subsidence pockets and collapse dolines, poses significant safety concerns, particularly for traffic and town access, prompting the closure of Camino Real for several years. Local and provincial authorities have embarked on studies to try to recognise this type of situation. Reports aimed at defining karstification processes, conducting geomechanical analyses of subsidence and cavity collapses, and proposing technical measures to mitigate risks have been prepared. Finally, a consolidation solution was proposed based on injections at column-depth of mortar with special characteristics, combined with the replacement and reinforcement of the most superficial soil by means of high-tensile-strength geotextile meshes. Full article
(This article belongs to the Special Issue Advances in Sustainable Geotechnical Structure and Geomaterials)
Show Figures

Figure 1

14 pages, 3222 KiB  
Article
Modeling Rainfall Impact on Slope Stability: Computational Insights into Displacement and Stress Dynamics
by Jingmei Zong, Changjun Zhang, Leifei Liu and Lulu Liu
Water 2024, 16(4), 554; https://doi.org/10.3390/w16040554 - 11 Feb 2024
Cited by 5 | Viewed by 2513
Abstract
The susceptibility of loess slopes to collapses, landslides, and sinkholes is a global concern. Rainfall is a key factor exacerbating these issues and affecting slope stability. In regions experiencing significant infrastructure and urban growth, understanding and mitigating rainfall effects on loess landslides is [...] Read more.
The susceptibility of loess slopes to collapses, landslides, and sinkholes is a global concern. Rainfall is a key factor exacerbating these issues and affecting slope stability. In regions experiencing significant infrastructure and urban growth, understanding and mitigating rainfall effects on loess landslides is crucial. ADINA numerical software 9 was utilized to explore rain-induced erosion’s influence on landslide dynamics. The simulations were based on local rainfall trends. The rainfall intensities examined were as follows: 200 mm/day, 300 mm/day, and 400 mm/day. The results indicate a pronounced impact of rainfall intensity on both the movement and stress levels within the slope. Higher rainfall intensities lead to increased movement and a wider stress impact area at the base of the slope. It was observed that surface movement is minimal at the slope crest but increases towards the bottom, with the greatest movement seen at the slope’s base. Full article
(This article belongs to the Special Issue Rainfall-Induced Landslides and Natural Geohazards)
Show Figures

Figure 1

13 pages, 23701 KiB  
Brief Report
On Internal Erosion of the Pervious Foundation of Flood Protection Dikes
by Laurence Girolami, Stéphane Bonelli, Rémi Valois, Naïm Chaouch and Jules Burgat
Water 2023, 15(21), 3747; https://doi.org/10.3390/w15213747 - 26 Oct 2023
Cited by 9 | Viewed by 2303
Abstract
This work focuses on the mechanisms that trigger internal erosion of the pervious foundation of flood protection dikes. The origin of these permeable layers is generally attributed to the presence of a paleo-valley and paleo-channels filled with gravelly-sandy sediments beneath the river bed [...] Read more.
This work focuses on the mechanisms that trigger internal erosion of the pervious foundation of flood protection dikes. The origin of these permeable layers is generally attributed to the presence of a paleo-valley and paleo-channels filled with gravelly-sandy sediments beneath the river bed and dikes. These layers may extend into the protected area. Visual observations of leaks, sand boils and sinkholes in the protected area testify to internal erosion processes in the underground soil. Local geological conditions are part of the information to be sought to explain these processes: presence of permeable soils and position of interfaces. Results obtained on Agly dikes (France), using two classical geophysical methods (EMI and ERT), were analyzed using cored soils and showed that it is not enough to simply conclude to the presence of backward erosion piping. The possibility of internal erosion, such as suffusion or contact erosion, must also be considered as the cause of leaks, sand boils and sinkholes. As the results obtained are explained by the presence of a paleo-valley and paleo-channels beneath the river bed and dikes—commonly encountered in this context—the methodology presented and the results obtained are likely to be relevant for many dikes. Full article
(This article belongs to the Topic Research on River Engineering)
Show Figures

