Farmland Hydrology Cycle and Agronomic Measures in Agroforestry for the Efficient Utilization of Water Resources under Karst Desertification Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Experimental Design and Data Processing
3. Results
3.1. Characteristics of Precipitation Transformation
3.2. Storage and Transformation of Soil Water and Efficient Utilization of Water Resources
3.3. Characteristics of Plant Water Transformation and Efficient Use of Water Resources
3.4. Storage, Transformation and Efficient Utilization of Water Resources
4. Discussion
4.1. Available Precipitation and LET at Different Scales
4.2. The Water-Saving Function of Agronomic Treatments in Agroforestry
4.3. Standard Selection for WUE and Improvement of Crop WUE by Agroforestry
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ford, D.C.; Williams, P.W. Karst Hydrogeology and Geomorphology; Wiley: Chichester, UK, 2007; p. 9. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Liu, G.; Xiong, K.; Cai, L. Dynamic Variations in Soil Moisture in an Epikarst Fissure in the Karst Rocky Desertification Area. J. Hydrol. 2020, 591, 125587. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, C.; Wang, K. Comparing Remote Sensing Methods for Monitoring Karst Rocky Desertification at Sub-pixel Scales in a Highly Heterogeneous Karst Region. Sci. Rep. 2019, 9, 13368. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Xiong, K.; Yu, Y.; Zhang, S.; Kong, L.; Zhang, Y. A Review of Ecosystem Service Trade-Offs/Synergies: Enlightenment for the Optimization of Forest Ecosystem Functions in Karst Desertification Control. Forests 2023, 14, 88. [Google Scholar] [CrossRef]
- Zhao, L.; Hou, R. Human causes of soil loss in rural karst environments: A case study of Guizhou, China. Sci. Rep. 2019, 9, 3225. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, Y.; Li, Y.; Wang, D.; Tao, J.; Yang, Y.; Lin, J.; Zhang, Q.; Wu, L. Machine learning algorithm for estimating karst rocky desertification in a peak-cluster depression basin in southwest Guangxi, China. Sci. Rep. 2022, 12, 19121. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, X.; Jiang, X.; Ding, B.; Wu, P.; Ding, F. Plant Functional Trait Responses to Dolomite and Limestone Karst Forests in Southwest China. Forests 2022, 13, 2187. [Google Scholar] [CrossRef]
- Qi, D.; Wieneke, X.; Xue, P.; DeSilva, W. Total nitrogen is the main soil property associated with soil fungal community in karst rocky desertification regions in southwest China. Sci. Rep. 2021, 11, 10809. [Google Scholar] [CrossRef]
- Jiang, M.; Lin, Y.; Chan, T.O.; Yao, Y.; Zheng, G.; Luo, S.; Zhang, L.; Liu, D. Geologic factors leadingly drawing the macroecological pattern of rocky desertification in southwest China. Sci. Rep. 2020, 10, 1440. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Zhu, D.; Xiong, K.; Wang, X. Dynamics of landscape ecological quality based on benefit evaluation coupled with the rocky desertification control in South China Karst. Ecol. Indic. 2022, 138, 108870. [Google Scholar] [CrossRef]
