Analysis of Deformation Dynamics in Guatemala City Metropolitan Area Using Persistent Scatterer Interferometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. MT-InSAR Processing and Vectorial Decomposition
2.3. Deformation Analysis and Identification of Critical Areas of Subsidence
3. Results
3.1. Areas of Interest: Critical Areas of Subsidence
3.2. Deformation Time Series
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
InSAR | Interferometric Synthetic Aperture Radar |
PSI | Persistent Scatterer Interferometry |
PS | Persistent Scatterer |
RMG | Región Metropolitana de Guatemala |
AOI | Area of Interest |
LOS | Line Of Sight |
References
- Fernández-Torres, E.; Cabral-Cano, E.; Solano-Rojas, D.; Havazli, E.; Salazar-Tlaczani, L. Land Subsidence risk maps and InSAR based angular distortion structural vulnerability assessment: An example in Mexico City. Proc. Int. Assoc. Hydrol. Sci. 2020, 382, 583–587. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 13. [Google Scholar] [CrossRef]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res. 1989, 94, 9183. [Google Scholar] [CrossRef]
- Cavalié, O.; Lasserre, C.; Doin, M.-P.; Peltzer, G.; Sun, J.; Xu, X.; Shen, Z.-K. Measurement of interseismic strain across the Haiyuan fault (Gansu, China), by InSAR. Earth Planet. Sci. Lett. 2008, 275, 246–257. [Google Scholar] [CrossRef]
- Cuervas-Mons, J.; Domínguez-Cuesta, M.J.; Redondo, F.M.; Barra, A.; Monserrat, O.; Valenzuela, P.; Jiménez-Sánchez, M. Sentinel-1 Data Processing for Detecting and Monitoring of Ground Instabilities in the Rocky Coast of Central Asturias (N Spain). Remote Sens. 2021, 13, 3076. [Google Scholar] [CrossRef]
- Tong, X.; Sandwell, D.T.; Smith-Konter, B. High-resolution interseismic velocity data along the San Andreas Fault from GPS and InSAR. J. Geophys. Res. Solid Earth 2013, 118, 369–389. [Google Scholar] [CrossRef]
- Abidin, H.Z.; Andreas, H.; Gamal, M.; Wirakusumah, A.D.; Darmawan, D.; Deguchi, T.; Maruyama, Y. Land subsidence characteristics of the Bandung Basin, Indonesia, as estimated from GPS and InSAR. J. Appl. Geod. 2008, 2, 167–177. [Google Scholar] [CrossRef]
- Barra, A.; Monserrat, O.; Mazzanti, P.; Esposito, C.; Crosetto, M.; Mugnozza, G.S. First insights on the potential of Sentinel-1 for landslides detection. Geomat. Nat. Hazards Risk 2016, 7, 1874–1883. [Google Scholar] [CrossRef]
- Cigna, F.; Bianchini, S.; Casagli, N. How to assess landslide activity and intensity with Persistent Scatterer Interferometry (PSI): The PSI-based matrix approach. Landslides 2012, 10, 267–283. [Google Scholar] [CrossRef]
- Koudogbo, F.N.; Duro, J.; Arnaud, A.; Bally, P.; Abidin, H.Z.; Andreas, H. Combined X- and L-Band PSI Analyses for Assessment of Land Subsidence in Jakarta; SPIE: Edinburgh, UK, 2012. [Google Scholar]
- Samsonov, S.; d’Oreye, N.; Smets, B. Ground deformation associated with post-mining activity at the French–German border revealed by novel InSAR time series method. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 142–154. [Google Scholar] [CrossRef]
- Zheng, M.; Deng, K.; Fan, H.; Du, S. Monitoring and Analysis of Surface Deformation in Mining Area Based on InSAR and GRACE. Remote Sens. 2018, 10, 1392. [Google Scholar] [CrossRef]
- Abidin, H.Z.; Andreas, H.; Gumilar, I.; Gamal, M.; Fukuda, Y.; Deguchi, T. Land Subsidence and Urban Development in Jakarta (Indonesia). In Proceedings of the Regional Conference of Spatial Data Serving People: Land Governance and the Environment, Hanoi, Vietnam, 19–22 October 2009; Available online: https://www.researchgate.net/publication/237757739_Land_Subsidence_and_Urban_Development_in_Jakarta_Indonesia (accessed on 27 October 2022).
