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Abstract: Detection of geomorphological changes based on structure from motion (SfM) photogram-
metry is highly dependent on the quality of the 3D reconstruction from high-quality images and
the correspondingly derived point precision estimates. For long-term monitoring, it is interesting to
know if the resulting 3D point clouds and derived detectable changes over the years are comparable,
even though different sensors and data collection methods were applied. Analyzing this, we took
images of a sinkhole terrestrially with a Nikon D3000 and aerially with a DJI drone camera in 2017,
2018, and 2019 and computed 3D point clouds and precision maps using Agisoft PhotoScan and the
SfM_Georef software. Applying the “multiscale model to model cloud comparison using precision
maps” plugin (M3C2-PM) in CloudCompare, we analyzed the differences between the point clouds
arising from the different sensors and data collection methods per year. Additionally, we were inter-
ested if the patterns of detectable change over the years were comparable between the data collection
methods. Overall, we found that the spatial pattern of detectable changes of the sinkhole walls were
generally similar between the aerial and terrestrial surveys, which were performed using different
sensors and camera locations. Although the terrestrial data collection was easier to perform, there
were often challenges due to terrain and vegetation around the sinkhole to safely acquire adequate
viewing angles to cover the entire sinkhole, which the aerial survey was able to overcome. The local
levels of detection were also considerably lower for point clouds resulting from aerial surveys, likely
due to the ability to obtain closer-range imagery within the sinkhole.

Keywords: 3D reconstruction; point clouds; precision maps; M3C2; multiscale normals

1. Introduction

The possibilities of mapping highly detailed structures or surfaces with fast and cost-
efficient 3D reconstruction from optical images is a viable and promising method for small-
to medium-scale surveys in geomorphology [1]. This 3D reconstruction is often referred to
as structure from motion (SfM) photogrammetry, a term that summarizes a workflow of the
application of various algorithms including structure from motion and multiview stereo
(MVS) reconstruction. SfM and MVS reconstruction rapidly emerged to a widely applied
method for deriving detailed digital 3D terrain representations and for monitoring surface
changes in geomorphology and archeology due to its ease of data collection and processing
(resulting from today’s computing power and software availability) and highly flexible
application in various natural settings (e.g., [1–6]). SfM-MVS offers a cost-effective survey
method with a comfortable and fast workflow even in hard-to-access study sites [4,7,8].
Originating in the field of photogrammetry and computer vision, structure from motion
exploits the stereoscopic view, created by identifying tie points of overlapping images
taken from slightly differing positions and viewing angles around an object or structure [9].
Multiview stereo reconstruction then constructs a dense 3D point model using the tie points.
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SfM photogrammetry is often employed with and compared to point clouds from
LiDAR (light detection and range) from terrestrial (terrestrial laser scanning, TLS) or air-
borne (airborne laser scanning, ALS) platforms [1,7,10–12]. Given careful ground control
placement, calibration, a sufficient number of images, and a suitable surveyed surface (with
no or very sparse vegetation), SfM-MVS photogrammetry is able to produce point clouds of
resolution equal to or higher than those resulting from TLS or ALS [1,10,13]. The equipment
for taking the terrestrial or aerial photos is comparably inexpensive (consumer-grade hand-
held cameras or even smartphones achieve good results (e.g., [14–16]). However, in densely
vegetated areas (dense forest, bushes, or high grass), SfM-MVS can only provide points of
the uppermost surface from the sensor’s viewpoint, resulting in a surface model rather than
a terrain model that is more easily derived from laser scanning data [4,12]. Finally, SfM
has been applied at different scales, landscapes, and landforms such as volcanoes and lava
movements, large planar regions, glaciers, rock glaciers, badlands, sinkholes, landslides,
rivers, burned and aeolian landscapes, as well as at laboratory experiments to detect and
analyze surface changes (e.g., [2,17–33]).