- Burrell, A.L.; Evans, J.P.; De Kauwe, M.G. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat. Commun. 2020, 11, 3853. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, Y.; Wang, S.; Zhang, Z. Occurrence mechanism and prediction of rocky land degradation in karst mountainous basins with the aid of GIS technology, a study case in Houzhai River Basin in southwestern China. Environ. Earth Sci. 2019, 78, 217. [Google Scholar] [CrossRef]
- Wu, Q.; Liang, H.; Xiong, K.; Li, R. Eco-benefits coupling of agroforestry and soil and water conservation under KRD environment: Frontier theories and outlook. Agroforest Syst. 2019, 93, 1927–1938. [Google Scholar] [CrossRef]
- Wu, Q.; Liang, H.; Xiong, K.; Li, R. Efectiveness of monitoring methods for soil leakage loss in karst regions. Environ. Earth Sci. 2021, 80, 278. [Google Scholar] [CrossRef]
- Xiao, J.; Xiong, K. A review of agroforestry ecosystem services and its enlightenment on the ecosystem improvement of rocky desertification control. Sci. Total Environ. 2022, 852, 158538. [Google Scholar] [CrossRef]
- Bryan, B.A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D.; et al. China’s response to a national land-system sustainability emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef]
- Li, C.; Fu, B.; Wang, S.; Stringer, L.C.; Wang, Y.; Li, Z.; Liu, Y.; Zhou, W. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2021, 2, 858–873. [Google Scholar] [CrossRef]
- Tong, X.; Brandt, M.; Yue, Y.; Horion, A.S.; Wang, K.; Keersmaecker, W.D.; Tian, F.; Schurgers, G.; Xiao, X.; Luo, Y.; et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 2018, 1, 44–50. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, J.; Velicogna, I.; Liang, C.; Li, Z. Ecological restoration impact on total terrestrial water storage. Nat. Sustain. 2021, 4, 56–62. [Google Scholar] [CrossRef]
- Pitty, A. Calcium Carbonate Content of Karst Water in relation to Flow-through Time. Nature 1968, 217, 939–940. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, H.; Wang, H.; Peng, J.; Meersmans, J.; Green, S.M.; Quine, T.A.; Wu, X.; Song, Z. Bedrock geochemistry influences vegetation growth by regulating the regolith water holding capacity. Nat. Commun. 2020, 11, 2392. [Google Scholar] [CrossRef]
- Leakey, R.R.B. A re-boot of tropical agriculture benefits food production, rural economies, health, social justice and the environment. Nat. Food 2020, 1, 260–265. [Google Scholar] [CrossRef]
- Grass, I.; Kubitza, C.; Krishna, V.V.; Corre, M.D.; Mußhoff, O.; Pütz, P.; Drescher, J.; Rembold, K.; Ariyanti, E.S.; Barnes, A.D.; et al. Trade-offs between multifunctionality and profit in tropical smallholder landscapes. Nat. Commun. 2020, 11, 1186. [Google Scholar] [CrossRef] [Green Version]
- Blaser, W.J.; Oppong, J.; Hart, S.P.; Landolt, J.; Yeboah, E.; Six, J. Climate-smart sustainable agriculture in low-to-intermediate shade agroforests. Nat. Sustain. 2018, 1, 234–239. [Google Scholar] [CrossRef]
- Syano, N.M.; Nyangito, M.M.; Wasonga, O.V.J.; Yeboah, L.E.; Six, J. Agroforestry practices and factors influencing their adoption by communities in the drylands of Eastern Kenya. Agroforest. Sys. 2022, 96, 1225–1235. [Google Scholar] [CrossRef]