- Chatterjee, R.; Fruneau, B.; Rudant, J.; Roy, P.; Frison, P.-L.; Lakhera, R.; Dadhwal, V.; Saha, R. Subsidence of Kolkata (Calcutta) City, India during the 1990s as observed from space by Differential Synthetic Aperture Radar Interferometry (D-InSAR) technique. Remote Environ. 2006, 102, 176–185. [Google Scholar] [CrossRef]
- Abidin, H.Z.; Andreas, H.; Gumilar, I.; Fukuda, Y.; Pohan, Y.E.; Deguchi, T. Land subsidence of Jakarta (Indonesia) and its relation with urban development. Nat. Hazards 2011, 59, 1753–1771. [Google Scholar] [CrossRef]
- Ezquerro, P.; Del Soldato, M.; Solari, L.; Tomás, R.; Raspini, F.; Ceccatelli, M.; Fernández-Merodo, J.; Casagli, N.; Herrera, G. Vulnerability Assessment of Buildings due to Land Subsidence Using InSAR Data in the Ancient Historical City of Pistoia (Italy). Sensors 2020, 20, 2749. [Google Scholar] [CrossRef]
- Marfai, M.A.; King, L. Monitoring land subsidence in Semarang, Indonesia. Environ. Geol. 2007, 53, 651–659. [Google Scholar] [CrossRef]
- Phien-wej, N.; Giao, P.; Nutalaya, P. Land subsidence in Bangkok, Thailand. Eng. Geol. 2006, 82, 187–201. [Google Scholar] [CrossRef]
- Pratesi, F.; Tapete, D.; Terenzi, G.; Del Ventisette, C.; Moretti, S. Rating health and stability of engineering structures via classification indexes of InSAR Persistent Scatterers. Int. J. Appl. Earth Obs. Geoinf. 2015, 40, 81–90. [Google Scholar] [CrossRef]
- Strozzi, T.; Wegmuller, U. Land subsidence in Mexico City mapped by ERS differential SAR interferometry. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 28 June–2 July 1999; IEEE: New York, NY, USA, 1999; Volume 4, pp. 1940–1942. [Google Scholar] [CrossRef]
- García, A.J.; Marchamalo, M.; Martínez, R.; González-Rodrigo, B.; González, C. Integrating geotechnical and SAR data for the monitoring of underground works in the Madrid urban area: Application of the Persistent Scatterer Interferometry technique. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 27–36. [Google Scholar] [CrossRef]
- Hussain, M.A.; Chen, Z.; Zheng, Y.; Shoaib, M.; Ma, J.; Ahmad, I.; Asghar, A.; Khan, J. PS-InSAR Based Monitoring of Land Subsidence by Groundwater Extraction for Lahore Metropolitan City, Pakistan. Remote Sens. 2022, 14, 3950. [Google Scholar] [CrossRef]
- Kim, Y.C.; Kim, D.J.; Jung, J. Monitoring Land Subsidence in Guatemala City Using Time-Series Interferometry. In Proceedings of the IGARSS 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE: New York, NY, USA, 2019; pp. 2099–2102. [Google Scholar] [CrossRef]