Change detection is commonly performed deriving the difference between (1) two
point clouds (e.g., cloud to cloud (C2C [34]); multiscale model to model cloud comparison
(M3C2 plugin in CloudCompare [35]), (2) a point cloud and a mesh (e.g., cloud to mesh
C2M [33]), or (3) two digital elevation models (DEMs in a raster format) computed from
point clouds or derived from other remotely sensed data (DEM of difference (DoD) [34]).
Nourbakhshbeidokhti et al. [36] provide a comparison of these methods using TLS data
to calculate changes in fluvial systems after disturbance and conclude that given complex
terrain, M3C2 and DoD are the preferable methods for detecting elevation change and
volumetric change, respectively. However, DoD methods might not be able to properly
portray areas with overhangs or steep slopes. The M3C2 method has advanced to the
standard method for estimating topographic change with assigned levels of detection,
as it has been specifically developed for applications in complex terrain, works with both
LiDAR and SfM data, provides the possibility to include 3D precision estimates for each
point of the point cloud, and is implemented within the software CloudCompare [35,37].

Three-dimensional point clouds resulting from SfM photogrammetry are known to
have spatial uncertainties resulting from the different precision of each point [27,38]. Ac-
counting for the (3D) precision of points of a point cloud by deriving detectable change
has been highly recommended for geomorphic research publications [39]. They determine
the actual levels of detection on a point basis which is crucial to not over-or underestimate
topographic change [35,39]. A number of different approaches have been developed to
derive precision estimates (1) by using the surface roughness as represented in the dense
point cloud as a proxy for point precision (i.e., M3C2 plugin in CloudCompare [34,35]),
(2) by accounting for random variations in the bundle adjustment performed within Agisoft
PhotoScan running a Monte Carlo simulation on the sparse point cloud [38], or (3) by esti-
mating the point precision by comparing the resulting point clouds of repeated unmanned
aerial vehicle (UAV) surveys within a short timespan [27,40,41].

While the differences between SfM-MVS point clouds, TLS point clouds, and using
different sensors for image acquisition for SfM-MVS photogrammetry have frequently been
the focus of research [12,14,42,43], only few studies analyzed the effect of changing the
perspective from terrestrial imagery to aerial imagery on the resulting point clouds and
detectable changes [4,20,21,44]. Knowing the limitations and advantages of either approach
is of high value for practitioners facing the challenge of documenting or monitoring small-to
medium-scale geomorphic forms or landscapes (such as sinkholes, landslides, or riverbed
changes) with limited equipment and time in the field.

Our objective of this study was the comparison of terrestrial and aerial (UAV) SfM
photogrammetry of a sinkhole with complex terrain. We evaluate the resulting dense point
clouds and detectable change while accounting for point precision estimates. Given the
complex terrain and potential hazards of entering a sinkhole, we wanted to explore if
terrestrial oblique images from around the edge of the sinkhole will result in a sufficiently
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detailed and precise 3D point cloud to measure the changes within the sinkhole or if it
is necessary to take aerial oblique images partly from within the sinkhole for improved
coverage and point cloud quality. The terrestrial survey represents the easiest scenario of
image collection for practitioners monitoring the sinkhole. As an alternative, we performed
UAV flights during which the UAV was not only flying over the sinkhole (as usual in
topographic surveys) but also within the sinkhole to acquire oblique imagery of the slopes
and bottom of the sinkhole from up close, hypothesizing that a closer distance (range) and
larger range of viewing angles will result in a higher-quality 3D reconstruction.

We selected an open sinkhole in northern Thuringia, close to the so-called “Äbtissi-
nengrube”, for our study as it provides a complex terrain with vegetated and unvegetated
open slopes and it can be surveyed and approached from nearly every viewing angle by
foot. Sinkholes are a major natural hazard in Thuringia (16,202 km2; Germany), with more
than 9000 sinkholes documented by the Geological Survey of Thuringia [45]. The surface
dynamics of this open sinkhole are of particular interest to assess its stability. We surveyed
the sinkhole once a year in 2017, 2018, and 2019. The images were taken terrestrially with a
Nikon D3000 and aerially manually navigating a UAV (DJI Phantom Pro 4) equipped with
a DJI FC330 (2017 and 2019) and DJI FC6310 (2018) camera. This long-term monitoring of
changes of the sinkhole surface follows up on the work of [46].