- Doelman, J.C.; Stehfest, E. The risks of overstating the climate benefits of ecosystem restoration. Nature 2022, 609, E1–E3. [Google Scholar] [CrossRef]
- Wurz, A.; Tscharntke, T.; Martin, D.A.; Osen, K.; Rakotomalala, A.A.N.A.; Raveloaritiana, E.; Andrianisaina, F.; Dröge, S.; Fulgence, T.R. Win-win opportunities combining high yields with high multi-taxa biodiversity in tropical agroforestry. Nat. Commun. 2022, 13, 4127. [Google Scholar] [CrossRef]
- Zeppetello, L.R.V.; Cook-Patton, S.C.; Parsons, L.A.; Wolff, N.H.; Kroeger, T.; Battisti, D.S.; Bettles, J.; Spector, J.T.; Balakumar, A.; Masuda, Y.J. Consistent cooling benefits of silvopasture in the tropics. Nat. Commun. 2022, 13, 708. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, W.; Chen, J.L.; Bruijnzeel, A.; Mao, Z.; Yang, X.; Cardinael, R.; Meng, F.R.; Sidle, R.; Seitz, S.; et al. Reductions in water, soil and nutrient losses and pesticide pollution in agroforestry practices: A review of evidence and processes. Plant Soil 2020, 453, 45–86. [Google Scholar] [CrossRef]
- Sari, R.R.; Rozendaal, D.M.A.; Saputra, D.D.; Hairiah, K.; Roshetko, J.M.; Noordwijk, M. Balancing litterfall and decomposition in cacao agroforestry systems. Plant Soil 2022, 473, 251–271. [Google Scholar] [CrossRef]
- Ling, Q.; Zhao, X.; Wu, P.; Gao, X.; Sun, W. Effect of the fodder species canola (Brassica napus L.) and daylily (Hemerocallis fulva L.) on soil physical properties and soil water content in a rainfed orchard on the semiarid Loess Plateau, China. Plant Soil 2020, 453, 209–228. [Google Scholar] [CrossRef]
- Hombegowda, H.C.; Köhler, M.; Röll, A.; Hölscher, D. Tree species and size influence soil water partitioning in coffee agroforestry. Agroforest. Syst. 2020, 94, 137–149. [Google Scholar] [CrossRef]
- Huo, G.; Zhao, X.; Gao, X.; Wang, S. Seasonal effects of intercropping on tree water use strategies in semiarid plantations: Evidence from natural and labelling stable isotopes. Plant Soil 2020, 453, 229–243. [Google Scholar] [CrossRef]
- Liu, H.; Tang, J.; Zhang, X.; Wang, R.; Zhu, B.; Li, N.; Liang, C.; Zhao, P. Seasonal variations of groundwater recharge in a small subtropical agroforestry watershed with horizontal sedimentary bedrock. J. Hydrol. 2021, 596, 125703. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, X.; Liu, M.; Zhang, Y.; Xu, C.; Yi, R.; Luo, W. Comparing evapotranspiration characteristics and environmental controls for three agroforestry ecosystems in a subtropical humid karst area. J. Hydrol. 2018, 563, 1042–1050. [Google Scholar] [CrossRef]
- Villalobos, F.J.; Fereres, E. Evaporation Measurements beneath Corn, Cotton, and Sunflower Canopies. Agron. J. 1990, 82, 1153–1159. [Google Scholar] [CrossRef]
- Peng, J.; Li, G.; Wu, F. Analysis on the Changes of Utilizable Precipitation over Dongting Lake Region during the Past 100 Years. Ecol. Environ. Sci. 2017, 26, 104–110. (In Chinese) [Google Scholar] [CrossRef]