Figure 1

18 pages, 8566 KiB  
Article
Analysis of Deformation Dynamics in Guatemala City Metropolitan Area Using Persistent Scatterer Interferometry
by Carlos García-Lanchares, Miguel Marchamalo-Sacristán, Alfredo Fernández-Landa, Candela Sancho, Vrinda Krishnakumar and Belén Benito
Remote Sens. 2023, 15(17), 4207; https://doi.org/10.3390/rs15174207 - 27 Aug 2023
Cited by 2 | Viewed by 2702
Abstract
The analysis of deformation dynamics in Guatemala city and its surrounding region presented in this paper holds significant relevance due to the high vulnerability of this area to natural disasters, combined with its rapid urbanization, similar to most Central American cities, contrasting with [...] Read more.
The analysis of deformation dynamics in Guatemala city and its surrounding region presented in this paper holds significant relevance due to the high vulnerability of this area to natural disasters, combined with its rapid urbanization, similar to most Central American cities, contrasting with a lack of InSAR and deformation studies in the region. A total of 226 SAR images from Sentinel-1 A and B satellites in both ascending and descending geometries were processed with the Persistent Scatterer Interferometry (PSI) technique employing the SNAP-StaMPS integrated processing chain. The study area encompasses the Metropolitan Region of Guatemala, which is characterized by a diverse and active geological framework, with a historical record of earthquakes, intense groundwater extraction, and local subsidence phenomena, causing fissures and sinkholes. Four active areas were identified in the study area, each covering more than 50 hectares, with subsidence velocities greater than 10 mm/yr. This study provides valuable insights into fostering the sustainable development of this region by identifying deformation patterns, characterizing main active areas, and evaluating associated risks for disaster management and prevention. The results can also aid informed decision-making processes and guide urban planning and resource management strategies in other Central American countries. The application of InSAR studies is crucial for improving safety and sustainability in urban environments and natural resource management in vulnerable regions. Full article
Show Figures

Figure 1

25 pages, 7588 KiB  
Article
A Multivariate Time Series Analysis of Ground Deformation Using Persistent Scatterer Interferometry
by Serena Rigamonti, Giuseppe Dattola, Paolo Frattini and Giovanni Battista Crosta
Remote Sens. 2023, 15(12), 3082; https://doi.org/10.3390/rs15123082 - 13 Jun 2023
Cited by 7 | Viewed by 2375
Abstract
Ground deformations in urban areas can be the result of a combination of multiple factors and pose several hazards to infrastructures and human lives. In order to monitor these phenomena, Interferometric Synthetic Aperture Radar (InSAR) techniques are applied. The obtained signals record the [...] Read more.
Ground deformations in urban areas can be the result of a combination of multiple factors and pose several hazards to infrastructures and human lives. In order to monitor these phenomena, Interferometric Synthetic Aperture Radar (InSAR) techniques are applied. The obtained signals record the overlapping of the phenomena, and their separation is a relevant issue. In this framework, we explored a new multi-method approach based on the combination of Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Hierarchal Clustering (HC) on the standardized results to distinguish the main trends and seasonal signals embedded in the time series of ground displacements, to understand spatial-temporal patterns, to correlate ground deformation phenomena with geological and anthropogenic factors, and to recognize the specific footprints of different ground deformation phenomena. This method allows us to classify the ground deformations at the site scale in the metropolitan area of Naples, which is affected by uplift cycles, subsidence, cavity instabilities and sinkholes. At the local scale, the results allow a kinematic classification using the extracted components and considering the effect of the radius of influence generated by each cavity, as it is performed from a theoretical point of view when the draw angle is considered. According to the results, among the classified cavities, 2% were assigned to subsidence and 11% to uplift kinematics, while the remaining were found to be stable. Furthermore, our results show that the centering of the Spatial-PCA (S-PCA) is representative of the region’s main trend, whereas Temporal-PCA (T-PCA) gives information about the displacement rates identified by each component. Full article
(This article belongs to the Special Issue Remote Sensing in Engineering Geology - II)
Show Figures