- Martín, P.E. Estudio de la Subsidencia del Terreno Producida por la Explotación de Acuíferos Mediante Datos de Interferometría Radar Satélite. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2021. [Google Scholar] [CrossRef]
- Béjar-Pizarro, M.; Ezquerro, P.; Herrera, G.; Tomás, R.; Guardiola-Albert, C.; Hernández, J.M.R.; Merodo, J.A.F.; Marchamalo, M.; Martínez, R. Mapping groundwater level and aquifer storage variations from InSAR measurements in the Madrid aquifer, Central Spain. J. Hydrol. 2017, 547, 678–689. [Google Scholar] [CrossRef]
- Abidin, H.Z.; Andreas, H.; Gamal, M.; Djaja, R.; Subarya, C.; Hirose, K.; Maruyama, Y.; Murdohardono, D.; Rajiyowiryono, H. Monitoring Land Subsidence of Jakarta (Indonesia) Using Leveling, GPS Survey and InSAR Techniques. In A Window on the 155 Future of Geodesy; Sansò, F., Ed.; International Association of Geodesy Symposia; Springer: Berlin/Heidelberg, Germany, 2005; Volume 128, pp. 561–566. [Google Scholar]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent Scatterer Interferometry: A review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef]
- Pritchard, M.E.; Biggs, J.; Wauthier, C.; Sansosti, E.; Arnold, D.W.D.; Delgado, F.; Ebmeier, S.K.; Henderson, S.T.; Stephens, K.; Cooper, C.; et al. Towards coordinated regional multi-satellite InSAR volcano observations: Results from the Latin America pilot project. J. Appl. Volcanol. 2018, 7, 5. [Google Scholar] [CrossRef]
- Wnuk, K.; Wauthier, C. Surface deformation induced by magmatic processes at Pacaya Volcano, Guatemala revealed by InSAR. J. Volcanol. Geotherm. Res. 2017, 344, 197–211. [Google Scholar] [CrossRef]
- Cosenza-Muralles, A.B.; Lasserre, C.; DeMets, C.; De Zan, F.; Shau, R.; Ansari, H.; Lyon-Caen, H.; Feigl, K.; Parizzi, A. Large Scale Observations and Modeling of Strain Partitioning in Guatemala from SAR Interferometry. Geodesy 2022, preprint. [Google Scholar] [CrossRef]
- Hussain, M.A.; Chen, Z.; Shoaib, M.; Shah, S.U.; Khan, J.; Ying, Z. Sentinel-1A for monitoring land subsidence of coastal city of Pakistan using Persistent Scatterers In-SAR technique. Sci. Rep. 2022, 12, 5294. [Google Scholar] [CrossRef]
- Benito, M.B.; Lindholm, C.; Camacho, E.; Climent, A.; Marroquin, G.; Molina, E.; Rojas, W.; Escobar, J.J.; Talavera, E.; Alvarado, G.E.; et al. A New Evaluation of Seismic Hazard for the Central America Region. Bull. Seismol. Soc. Am. 2012, 102, 504–523. [Google Scholar] [CrossRef]
- UNDRR. Transformar Nuestro Mundo: La Agenda 2030 para el Desarrollo Sostenible; Naciones Unidas: Geneva, Switzerland, 2015.
- UNISDR. Sendai Framework for Disaster Risk Reduction 2015–2030; Naciones Unidas: Geneva, Switzerland, 2022.