We structured the paper as follows: we describe the study area, data collection,
preprocessing, the 3D reconstruction, and the comparison of the resulting point clouds
in the materials and methods section. The resulting point clouds, their precision maps,
the derived distances between the point clouds, and the respective level of detection are
presented in the results section. We provide a detailed discussion of our results within
the light of other studies and other factors potentially influencing the quality of our point
clouds in the discussion section and finally provide conclusions on our objective. All data
collected and generated within this study are available for download at Zenodo [47].

2. Materials and Methods
2.1. Study Area

The sinkhole is located in an agricultural field in northern Thuringia, south of the
Kyffhäuser Mountain Range, northwest of the town Bad Frankenhausen (Figure 1). It col-
lapsed on the night of 16 to 17 November 2009 and has been enlarged by retrogressive
erosion from a diameter of about 20 m (and 12–13 m depth [45,48]) to 24 m (own measure-
ment 2019) ever since. Given its location, no remediation measures were taken, and the
sinkhole is subject to erosion and vegetation growth. As sinkholes are a major natural
hazard in Thuringia, the development and surface dynamics of this rare case of an open
sinkhole are of interest for the local authorities.

With the presence of water (surface and groundwater) being a potential driver of
sinkhole formation and, after its collapse, a driver of erosion processes, it is interesting
to look at the yearly sum of precipitation at the study site. This area is comparably dry
with a yearly average precipitation of 490 mm observed at the weather station Artern
(1981–2010 [49]). During the years of our monitoring, the year 2017 experienced a lot
more precipitation with 575 mm, while the year 2018 was very dry, with 273 mm. Even
the observed precipitation sum of the year 2019 (399 mm) was well below the long-term
yearly average [48]. In comparison, the yearly precipitation sum of the year of the sinkhole
collapse (2009) was observed at 603 mm.

Geologically, the sinkhole is located in a transition zone between the “Diamantene
Aue” flatland covered with loess, fluvial and glacial deposits, and the gypsum, anhydrite,
dolostone, sandstone, and argillite of the “Kyffhäuser” mountain range. This transition
zone is also referred to as the “Kyffhäuser Südrandstörung” (a suspected fault line) and
experiences a high density of sinkholes of different ages (Figure 1A). In more detail, looking
at the local stratigraphy, the following strata have been observed: (1) topsoil with sand and
silt, potentially loess sediments, (2) starting at around five to twenty meters and reaching to
about a maximum depth of 110 m the overlying sedimentary rocks of the Permian (so-called
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“Zechstein”), and (3) starting from about 120 m depth sand and siltstone and conglomerates
of the Permo-Carboniferous are forming the basement rocks [46]. The “Zechstein” is charac-
terized by a sequence of good aquifers (e.g., dolostone, conglomerates) and aquitards (areas
with anhydrite, loam, or schists with high clay content) and is well known for developing
sinkholes evolving due to solution and collapse processes [45,46,50]. Within the sinkhole,
some loose gypsum rocks and a thick layer of dark brown or black humus can be found on
its northeastern slope, which might hint at an old, refilled depression [48]. Originally, most
of the slopes formed straight walls (90◦ slope angle) which slowly experienced collapse
or erosion, particularly at the western slope. Withstanding the erosion since the sinkhole
occurrence, an earth pillar remained east of the center of the sinkhole as visible in the hill-
shade and photos of the sinkhole (Figure 1A,C–E). The local groundwater level is assumed
to be at 50 m depth [45]. Unfortunately, more detailed information on the subsurface of the
sinkhole (joints, groundwater flow, material, cavities) is not available.
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Figure 1. (A) (1) The studied sinkhole with the earth pillar east of the center, (2) the “Äbtissinen-
grube” of unknown age (myths date it back to 1600 A.D.), and (3) a sinkhole that occurred in 1953 
at the edge of the “Äbtissinengrube”. (B) Their location in Thuringia, Germany, marked with the 
red square. The sinkhole and survey conditions are captured as seen from the UAV in (C) 2017 
facing north, (D) 2018 facing northeast, and (E) 2019 facing east. Please note the earth pillar and the 
white gypsum rocks at the bottom in the eastern half of the sinkhole. Source: (A) digital terrain 
model provided by the Thüringer Landesamt für Bodenmanagement und Geoinformation; (B) Esri; 
(C–E) photos taken by Jason Goetz in 2017, 2018, and 2019. 
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Figure 1. (A) (1) The studied sinkhole with the earth pillar east of the center, (2) the “Äbtissinengrube”
of unknown age (myths date it back to 1600 A.D.), and (3) a sinkhole that occurred in 1953 at the edge
of the “Äbtissinengrube”. (B) Their location in Thuringia, Germany, marked with the red square.
The sinkhole and survey conditions are captured as seen from the UAV in (C) 2017 facing north,
(D) 2018 facing northeast, and (E) 2019 facing east. Please note the earth pillar and the white gypsum
rocks at the bottom in the eastern half of the sinkhole. Source: (A) digital terrain model provided by
the Thüringer Landesamt für Bodenmanagement und Geoinformation; (B) Esri; (C–E) photos taken
by Jason Goetz in 2017, 2018, and 2019.