Graphical abstract

17 pages, 2846 KiB  
Article
Farmland Hydrology Cycle and Agronomic Measures in Agroforestry for the Efficient Utilization of Water Resources under Karst Desertification Environments
by Qinglin Wu, Kangning Xiong, Rui Li and Jie Xiao
Forests 2023, 14(3), 453; https://doi.org/10.3390/f14030453 - 22 Feb 2023
Cited by 13 | Viewed by 2158
Abstract
Severe soil-water loss and unfertile soil frequently occur under karst desertification environments. The surface-underground dual structure in these areas allows the surface water to leak into the subsurface through cracks and sinkholes, as well as other conduits, causing a special “karst drought”. Hence, [...] Read more.
Severe soil-water loss and unfertile soil frequently occur under karst desertification environments. The surface-underground dual structure in these areas allows the surface water to leak into the subsurface through cracks and sinkholes, as well as other conduits, causing a special “karst drought”. Hence, water-resource shortage has become a challenge for local agricultural development. To realize efficient utilization of water resources, an urgent need is to clearly understand and study the law of farmland hydrological cycles under agroforestry practices, which is still understudied. Here, we focused on the hydrological cycle at the farmland scale and water-saving measures under agroforestry in three study areas representing different degrees of karst desertification. First, a significant positive correlation was found between total and available precipitations as well as land evapotranspiration (LET). Second, under agronomic measures, the soil water content in the three areas was all higher than that of the control group while soil evaporation was all lower. This indicates that agronomic measures can contribute to the efficient use of water resources by halting soil evaporation and increasing soil water content. Third, dwarf dense planting and pruning technologies were helpful in inhibiting crop transpiration and reducing vegetation interception. Fourth, in the farmland hydrological cycle of agroforestry, 77.45% of precipitation transformed into soil water storage, 24.81% into soil evaporation, 20.73% into plant transpiration, 17.40% into groundwater, and 5.18% into vegetation interception. However, their sum was greater than 100%, suggesting that the farmland-scale water cycle is an open system. The implication is that different agronomic practices under agroforestry bring certain water-saving benefits by constraining the conversion of ineffective water and promoting the storage of effective water, thus opening up promising opportunities for efficiently utilizing water resources in karst desertification areas. The finding is also significant to the control of karst desertification, soil and water conservation, and karst drought alleviation. Full article
Show Figures

Figure 1

21 pages, 4876 KiB  
Article
DOIDS: An Intrusion Detection Scheme Based on DBSCAN for Opportunistic Routing in Underwater Wireless Sensor Networks
by Rui Zhang, Jing Zhang, Qiqi Wang and Hehe Zhang
Sensors 2023, 23(4), 2096; https://doi.org/10.3390/s23042096 - 13 Feb 2023
Cited by 23 | Viewed by 2857
Abstract
In Underwater Wireless Sensor Networks (UWSNs), data should be transmitted to data centers reliably and efficiently. However, due to the harsh channel conditions, reliable data transmission is a challenge for large-scale UWSNs. Thus, opportunistic routing (OR) protocols with high reliability, strong robustness, low [...] Read more.
In Underwater Wireless Sensor Networks (UWSNs), data should be transmitted to data centers reliably and efficiently. However, due to the harsh channel conditions, reliable data transmission is a challenge for large-scale UWSNs. Thus, opportunistic routing (OR) protocols with high reliability, strong robustness, low end-to-end delay, and high energy efficiency are widely applied. However, OR in UWSNs is vulnerable to routing attacks. For example, sinkhole attack nodes can attract traffic from surrounding nodes by forging information such as the distance to the sink node. In order to reduce the negative impact of malicious nodes on data transmission, we propose an intrusion detection scheme (IDS) based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering algorithm for OR (DOIDS) in this paper. DOIDS is based on small-sample IDS and is suitable for UWSNs with sparse node deployment. In DOIDS, the local monitoring mechanism is adopted. Every node in the network running DOIDS can select the trusted next hop. Firstly, according to the behavior characteristics of common routing attack nodes and unreliable underwater acoustic channel characteristics, DOIDS selected the energy consumption, forwarding, and link quality information of candidate nodes as the detection feature values. Then, the collected feature information is used to detect potential abnormal nodes through the DBSCAN clustering algorithm. Finally, a decision function is defined according to the time decay function to reduce the false detection rate of DOIDS. It makes a final judgment on whether the potential abnormal node is malicious. The simulation results show that the algorithm can effectively improve the detection accuracy rate (3% to 15% for different scenarios) and reduce the false positive rate, respectively. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

22 pages, 78065 KiB  
Article
Modelling Cover-Collapse Sinkholes That Appeared after the M6.2 Petrinja Earthquake in Croatia Using Electrical Resistivity Tomography Data
by Franjo Šumanovac and Želimir Pekaš
Sustainability 2023, 15(2), 1124; https://doi.org/10.3390/su15021124 - 6 Jan 2023
Cited by 2 | Viewed by 3357
Abstract
After the destructive earthquake in Petrinja measuring M6.2 occurred on 29 December 2020, which was followed by a series of foreshocks and aftershocks in the area of the rural settlements in Mečenčani and Borojevići, cover-collapse sinkholes suddenly appeared. The investigated area is located [...] Read more.
After the destructive earthquake in Petrinja measuring M6.2 occurred on 29 December 2020, which was followed by a series of foreshocks and aftershocks in the area of the rural settlements in Mečenčani and Borojevići, cover-collapse sinkholes suddenly appeared. The investigated area is located 20 km southeast of the epicentre. Some months later, more than 90 cover-collapse sinkholes appeared, jeopardising local infrastructure and residential buildings. The sinkholes appear in the area of covered karst, where there are clastic deposits 2–10 m thick on the fractured and weathered limestone bedrock. There are two geological models located in the investigated area: GM-1, where the base consists of clastic strata covering comprising Lithothamnium limestone, which in turn leads to the formation of underground cavities and cover-collapse sinkholes, and the GM-2, where the base comprises clay deposits without any cover-collapse sinkholes. These models can be effectively distinguished due to tomographic resistivity models; hence, numerous measurements were undertaken using two-dimensional electrical tomography in several phases. An estimate of the threat to infrastructural facilities was conducted, and the boundaries of the geological models were precisely determined according to which underground cavities and cover-collapse sinkholes did not develop. Tomographic measurements were also conducted over the largest cover-collapse sinkhole measuring 25 m in diameter and helped to more precisely define the entire hydrogeological model and the mechanisms involved in the formation of cover-collapse sinkholes. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