- United Nations. Directrices para la Prevención de los Desastres Naturales, la Preparación para Casos de Desastre y la Mitigación de sus Efectos. In Informe de la Conferencia Mundial sobre la Reducción de Riesgos Naturales; United Nations: Yokohama, Japan, 1994; p. 17. [Google Scholar]
- Marshall, J.S. The Geomorphology and Physiographic Provinces of Central America. In Central Americal: Geology, Resources and Hazards; Bundschuh, J., Alvarado, G.E., Eds.; Chapter 3—The Geomorphology and Physiographic Provinces of Central America in Central A; Taylor & Francis Group: Abingdon, UK, 2007; p. 1974. [Google Scholar]
- Bommer, J.; Rodríguez, C. Earthquake induced landslides in Central America. Eng. Geol. 2002, 63, 189–220. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística Guatemala. XII Censo Nacional de Población y VII de Vivienda; Instituto Nacional de Estadística Guatemala: Ciudad de Guatemala, Guatemala, 2019. [Google Scholar]
- UNISDR. Reducción del Riesgo de Desastres: Un Instrumento para Alcanzar los Objetivos de Desarrollo del Milenio; Union Interparlamentaria, Ed.; Unión Interparlamentaria: Ginebra, Switzerland, 2010. [Google Scholar]
- Chaussard, E.; Bürgmann, R.; Shirzaei, M.; Fielding, E.J.; Baker, B. Predictability of hydraulic head changes and characterization of aquifer-system and fault properties from InSAR-derived ground deformation. JGR Solid Earth 2014, 119, 6572–6590. [Google Scholar] [CrossRef]
- Chaussard, E.; Milillo, P.; Bürgmann, R.; Perissin, D.; Fielding, E.J.; Baker, B. Remote Sensing of Ground Deformation for Monitoring Groundwater Management Practices: Application to the Santa Clara Valley During the 2012–2015 California Drought. J. Geophys. Res. Solid Earth 2017, 122, 8566–8582. [Google Scholar] [CrossRef]
- Engi, D. Subsidence Due to Fluis Withdrawal: A Survey of Analytical Capabilities; Sandia National Laboratories: Albuquerque, NM, USA, 1985. [Google Scholar]
- Normand, J.C.L.; Heggy, E. InSAR Assessment of Surface Deformations in Urban Coastal Terrains Associated with Groundwater Dynamics. IEEE Trans. Geosci. Remote 2015, 53, 6356–6371. [Google Scholar] [CrossRef]
- Zhu, L.; Gong, H.; Li, X.; Wang, R.; Chen, B.; Dai, Z.; Teatini, P. Land subsidence due to groundwater withdrawal in the northern Beijing plain, China. Eng. Geol. 2015, 193, 243–255. [Google Scholar] [CrossRef]
- Herrera Ibáñez, I.R.; Brown Manrique, O. Propuesta de una metodología para la estimación de áreas de recarga hídrica en Guatemala. Rev. Cienc. Tècn. Agr. 2011, 20. [Google Scholar]
- Herrera Ibáñez, I.R. Sobreextracción de las Aguas Subterráneas en la Cuenca Norte de la Ciudad de Guatemala. In Revista Científica de la Facultad de Agronomía Universidad de San Carlos de Guatemala; Facultad de Agronomía Universidad de San Carlos de Guatemala: Ciudad de Guatemala, Guatemala, 2018; Available online: http://cete.fausac.gt/wp-content/uploads/2018/10/TIKALIA-2-2018.pdf (accessed on 4 October 2022).
- Morales, J.I. Evaluación del Descenso del Nivel Freático en la Parte Norte del Acuífero Motropolitano en el Valle de Guatemala. Ph.D. Thesis, San Carlos de Guatemala, Ciudad de Guatemala, Guatemala, 2012. Available online: https://revistas.usac.edu.gt/index.php/asa/article/view/1487 (accessed on 31 January 2023).
- Recinos, I.N.; Paiz, L.V.; Fallas, W.; Cabrera, L.E.B. Análisis Piezométricos de Pozos de Agua para los Municipios de la Mancomunidad Gran Ciudad del Sur: Amatitlán, Mixco, San Miguel Petapa, Santa Catarina Pinula, Villa Canales y Villa Nueva, Guatemala; Fundación para la Conservación del Agua en la Región Metropolitana de Guatemala: Ciudad de Guatemala, Guatemala, 2019. [Google Scholar]
- Lang, D.H.; Sergio, M.; Crempien, J.; Erduran, E. Reducción de Resgo Sísmico en Guatemala, El Salvador y Nicaragua con Cooperación Regional a Honduras, Cota Rica y Panamá. 2009. Available online: https://blogs.upm.es/geoalerta/otros-paises/proyecto-resis-ii-reduccion-del-riesgo-sismico-en-guatemala-el-salvador-y-nicaragua-con-cooperacion-regional-a-honduras-costa-rica-y-panama/ (accessed on 31 January 2023).