2.2. Data Collection and Preprocessing

We collected the data on 22 March 2017, 22 November 2018, and 5 November 2019 at
the sinkhole. As visible in the photos of the sinkhole in Figure 1, the ground and weather
conditions varied substantially between the three dates from sunny or slightly overcast
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weather with dry slopes to foggy, overcast weather with some thin snow patches on the
ground. Additionally, the vegetation cover within the sinkhole changed from no foliage
and only dry stems in March 2017 to some foliage and increasingly growing vegetation in
2018 and 2019 (Table 1).

Table 1. Survey characteristics including the number of ground control points (GCPs).

Date Illumination Conditions Ground and Weather Conditions Number of
GCP Targets

22 March 2017 Steep sun incidence,
shadows visible.

Dry and brown soil, almost no foliage, dry stems;
sunny, partly overcast, windy. 8

22 November 2018 Diffuse lighting, overcast. Vegetation with green foliage, partly overgrown and
snowy slopes; foggy with some snow. 8

5 November 2019 Steep sun incidence,
shadows visible.

Vegetation with green foliage growing over the
bottom and southeastern slope of the sinkhole;

overcast, partly sunny, windy.
10

The data collection and preprocessing consisted of three steps: (1) placing and sur-
veying clearly visible targets (black and white checkered pattern) along the sinkhole edge
and post-processing the GNSS survey; (2) acquiring terrestrial imagery with a handheld
camera and converting the images to JPEG format; and (3) acquiring aerial imagery with
an unmanned aerial vehicle (UAV; already JPEGs).

(1) Providing ground control points (GCPs) as a georeference for the resulting point
clouds, we placed clearly visible targets (50 cm squares with a checkered pattern) along
the edge of the sinkhole (as visible in Figure 1C–E). We placed the target center at the edge
of the sinkhole with parts of the target reaching inwards to assure visibility from within
and across the structure (8 targets in 2017 and 2018; 10 targets in 2019). Due to unknown
hazards of a potential outlet at the bottom of the sinkhole and the potential of destroying
parts of the sinkhole slopes, we did not enter the sinkhole to place any targets within. These
GCPs were surveyed with the Leica Viva Global Navigation Satellite System (GNSS) base
(GS10) and rover (GS15) RTK system before image acquisition. Manual post-processing was
necessary, as the targets and base station were not in the same position each year. Therefore,
the Sondershausen reference station was used applying post-processing kinematic (PPK) to
our position data within the Leica Geo Office. We performed the study using the WGS89
UTM 32N reference system.