- Sun, Z.; Wang, S.; Liu, J.; Gu, J.; Gong, W. Driving Force Analysis of Runoff Attenuation in Tuwei River Basin. J. Nat. Resour. 2017, 32, 310–320. (In Chinese) [Google Scholar] [CrossRef]
- Wang, K.; Chen, H.; Zeng, F.; Yue, Y.; Zhang, W.; Fu, Z. Ecological Research Supports Eco-environmental Management and Poverty Alleviation in Karst Region of Southwest China. Bull. Chin. Acad. Sci. 2018, 33, 213–222. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, C.; Di, Z.; Duan, Q.; Wei, G. Improved land evapotranspiration simulation of the community land model using a surrogate-based automatic parameter optimization method. Water 2020, 12, 943. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Jia, B.; Xie, Z.; Shi, C. Ensemble Simulation of Land Evapotranspiration in China Based on a Multi-Forcing and Multi-Model Approach. Adv. Atmos. Sci. 2016, 33, 673–684. [Google Scholar] [CrossRef]
- He, G.; Zhao, Y.; Wang, J.; Gao, X.; He, F.; Li, H.; Zhai, J.; Wang, Q.; Zhu, Y. Attribution analysis based on Budyko hypothesis for land evapotranspiration change in the Loess Plateau, China. J. Arid Land 2019, 11, 939–953. [Google Scholar] [CrossRef] [Green Version]
- Lu, G.; Meng, P.; Ma, X. Study on the plant transpiration and system evapotranspiration within an agroforest system of forest belt-fruit tree crop. J. China Agric. Univ. 1996, 1, 103–109. (In Chinese) [Google Scholar]
- Shi, L.; Sheng, H.; Man, X.; Cai, T. A review of the calculation method of water consumption by tree transpiration in different scales. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2016, 40, 149–156. (In Chinese) [Google Scholar] [CrossRef]
- Rong, R.; Sun, B.; Wu, Z.; Gao, Z.; Du, Z.; Teng, S. Study on above-ground biomass measurement of Caragana microphylla in shrub-encroached grassland. Acta Prataculturae Sin. 2023, 32, 36–47. (In Chinese) [Google Scholar] [CrossRef]
- Tong, C.; Zhang, L.; Wang, W.; Gauci, V.; Marrs, R.; Liu, B.; Jia, R.; Zeng, C. Contrasting nutrient stocks and litter decomposition in stands of native and invasive species in a sub-tropical estuarine marsh. Environ. Res. 2011, 111, 909–916. [Google Scholar] [CrossRef]
- Liu, B.G.; Tong, C.; Huang, J.F.; Tan, J.; Li, H. Estimation models of green and dead standing aboveground biomass of Cyperus malaccensis. Chin. J. Ecol. 2022, 41, 2163–2170. [Google Scholar] [CrossRef]
- Yang, C.; Yao, W.; Xiao, P.; Qin, D. Effects of vegetation cover structure on runoff and sediment yield and its regulation mechanism. J. Hydraul. Eng. 2019, 50, 1078–1085. (In Chinese) [Google Scholar] [CrossRef]
- Wu, Q. Occurrence and Transformation of ‘Five Water’ and High Efficient Utilization Model of Agroforestry in the Karst Rocky Desertification Environment; Guizhou Normal University: Guiyang, China, 2020. [Google Scholar]
- Chen, Y.; Wen, J.; Liu, R.; Lu, X.; Chen, Y. Study on the spatial-temporal distribution pattern of land surface evapotranspiration over the source region of the Yellow River. Plateau Mt. Meteorol. Res. 2021, 41, 35–42. [Google Scholar] [CrossRef]
- Yang, M.; Zhong, P.; Wang, M.; Shang, Y.; Cheng, C. Comparative study on the methods of estimating land surface evaporation in Dawenhe River basin. South North Water Transf. Water Sci. Technol. 2017, 15, 50–55. (In Chinese) [Google Scholar]