- Pérez, C.L. Estructura geológica del Valle de la Ciudad de Guatemala interpretada mediante un modelo de cuenca por distensión. Rev. Geo. Am. Cent. 2009, 41. [Google Scholar] [CrossRef]
- Hermosilla, R.G. The Guatemala City sinkhole collapses. Carbonates Evap. 2012, 27, 103–107. [Google Scholar] [CrossRef]
- Domínguez, A.; Vega, J.M. Hundimientos en Guatemala: Dónde Están y cómo Son los que han Aparecido en los Úlitmos Meses. Prensa Libre. Available online: https://www.prensalibre.com/guatemala/comunitario/interactivo-hundimientos-en-guatemala-donde-estan-y-como-son-los-que-han-aparecido-en-los-ultimos-meses/ (accessed on 18 December 2021).
- Guzmán Ramírez, E. Estudio Geológico-Geotécnico de la Susceptibilidad de Deslizamientos en la Colonia El Carmen Zona 12 de la Ciudad de Guatemala. Diploma Thesis, San Carlos de Gautemala, Ciudad de Guatemala, Guatemala, 2002. [Google Scholar]
- Brown, R.; Lamarre, A.; Lamarre, T.; Loucks, T. Mapa geológico de Guatemala, Escala 1:50,000. Hoja San José Pinula 2159:IV 1980, 3, 2159. [Google Scholar]
- Koch, A.; McLean, H. Mapa geológico de Guatemala, Escala 1:50,000. Hoja San Juan Sacatepéquez 2060 II 1981, 2, 2060. [Google Scholar]
- Ritchie, A. Mapa geológico de Guatemala, Scale 1:50,000. Hoja Ciudad. de Guatem. 2059 I 1977, 3, 2160. [Google Scholar]
- Vaides del Valle, V. Mapa geológico de Guatemala, Scale 1:50,000. Hoja San Pedro Ayampuc 2160 III 1973, 1, 2059. [Google Scholar]
- Weyl, R. Geology of Central America. In Beiträge zur Regionalen Geologie der Erde, 2nd ed.; Gebr. Borntraeger: Berlin, Germany, 1980. [Google Scholar]
- Benito Oterino, B.; Torres Fernández, Y. Amenaza Sísmica en América Central; OCLC: 733885452; Entimema: Madrid, Spain, 2009. [Google Scholar]
- Bohnenberger, O. REvisión del Sistema de Fallas en la Región Metropolitana de Guatemala. 1996. Available online: http://cidbimena.desastres.hn/pdf/spa/doc7548/doc7548.htm (accessed on 8 June 2022).
- Foumelis, M.; Blasco, J.M.D.; Desnos, Y.-L.; Engdahl, M.; Fernandez, D.; Veci, L.; Lu, J.; Wong, C. Esa Snap—Stamps Integrated Processing for Sentinel-1 Persistent Scatterer Interferometry. In Proceedings of the IGARSS 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: New York, NY, USA, 2018; pp. 1364–1367. [Google Scholar] [CrossRef]
- Balbi, E.; Terrone, M.; Faccini, F.; Scafidi, D.; Barani, S.; Tosi, S.; Crispini, L.; Cianfarra, P.; Poggi, F.; Ferretti, G. Persistent Scatterer Interferometry and Statistical Analysis of Time-Series for Landslide Monitoring: Application to Santo Stefano d’Aveto (Liguria, NW Italy). Remote Sens. 2021, 13, 3348. [Google Scholar] [CrossRef]
- Blewitt, G.; Hammond, W.; Kreemer, C. Harnessing the GPS Data Explosion for Interdisciplinary Science. Eos. 2018. Available online: https://eos.org/project-updates/harnessing-the-gps-data-explosion-for-interdisciplinary-science (accessed on 31 January 2022).