(2) We obtained terrestrial images using a Nikon D3000 DSLR handheld camera with
a resolution of 3872 × 2592 pixels at 18 mm focal length. These oblique images were
taken from the edge of the sinkhole with an overlap of approximately 60–80% between
neighboring images. Due to dense vegetation in the north of the sinkhole, not all of the
area surrounding the sinkhole was accessible by foot. The image-taking in 2017 and 2019
followed the suggestions of [51] of changing image position around the object, rather than
changing viewing angle on one position. In 2018, the image-taking was carried out from a
lower number of viewing points, from which images were taken with different viewing
angles as in [33]. We converted the images from the Nikon raw format NEF to JPEGs with
the Nikon Capture NX-D software applying the maximum-quality preset to prevent loss
of detail.

(3) Oblique aerial images were taken with a DJI Phantom 4 Pro UAV equipped with a
DJI FC330 sensor with 4000 × 3000 pixels at 4 mm focal length. Due to technical reasons,
an FC6310 sensor with 5472 × 3648 pixels and 9 mm focal length was employed in 2018.
The UAV was maneuvered manually to take images from within and above the sinkhole
with a varying flight height of maximum 25 m. The images were taken regularly to ensure
enough overlap in between neighboring ones.
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2.3. Structure from Motion, Multiview Stereo 3D Reconstruction, and Computation of
Precision Maps

The algorithms to create the tie points and dense point clouds from 2D images are
implemented in various software and can be computationally demanding, depending on
the number and quality of the images and the desired point cloud quality. Although there
are open-source and free-of-charge options, the software Agisoft PhotoScan Pro (recently
renamed Metashape, Version 1.4.3 from Agisoft LLC, St. Petersburg, Russia) is widely
preferred in scientific applications because of the effective and fast implementation of the
SfM-MVS algorithm [4] and a good quality of the resulting point clouds [42]. We used
the version Agisoft PhotoScan Pro 1.4.3 (6529) to generate and reference the point clouds
manually using markers on the targets. In the following, we describe each processing step
in detail, stating the settings selected in Agisoft PhotoScan.

The images were loaded into separate PhotoScan projects for each year and sensor.
Within PhotoScan, the images were manually examined again to exclude blurry, under- or
overexposed ones from further analysis. We manually masked areas not portraying the sink-
hole or obstructing vegetation within the sinkhole on the individual images in PhotoScan.

Next, we performed the camera alignment which worked fine for all the images except
the images taken in 2018 terrestrially. We first noticed more than usual displaced points
(sinkhole slopes appeared doubled or tripled); later on, the point precisions were magni-
tudes lower than for the other point clouds. Using coalignment after de Haas et al. [52] by
including the 2018 UAV photographs for the camera alignment resolved this problem.

The SfM alignment process for the tie point detection was carried out with high
accuracy, a limit of 40,000 key points, 10,000 tie points, masks applied to key points,
and adaptive camera model fitting enabled. This process reconstructs camera positions
and viewing angles on the basis of prominent features, referred to as tie points, within
the images. The resulting sparse clouds were filtered gradually to only contain points of
high quality in the reprojection error, reconstruction uncertainty, and projection accuracy.
The sparse point filtering required balancing the removal of low-quality tie points for
higher reconstruction quality, while also maintaining an adequate density of points to
produce precision maps without any large data gaps [38]. The values were determined
on a visual basis at 0.2, 15, and 10 for UAV and at 0.2, 30, and 15 for terrestrial imagery
for the reprojection error, reconstruction uncertainty, and projection accuracy, respectively.
The lowered reconstruction uncertainty threshold for the terrestrial imagery was chosen to
ensure the sparse point clouds covered the sinkhole without too-large gaps. In between
each step of gradual selection, the sparse point cloud’s camera parameters were optimized.
With this selection process we noticed that vegetated areas were greatly reduced within the
sparse point cloud.

For georeferencing, the GCPs were imported and the center of the targets were manu-
ally identified and marked in the images. The UAVs’ GPS and gyro-stored location and
viewing angle for each acquisition were deemed inaccurate and disabled for alignment.
Likewise, there was no geotagging for the images from the terrestrial handheld camera.
The root mean square error (RMSE) of the marked GCPs was derived within Agisoft
Photoscan Pro. We optimized the aligned sparse point cloud based on the GCP markers.