- Zhao, M.; Liu, Y.; Konings, A.G. Evapotranspiration frequently increases during droughts. Nat. Clim. Chang. 2022, 12, 1024–1030. [Google Scholar] [CrossRef]
- Pascolini-Campbell, M.; Reager, J.T.; Chandanpurkar, H.A.; Rodell, M. A 10 per cent increase in global land evapotranspiration from 2003 to 2019. Nature 2021, 593, 543–547. [Google Scholar] [CrossRef]
- Wu, Q.; Liang, H.; Xiong, K.; Li, R. Frontier theories and countermeasures for Integrated regulation of soil and water loss and mountainous agroforestry in rocky desertification environment. J. Soil Water Conserv. 2018, 32, 11. [Google Scholar] [CrossRef]
- Muthee, K.; Duguma, L.; Majale, C.; Mucheru-Muna, M.; Wainaina, P.; Minang, P. A quantitative appraisal of selected agroforestry studies in the Sub-Saharan Africa. Heliyon 2022, 8, e10670. [Google Scholar] [CrossRef]
- Sahin, H.; Anderson, S.H.; Udawatta, R.P. Water infiltration and soil water content in claypan soils influenced by agroforestry and grass buffers compared to row crop management. Agroforest. Syst. 2016, 90, 839–860. [Google Scholar] [CrossRef]
- Anderson, S.H.; Udawatta, R.P.; Seobi, T.; Garrett, H.E. Soil water content and infiltration in agroforestry buffer strips. Agroforest. Syst. 2009, 75, 5–16. [Google Scholar] [CrossRef]
- Narain, P.; Singh, R.K.; Sindhwal, N.S.; Joshie, P. Agroforestry for soil and water conservation in the western Himalayan Valley Region of India 1. Runoff, soil and nutrient losses. Agroforest. Syst. 1997, 39, 175–189. [Google Scholar] [CrossRef]
- Luo, D.; Xiong, K.; Wu, C.; Gu, X.; Wang, Z. Soil Moisture and Nutrient Changes of Agroforestry in Karst Plateau Mountain: A Monitoring Example. Agronomy 2023, 13, 94. [Google Scholar] [CrossRef]
- Chaki, A.K.; Gaydon, D.S.; Dalal, R.C.; Bellotti, W.D.; Gathala, M.K.; Hossain, A.; Menzies, N.W. Achieving the win–win: Targeted agronomy can increase both productivity and sustainability of the rice–wheat system. Agron. Sustain. Dev. 2022, 42, 113. [Google Scholar] [CrossRef]
- Manohar Reddy, R.; Ramkuma. Prospect and importance of green mulching on the soil status of tropical tasar plantation fields in India. Nat. Preced. 2011, 6388, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Dong, B.; Liu, H.; Wang, Y.; Qiao, Y.; Zhang, M.; Yang, H.; Jin, L.; Liu, M. Physio-ecological regulating mechanisms for highly efficient water use of crops. Chin. J. Eco-Agric. 2018, 26, 1465–1475. (In Chinese) [Google Scholar] [CrossRef]
- Cui, Z.; Gao, Y.; Guo, L.; Wu, B.; Yan, B.; Wang, Y.; Liu, H.; Li, G.; Wang, Y.; Wang, H. Optimal Effects of Combined Application of Nitrate and Ammonium Nitrogen Fertilizers with a Ratio of 3:1 on Grain Yield and Water Use Efficiency of Maize Sowed in Ridge–Furrow Plastic Film Mulching in Northwest China. Agronomy 2022, 12, 2943. [Google Scholar] [CrossRef]
- Fang, Q.; Chen, Y.; Li, Q.; Yu, S.; Luo, Y.; Yu, Q.; Ou, Y. Effect of irrigation on water use efficiency of winter wheat. Trans. Chin. Soc. Agric. Eng. 2004, 20, 34–39. (In Chinese) [Google Scholar]