25 pages, 24617 KiB  
Article
Terrestrial and Airborne Structure from Motion Photogrammetry Applied for Change Detection within a Sinkhole in Thuringia, Germany
by Helene Petschko, Markus Zehner, Patrick Fischer and Jason Goetz
Remote Sens. 2022, 14(13), 3058; https://doi.org/10.3390/rs14133058 - 25 Jun 2022
Cited by 5 | Viewed by 2767
Abstract
Detection of geomorphological changes based on structure from motion (SfM) photogrammetry is highly dependent on the quality of the 3D reconstruction from high-quality images and the correspondingly derived point precision estimates. For long-term monitoring, it is interesting to know if the resulting 3D [...] Read more.
Detection of geomorphological changes based on structure from motion (SfM) photogrammetry is highly dependent on the quality of the 3D reconstruction from high-quality images and the correspondingly derived point precision estimates. For long-term monitoring, it is interesting to know if the resulting 3D point clouds and derived detectable changes over the years are comparable, even though different sensors and data collection methods were applied. Analyzing this, we took images of a sinkhole terrestrially with a Nikon D3000 and aerially with a DJI drone camera in 2017, 2018, and 2019 and computed 3D point clouds and precision maps using Agisoft PhotoScan and the SfM_Georef software. Applying the “multiscale model to model cloud comparison using precision maps” plugin (M3C2-PM) in CloudCompare, we analyzed the differences between the point clouds arising from the different sensors and data collection methods per year. Additionally, we were interested if the patterns of detectable change over the years were comparable between the data collection methods. Overall, we found that the spatial pattern of detectable changes of the sinkhole walls were generally similar between the aerial and terrestrial surveys, which were performed using different sensors and camera locations. Although the terrestrial data collection was easier to perform, there were often challenges due to terrain and vegetation around the sinkhole to safely acquire adequate viewing angles to cover the entire sinkhole, which the aerial survey was able to overcome. The local levels of detection were also considerably lower for point clouds resulting from aerial surveys, likely due to the ability to obtain closer-range imagery within the sinkhole. Full article
Show Figures

Graphical abstract

17 pages, 10138 KiB  
Article
Using InSAR Time Series to Monitor Surface Fractures and Fissures in the Al-Yutamah Valley, Western Arabia
by Thamer Aldaajani, Mark Simons, Zhang Yunjun, David Bekaert, Khalid A. Almalki and Yuan-Kai Liu
Remote Sens. 2022, 14(8), 1769; https://doi.org/10.3390/rs14081769 - 7 Apr 2022
Cited by 5 | Viewed by 4173
Abstract
Western Arabia routinely experiences geophysical phenomena that deform the surface of the earth in a variety of ways. These phenomena include earthquakes, volcanic eruptions, sinkholes, and earth fissuring and fracturing. We perform a time-series analysis of interferometric synthetic aperture radar (InSAR) observations derived [...] Read more.
Western Arabia routinely experiences geophysical phenomena that deform the surface of the earth in a variety of ways. These phenomena include earthquakes, volcanic eruptions, sinkholes, and earth fissuring and fracturing. We perform a time-series analysis of interferometric synthetic aperture radar (InSAR) observations derived from the ESA Sentinel-1 radar satellite constellation to map regional surface displacements in western Arabia as a function of time. We rely on InSAR products generated by the JPL-Caltech ARIA project to detect regions with short wavelength anomalies, and then manually reprocess InSAR products at a higher resolution for these regions to maximize spatial and temporal coverage. We post-process InSAR products using MintPy workflows to develop the InSAR time series. We report short wavelength anomalies localized within alluvial valleys across western Arabia and find a 5 cm/year line-of-sight surface displacement within the Al-Yutamah Valley. Part of the observed subsidence is correlated with surface fractures that developed in conjunction with severe rainfall events in regions characterized mainly by alluvial sediments at the surface. Regions of observed subsidence that are not associated with any surface fractures or fissures are correlated with the presence of basalt layers at the surface. Both regions are subject to groundwater exploitation. The observed subsidence is inferred to be driven by groundwater withdrawal perhaps modulated by the presence of a preexisting depositional environment (e.g., paleo-lake deposits) that promotes unconsolidated soil compaction. Full article
(This article belongs to the Special Issue Geodetic Observations for Earth System)
Show Figures