- Blasco, J.D.; Foumelis, M.; Stewart, C.; Hooper, A. Measuring Urban Subsidence in the Rome Metropolitan Area (Italy) with Sentinel-1 SNAP-StaMPS Persistent Scatterer Interferometry. Remote Sens. 2019, 11, 129. [Google Scholar] [CrossRef]
- Ruiz-Armenteros, A.M.; Marchamalo-Sacristán, M.; Lamas-Fernández, F.; Cabezudo, H.; Delgado-Blasco, J.M.; Bakon, M.; Lazecky, M.; Perissin, D.; Papco, J.; Mesa-Mingorance, J.L.; et al. Utilizing the Land Monitoring Copernicus Program as a Regular Method for Observing Dams, Large Ponds and Surrounding Areas; IEEE: Pasadena, CA, USA, 2023. [Google Scholar]
- Samieie-Esfahany, S.; Hanssen, R.F.; van Thienen-Visser, K.; Muntendam-Bos, A. On the effect of horizontal deformation on InSAR subsidence estimates. In Proceedings of the Fringe 2009 Workshop, Frascati, Italy, 30 November–4 December 2009; SP-677. ESA: Paris, France, 2009; p. 7. [Google Scholar]
- Jenks, G.F.; Caspall, F.C. Error on choroplethic maps: Definition, measurement, reduction. Ann. Assoc. Am. Geogr. 1971, 61, 217–244. [Google Scholar] [CrossRef]
- Jenks, G.F. Geographic Logic in Line Generalization. Cartogr. Int. J. Geogr. Inf. Geovis. 1989, 26, 27–42. [Google Scholar] [CrossRef]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Syst. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Pesaresi, P.; Politis, P. GHS-BUILT-C R2022A—GHS Settlement Characteristics; European Commission, Joint Research Centre (JRC): Brussels, Belgium, 2022. [Google Scholar]
- Japan Aerospace Exploration Agency. JAXA7 METI ALOS PALSAR L1.0. 2023. Available online: https://asf.alaska.edu/data-sets/ (accessed on 22 April 2022).
- Sadeghi, Z.; Wright, T.; Hooper, A.; Jordan, C.; Novellino, A.; Bateson, L.; Biggs, J. Benchmarking and inter-comparison of Sentinel-1 InSAR velocities and time series. Remote Sens. Environ. 2021, 256, 112306. [Google Scholar] [CrossRef]
- Kratzsch, H. Mining Subsidence Engineering; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Cigna, F.; Tapete, D. Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR. Remote Sens. Environ. 2021, 253, 112161. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D. Urban growth and land subsidence: Multi-decadal investigation using human settlement data and satellite InSAR in Morelia, Mexico. Sci. Total Environ. 2022, 811, 152211. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Shi, B.; Inyang, H.I.; Chen, J.; Sui, Z. Patterns of subsidence in the lower Yangtze Delta of China: The case of the Suzhou-Wuxi-Changzhou Region. Environ. Monit. Assess. 2009, 153, 61–72. [Google Scholar] [CrossRef]
- Castellazzi, P.; Arroyo-Domínguez, N.; Martel, R.; Calderhead, A.I.; Normand, J.C.; Gárfias, J.; Rivera, A. Land subsidence in major cities of Central Mexico: Interpreting InSAR-derived land subsidence mapping with hydrogeological data. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 102–111. [Google Scholar] [CrossRef]
- United States Geological Survey. Seismic Event: 11 km E of Nueva Concepción, Guatemala. 2018. Available online: https://earthquake.usgs.gov/earthquakes/eventpage/us1000hbcu/executive (accessed on 1 February 2023).
- United States Geological Survey. Seismic Event: 12 km SW of Guanagazapa, Guatemala. 2018. Available online: https://earthquake.usgs.gov/earthquakes/eventpage/us1000eu39/executive (accessed on 1 February 2023).