The multiview stereo 3D reconstruction was carried out by the creation of dense point
clouds in PhotoScan based on the estimated camera parameters from the aligned images,
applying mild-depth-filtering and medium quality. The dense clouds were exported in
WGS 89 UTM 32N in “las” format for further processing in CloudCompare 2.12 beta
(by Daniel Girardeau-Montaut is situated in Grenoble, France) [34].

We used the Monte Carlo simulation approach suggested by [38] to approximate the
point coordinate precision of the dense point clouds. Using PhotoScan (V.1.4.5) and the
software SfM_Georef 3.1, the coordinate precision (horizontal and vertical) of each point
of the sparse point cloud is estimated by repeatedly optimizing the bundle adjustment.
During each repetition, the positions of the ground control points are adjusted following a
Gaussian distribution of the reported GNSS precision. The resulting sparse point cloud
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precisions of each point include both SfM processing and georeferencing uncertainties.
We estimated horizontal (x and y axis) and vertical (z axis) precisions (σXYZ) of each
point in the georeferenced sparse clouds using a 10,000-fold Monte Carlo simulation [38].
Following the procedure by [38], we applied a distance-based spherical normal distribution
interpolation in CloudCompare to interpolate the precision estimates from each sparse to
the respective dense point cloud.

2.4. Point Cloud Comparison and Deformation Analysis

We analyzed differences in the point clouds using terrestrial or aerial imagery and
surface changes within the sinkhole, comparing the dense point clouds, considering their
point precisions using the multiscale model to model cloud comparison with precision
maps plug-in (M3C2-PM [35]) within CloudCompare 2.12 beta.

The application of the M3C2-PM plugin required two preprocessing steps within
CloudCompare. First, the proper coregistration of the dense point clouds needed to be
assured. As each survey was georeferenced manually using high-precision post-processed
GNSS data in PhotoScan and the georeferencing precision is integral in the precision maps
we derived by SfM_Georef, no further registration was carried out between the point clouds.
Second, the M3C2-PM plugin requires normals of each point of the dense point cloud to
determine the distance between two point clouds. The M3C2 algorithm creates cylinders
around the core points aligned to the local normals, inside of which the mean distances of
the points of the source cloud to the target cloud are measured. Reportedly, the correct ori-
entation of the normals has a large influence on correctly portraying the distances between
the point clouds [35]. The normal scale describes the size of the spherical neighborhood
around each point used to compute its local normal. Depending on the complexity and size
of the analyzed terrain and the available computation time, Lague et al. [35] recommend
the computation of multiscale normals instead of applying a uniform normal scale for the
entire point cloud. Their proposed method of deriving multiscale normals tests a range
of normal scales on each core point, instead of one uniform normal scale, to identify the
scale with the most planar resulting normal for each core point. In this way, the normals
of rough edges and more smooth planar surfaces can be portrayed with equally suitable
normals and the overestimation of the measured distance between the point clouds is
avoided (for more details and discussion of this approach please refer to [35]). We applied
the multiscale normal calculation within the M3C2 plugin starting with a minimum scale
of 0.1 m and ending at a maximum scale of 2.6 m using steps of 0.5 m. This represents
the recommended 20–25 times-as-large normal scale compared to the local mean relative
surface roughness, which was found to be around 0.1 in our point clouds. We selected
the preferred orientation of the normals as towards the barycenter of the sinkhole, which
worked for most normals. However, due to the complex shape of the sinkhole, we had
to apply a minimum spanning tree with a maximum of 15 neighbors after the multiscale
normal calculation to orient all normals correctly facing inwards the sinkhole.