- Wang, Y.; Dong, B.; Qiao, Y.; Yang, H.; Jin, L.; Liu, J.; Liu, M. Experimental study on soil water threshold of luxury transpiration in winter wheat leaves during flowering and filling stage. Chin. J. Eco-Agric. 2019, 27, 1024–1032. [Google Scholar] [CrossRef]
Study Area | Land-Use Type (Model) | Agronomic Measure | Soil Type | Slope (°) | Plot Area (m2) | Vegetation Coverage (%) | Row Space (m) | Planting Crops |
---|---|---|---|---|---|---|---|---|
Bijie | A | SWR | Yellow-brown earth | 2° | 4 m × 5 m | 95 | Rosa roxburghii: 2 m × 2 m, Ryegrass: sown | Rosa roxburghii: 6 years Ryegrass: planted in March 2019 |
STR | Yellow-brown earth | 2° | 4 m × 5 m | 87 | ||||
WRA | Yellow-brown earth | 2° | 4 m × 5 m | 85 | ||||
CON | Yellow-brown earth | 2° | 4 m × 5 m | 85 | ||||
B | SWR | Yellow-brown earth | 2° | 4 m × 5 m | 81 | Walnut: 4 m × 4 m Potato: 0.25 m × 0.6 m | Walnut: 6 years Potato: planted in December 2018 | |
STR | Yellow-brown earth | 2° | 4 m × 5 m | 79 | ||||
WRA | Yellow-brown earth | 2° | 4 m × 5 m | 80 | ||||
CON | Yellow-brown earth | 2° | 4 m × 5 m | 85 | ||||
Huajiang | C | SWR | Yellow earth | 2° | 4 m × 5 m | 96 | Zanthoxylum planispinum var. Dintanensis: 4 m × 4 m Pitaya: 2 m × 2 m | Zanthoxylum planispinum var. Dintanensis: 6 years Pitaya: 6 years |
STR | Yellow earth | 2° | 4 m × 5 m | 96 | ||||
WRA | Yellow earth | 2° | 4 m × 5 m | 87 | ||||
CON | Yellow earth | 2° | 4 m × 5 m | 86 | ||||
D | SWR | Yellow earth | 0° | 4 m × 5 m | 86 | Zanthoxylum planispinum var. Dintanensis: 4 m × 4 m Chili: 0.4 m × 0.6 m | Zanthoxylum planispinum var. Dintanensis: 6 years Chili: planted in March 2018 | |
STR | Yellow earth | 0° | 4 m × 5 m | 87 | ||||
WRA | Yellow earth | 0° | 4 m × 5 m | 82 | ||||
CON | Yellow earth | 0° | 4 m × 5 m | 87 | ||||
Shibing | E | SWR | Yellow earth | 2° | 4 m × 5 m | 75 | Osmanthus fragans: 4 m × 4 m Pseudostellariae Radixo: sown between ridges with an inter-row space of 0.2 m | Osmanthus fragrans: 6 years Pseudostellariae Radixo: planted in December 2018 |
STR | Yellow earth | 2° | 4 m × 5 m | 73 | ||||
WRA | Yellow earth | 2° | 4 m × 5 m | 74 | ||||
CON | Yellow earth | 2° | 4 m × 5 m | 65 | ||||
F | SWR | Yellow earth | 2° | 4 m × 5 m | 75 | Pseudostellariae Radixo: sown between ridges with an inter-row space of 0.2 m | Pseudostellariae Radixo: planted in December 2018 | |
STR | Yellow earth | 2° | 4 m × 5 m | 71 | ||||
WRA | Yellow earth | 2° | 4 m × 5 m | 74 | ||||
CON | Yellow earths | 2° | 4 m × 5 m | 62 |
Months | Precipitation (mm) | Available Precipitation (mm) | LET (mm) | ||||||
---|---|---|---|---|---|---|---|---|---|
Bijie | Huajian | Shibing | Bijie | Huajiang | Shibing | Bijie | Huajiang | Shibing | |
Apr. | 88.00 | 33.50 | 112.80 | 28.41 | 0.66 | 52.24 | 59.59 | 32.84 | 60.56 |
May | 107.00 | 31.20 | 171.60 | 39.39 | 0.55 | 107.56 | 67.61 | 30.65 | 64.04 |
Jun. | 196.60 | 253.00 | 243.80 | 125.27 | 127.93 | 157.99 | 71.33 | 125.07 | 85.81 |
Jul. | 304.00 | 156.60 | 216.60 | 243.73 | 44.13 | 119.01 | 60.27 | 112.47 | 97.59 |