- Velásquez, E. Estudio Hidrogeológico de los Acuíferos Aluviales del Río Villalobos; EMPAGUA: Ciudad de Guatemala, Guatemala, 2018. [Google Scholar]
- Herrera, I.R.; Orozco, E.O. Hidrogeología de Ojo de Agua, Cuenca Sur de la Ciudad de Guatemala. Rev. Geo. Am. Cent. 2010, 42, 85–97. [Google Scholar] [CrossRef]
- Eckis, R. Alluvial Fans of the Cucamonga District, Southern California. J. Geol. 1928, 36, 224–247. [Google Scholar] [CrossRef]
- Sharp, R.P.; Nobles, L.H. Mudflow of 1941 at Wrightwood, Southern California. Geol. Soc. Am. Bull. 1953, 64, 547–560. [Google Scholar] [CrossRef]
- Blissenbach, E. Relation of Surface Angle Distribution to Particle Size Distribution on Alluvial Fans. J. Sediment. Res. 1952, 22, 25–28. [Google Scholar] [CrossRef]
- Davis, W.M. The Basin Range Problem. Proc. Natl. Acad. Sci. USA 1925, 11, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- García; Kestller, C. Vecinos de la Zona 7 de San Miguel Petapa Alertan sobre Formación de Grietas en Casas y Calles. Noticias Nacionales en Guatevisión. 2022. Available online: https://www.guatevision.com/nacionales/vecinos-de-la-zona-7-de-san-miguel-petapa-alertan-sobre-formacion-de-grietas-en-casas-y-calles-breaking (accessed on 11 July 2023).
Satellite | First Image | Last Image | Geometry | Orbit | Images | Polarization | Mean Inc. Angle (°) | Heading Angle (°) |
---|---|---|---|---|---|---|---|---|
S1A | 8 January 2017 | 8 September 2021 | Ascending | 136 | 112 | VV | 39.2 | 349.3 |
S1AB | 12 January 2017 | 12 September 2021 | Descending | 26 | 114 | VV | 36.5 | 190.6 |
Administrative Area | Vertical Deformation Velocity > 10 mm/yr (ha) | Total Urban Area (ha) | Ratio (%) |
---|---|---|---|
Zone 1 | 6 | 609 | 1 |
Zone 3 | 31 | 246 | 13 |
Zone 4 | 13 | 97 | 14 |
Zone 5 | 100 | 485 | 21 |
Zone 7 | 18 | 955 | 2 |
Zone 8 | 12 | 150 | 8 |
Zone 16 | 13 | 416 | 3 |
Zone 19 | 17 | 97 | 17 |
Mixco | 185 | 4560 | 4 |
Petapa | 355 | 1242 | 29 |
Santa Catarina de Pinula | 57 | 1458 | 4 |
Villa Nueva | 84 | 4019 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Lanchares, C.; Marchamalo-Sacristán, M.; Fernández-Landa, A.; Sancho, C.; Krishnakumar, V.; Benito, B. Analysis of Deformation Dynamics in Guatemala City Metropolitan Area Using Persistent Scatterer Interferometry. Remote Sens. 2023, 15, 4207. https://doi.org/10.3390/rs15174207
García-Lanchares C, Marchamalo-Sacristán M, Fernández-Landa A, Sancho C, Krishnakumar V, Benito B. Analysis of Deformation Dynamics in Guatemala City Metropolitan Area Using Persistent Scatterer Interferometry. Remote Sensing. 2023; 15(17):4207. https://doi.org/10.3390/rs15174207
Chicago/Turabian StyleGarcía-Lanchares, Carlos, Miguel Marchamalo-Sacristán, Alfredo Fernández-Landa, Candela Sancho, Vrinda Krishnakumar, and Belén Benito. 2023. "Analysis of Deformation Dynamics in Guatemala City Metropolitan Area Using Persistent Scatterer Interferometry" Remote Sensing 15, no. 17: 4207. https://doi.org/10.3390/rs15174207
APA StyleGarcía-Lanchares, C., Marchamalo-Sacristán, M., Fernández-Landa, A., Sancho, C., Krishnakumar, V., & Benito, B. (2023). Analysis of Deformation Dynamics in Guatemala City Metropolitan Area Using Persistent Scatterer Interferometry. Remote Sensing, 15(17), 4207. https://doi.org/10.3390/rs15174207