We calculated the distance between the point clouds using the correctly oriented
multiscale normals and setting the diameter of the cylinder (called projection scale) at 0.2
m and the maximum cylinder depth at 1 m. These values were found to be appropriate,
as we did not expect any reliably measured distances to be larger than that. Within each
comparison pair we used the entire point cloud with the largest amount of points as
the reference cloud without applying any sampling of core points. In case the reference
cloud was younger than the comparison cloud, we inverted the measured distances to
match the change direction in other comparison pairs. Including the precision maps in
the M3C2 analysis allows to account for local uncertainties, introduced by the quality of
GPS measurements and the 3D reconstruction. It provides a more detailed view on actual
detectable change, taking into account the local level of detection of each point which
summarizes the distance uncertainty provided by the precision maps for each point [35,38].
The result is a point cloud containing information on the measured distance (m) and local
level of detection (m), and combining these on points with detectable change (named M3C2
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distance, distance uncertainty, and significant change within the plugin). Detectable change
refers to the points where the local uncertainty (or level of detection) is lower than the
measured change.

Comparisons were carried out between terrestrial and aerial point clouds of the same
year (2017, 2018, and 2019 respectively) to identify strengths, weaknesses, and the general
point cloud quality of each data collection approach. Additionally, we were interested
in the detectable surface changes or occurred deformation within the sinkhole over the
years conveyed by each data collection method. Therefore, we compared the point clouds
over one year (2017 to 2018 and 2018 to 2019) and two years (2017 to 2019) using the same
data collection approach (terrestrial or aerial). This resulted in nine comparison pairs,
as presented in the results section.

As we had no independent validation dataset from another source, such as point
surveys from a differential GPS, a total station, or a TLS survey, available, we assessed the
quality of the resulting point clouds according to these criteria: the amount of points in
the sparse and dense point cloud, the (median) point density as described by the number
of neighbors at the M3C2 projection scale (0.2 m), general coverage of the sinkhole (the
size of holes in the point cloud were assessed by deriving the percentage of black pixel in
a rendered file (PNG) of the each point cloud viewed from the top), the mean precision
estimate (sX, sY, and sZ) and its standard deviation, and observed change (analyzing if
change was measured differently in particular parts of the sinkhole using the terrestrial or
aerial point cloud).

3. Results
3.1. Data Collection and Preprocessing

The resulting median GNSS survey accuracy (positional and height errors) of the
surveyed ground control points varied from 1 cm (at 7 mm stdev. of height) in 2017 to
1.8 cm and 2 cm (at 16 mm or 18 mm stdev. of height) in 2018 and 2019, respectively.

After filtering the data for blurry or out-of-focus images, we count more images taken
with the UAV (up to 564 images) than with the handheld camera (as few as 94 images
in 2017, as summarized in Table 2). The terrestrial images were acquired from rather
similar locations around the sinkhole except from its north, as dense bushes make this
area inaccessible by foot. The camera locations of the aerial images differ substantially in
between the years as a result of the manual flight mode. Nonetheless, a good image overlap
of more than nine images was achieved with each sensor (please refer to maps showing the
camera locations and image overlap in Appendix A, Figure A1).

Table 2. Overview of sensors and data/images.

Sensor Resolution Focal Length
Number of Images

2017 2018 2019

Nikon D3000 3872 × 2592 18 mm 94 166 178
DJI FC330 4000 × 3000 4 mm 353 - 287
DJI FC6310 5472 × 3647 9 mm - 564 -