Graphical abstract

13 pages, 2417 KiB  
Article
Sulfidic Habitats in the Gypsum Karst System of Monte Conca (Italy) Host a Chemoautotrophically Supported Invertebrate Community
by Giuseppe Nicolosi, Sandro Galdenzi, Maria Anna Messina, Ana Z. Miller, Salvatore Petralia, Serban M. Sarbu and Marco Isaia
Int. J. Environ. Res. Public Health 2022, 19(5), 2671; https://doi.org/10.3390/ijerph19052671 - 25 Feb 2022
Cited by 6 | Viewed by 2603
Abstract
The great diversity of the invertebrate community thriving in the deepest sections of the gypsum karst system of the Monte Conca sinkhole (Sicily, Italy) suggests the existence of a complex food web associated with a sulfidic pool and chemoautotrophic microbial activity. To shed [...] Read more.
The great diversity of the invertebrate community thriving in the deepest sections of the gypsum karst system of the Monte Conca sinkhole (Sicily, Italy) suggests the existence of a complex food web associated with a sulfidic pool and chemoautotrophic microbial activity. To shed light on the peculiarity of this biological assemblage, we investigated the species composition of the invertebrate community and surveyed trophic interactions by stable isotope analysis. The faunal investigation conducted by visual censuses and hand sampling methods led to the discovery of a structured biological assemblage composed of both subterranean specialized and non-specialized species, encompassing all trophic levels. The community was remarkably diverse in the sulfidic habitat and differed from other non-sulfidic habitats within the cave in terms of stable isotope ratios. This pattern suggests the presence of a significant chemoautotrophic support by the microbial communities to the local food web, especially during the dry season when the organic input from the surface is minimal. However, when large volumes of water enter the cave due to local agricultural activities (i.e., irrigation) or extreme precipitation events, the sulfidic habitat of the cave is flooded, inhibiting the local autotrophic production and threatening the conservation of the entire ecosystem. Full article
(This article belongs to the Special Issue Impact of Aboveground Disturbances on Subsurface Environments)
Show Figures

Figure 1

33 pages, 13070 KiB  
Article
Seismic Soil Characterization to Estimate Site Effects Induced by Near-Fault Earthquakes: The Case Study of Pizzoli (Central Italy) during the Mw 6.7 2 February 1703, Earthquake
by Anna Chiaradonna, Marco Spadi, Paola Monaco, Felicia Papasodaro and Marco Tallini
Geosciences 2022, 12(1), 2; https://doi.org/10.3390/geosciences12010002 - 21 Dec 2021
Cited by 5 | Viewed by 4205
Abstract
Many of the urban settlements in Central Italy are placed nearby active faults and, consequently, the ground motion evaluation and seismic site effects under near-fault earthquakes are noteworthy issues to be investigated. This paper presents the results of site investigations, the seismic site [...] Read more.
Many of the urban settlements in Central Italy are placed nearby active faults and, consequently, the ground motion evaluation and seismic site effects under near-fault earthquakes are noteworthy issues to be investigated. This paper presents the results of site investigations, the seismic site characterization, and the local seismic response for assessing the effects induced by the Mw 6.7 2 February 1703, near-fault earthquake at the Madonna delle Fornaci site (Pizzoli, Central Italy) in which notable ground failure phenomena were observed, as witnessed by several coeval sources. Even though recent papers described these phenomena, the geological characteristics of the site and the failure mechanism have never been assessed through in-situ investigations and numerical modeling. Within a project concerning the assessment of soil liquefaction potential and co-seismic ground failure, deep and shallow continuous core drilling, geophysical investigations and in-hole tests have been carried out. Subsequently, the geotechnical model has been defined and the numerical quantification of the different hypotheses of failure mechanisms has been evaluated. Analyses showed that liquefaction did not occur, and the excess pore water pressure induced by the shaking was not the source of the ground failure. Therefore, it was hypothesized that the sinkhole was likely caused by earthquake-induced gas eruption. Full article
Show Figures

Figure 1

Back to TopTop