Aug. | 286.00 | 75.60 | 258.20 | 200.67 | 5.51 | 154.67 | 85.33 | 70.09 | 103.53 |
Total | 981.60 | 549.90 | 1003.00 | 637.47 | 178.78 | 591.47 | 344.13 | 371.12 | 411.53 |
Plant | Measure | Precipitation (mm) | Available Precipitation (mm) | Soil Water Storage (mm) | Underground Water (mm) | Transpiration (mm) | Vegetation Interception (mm) | Soil Evaporation (mm) |
---|---|---|---|---|---|---|---|---|
A | SWR | 981.6 | 432.63 | 412.95 | 517.75 | 383.2 | 50.9 | 114.87 |
STR | 981.6 | 449.58 | 663.09 | 273.09 | 341.34 | 45.43 | 145.25 | |
WRA | 981.6 | 467.58 | 866.33 | 71.64 | 333.14 | 43.62 | 137.26 | |
CON | 981.6 | 471.34 | 823.73 | 115.11 | 322.26 | 42.75 | 145.25 | |
B | SWR | 981.6 | 423.74 | 493.78 | 441.29 | 325.21 | 46.53 | 186.12 |
STR | 981.6 | 415.52 | 677.3 | 258.13 | 319.23 | 46.17 | 200.68 | |
WRA | 981.6 | 426.43 | 798.99 | 137.45 | 311.32 | 45.16 | 198.69 | |
CON | 981.6 | 417.05 | 845.94 | 92.37 | 299.73 | 43.3 | 221.52 | |
C | SWR | 549.9 | 306.75 | 425.83 | 55 | 44.88 | 69.08 | 129.19 |
STR | 549.9 | 285.47 | 433.24 | 50.85 | 44.19 | 65.81 | 154.43 | |
WRA | 549.9 | 305.91 | 462.57 | 21.56 | 43.32 | 65.78 | 134.89 | |
CON | 549.9 | 264.78 | 419.9 | 64.94 | 43.3 | 65.06 | 176.76 | |
D | SWR | 549.9 | 231.27 | 512.63 | 7.18 | 185.81 | 30.09 | 102.73 |
STR | 549.9 | 214.02 | 514.4 | 5.46 | 184.02 | 30.04 | 121.82 | |
WRA | 549.9 | 225.06 | 503.93 | 17.01 | 177.18 | 28.96 | 118.7 | |
CON | 549.9 | 211.24 | 503.16 | 19 | 170.23 | 27.74 | 140.69 | |
E | SWR | 1003 | 660.1 | 706.69 | 271.84 | 89.85 | 24.47 | 228.58 |
STR | 1003 | 585.42 | 798.18 | 182.2 | 83.79 | 22.62 | 311.17 | |
WRA | 1003 | 605.85 | 775.45 | 204.43 | 86.72 | 23.13 | 287.3 | |
CON | 1003 | 506.52 | 799.49 | 182.35 | 78.82 | 21.16 | 396.5 | |
F | SWR | 1003 | 627.82 | 586.51 | 396.33 | 82.28 | 20.16 | 272.74 |
STR | 1003 | 543.51 | 677.45 | 305.07 | 83.66 | 20.49 | 355.34 | |
WRA | 1003 | 568.13 | 858.7 | 123.98 | 83.06 | 20.31 | 331.5 | |
CON | 1003 | 462.16 | 850.34 | 132.99 | 80.47 | 19.67 | 440.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Xiong, K.; Li, R.; Xiao, J. Farmland Hydrology Cycle and Agronomic Measures in Agroforestry for the Efficient Utilization of Water Resources under Karst Desertification Environments. Forests 2023, 14, 453. https://doi.org/10.3390/f14030453
Wu Q, Xiong K, Li R, Xiao J. Farmland Hydrology Cycle and Agronomic Measures in Agroforestry for the Efficient Utilization of Water Resources under Karst Desertification Environments. Forests. 2023; 14(3):453. https://doi.org/10.3390/f14030453
Chicago/Turabian StyleWu, Qinglin, Kangning Xiong, Rui Li, and Jie Xiao. 2023. "Farmland Hydrology Cycle and Agronomic Measures in Agroforestry for the Efficient Utilization of Water Resources under Karst Desertification Environments" Forests 14, no. 3: 453. https://doi.org/10.3390/f14030453
APA StyleWu, Q., Xiong, K., Li, R., & Xiao, J. (2023). Farmland Hydrology Cycle and Agronomic Measures in Agroforestry for the Efficient Utilization of Water Resources under Karst Desertification Environments. Forests, 14(3), 453. https://doi.org/10.3390/f14030453