3.2. Structure from Motion, Multiview Stereo 3D Reconstruction, and Computation of
Precision Maps

The number of points in the sparse clouds is directly influenced by the gradual filtering.
The year 2018 shows both the lowest amount of sparse cloud points in the terrestrial dataset
(6326 points) and the most points in sparse point cloud resulting from using the UAV
images (54,443 points; Table 3). The dense point clouds are similar in size, apart from
the 2018 UAV dense point cloud, which shows almost three times the amount of points
compared to the others (8767,159 points, Table 3; the gradual filtering was the same for
all UAV surveys, though). Comparably, the mean point density giving the number of
neighbors within a 0.2 m sphere of the dense point clouds is highest for the point cloud
resulting from the 2018 aerial imagery (359 neighbors/0.2 m). However, the point density
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is not lowest for the point cloud with the lowest number of points, as it is lowest for the
2017 terrestrial point cloud (101 neighbors/0.2 m compared to 108 neighbors/0.2 m in the
2018 terrestrial point cloud). Except for the 2018 data, the point density is comparable
between point clouds resulting from terrestrial and aerial imagery. Notably, the point
density does not describe the coverage of the sinkhole in general well. Therefore, we
assessed the percentage of black pixels in the picture (PNG) viewing the sinkhole from
the top. It is the lowest for the point clouds resulting from the aerial imagery (51% in 2017
and 2018, 52% in 2019; Table 3), indicating a very good coverage of the sinkhole. In the
reconstructed dense point clouds, the coverage of unvegetated areas is mostly very good.
The largest holes were found in the point cloud resulting from the 2018 terrestrial imagery
(70% black pixels), where points in a large area of the sinkhole floor and area behind the
earth pillar are missing. The holes in the other point clouds are mostly related to vegetated
areas on the sinkhole bottom and behind the earth pillar.

Table 3. Characteristics of the resulting point clouds per year and survey method. The mean point
density was evaluated on the dense point cloud at the projection scale of the M3C2 method at 0.2 m.
The coverage was assessed by deriving the percentage of black pixels in a PNG format image of
each dense point cloud from the top. Please note that the percentage does not portray the actual size
of the holes, as the surroundings of the sinkhole are also in black. The PNGs can be found in the
Appendix A Figure A2a–e.

Year Survey
Method

Number
of

Images
Used

No. of
Points
Sparse
Cloud

No. of
Points
Dense
Cloud

Control
Points

RMSE *
(mm)

Mean Point
Density (No.

of Neighbors/
0.2 m)

Coverage
(% of
Black
Pixels)

Point Precision
Estimates (σX)

(mm)

Point Precision
Estimates (σY)

(mm)

Point Precision
Estimates (σZ)

(mm)

Mean Std.
dev. Mean Std.

dev. Mean Std.
dev.

2017 Aerial 353 37,037 2663,766 12 101 51 3 0.5 4 0.5 5 1.1
Terrestrial 94 13,051 2,487,248 35 104 58 25 15.1 28 14.3 15 8.1

2018 Aerial 542 54,443 8,767,159 15 359 51 10 4.8 12 6.2 17 6.8
Terrestrial 165 6326 2,267,846 25 108 70 20 10.1 18 10.1 13 3.2

2019 Aerial 278 34,612 2,673,191 12 109 52 6 2.5 7 2.3 16 8.2
Terrestrial 177 21,929 2,707,662 17 117 65 25 12.8 25 12.2 16 5.9

* RMSE: root mean square error.

Looking at the RMSE of manually marking the GCPs in the images, the highest RMSE
resulted in the point cloud of the 2017 terrestrial imagery (35 mm). Using the same GCP
survey but still manually marking their location in the 2017 aerial photos resulted in the
lowest RMSE of 12 mm. This very low RMSE was also found for the GCPs of the 2019
aerial images.

The mean horizontal point precision estimates (σX and σY) are generally higher for the
point clouds resulting from terrestrial imagery ranging from 18 mm (σY of 2018 terrestrial)
to 28 mm (σX of 2017 terrestrial; Table 3). The vertical point coordinate precision (σZ)
does not share these differences as the precision estimates are ranging between 13 mm
and 17 mm for all surveys, with the exception of the point cloud resulting from the 2017
aerial survey (5 mm; Figure 2). Looking at the spatial distribution of the vertical point
coordinate precisions from the terrestrial surveys, a consistent general pattern appears for
all years (Figure 2): The center of the sinkhole, which is furthest from the GCPs, displays
larger variations within the bundle adjustment, resulting in lower precision of the point
coordinates. The largest precision estimate values in the brown colored areas (starting at a
σZ of 30 mm) are attributed to vegetation within the images (see photos in Figure 1). The
slopes display a lower degree of variation in the vertical point precisions, ranging between
5 mm and 15 mm. The vertical precision maps of the aerial imagery show different patterns
in all surveys. The 2017 aerial point cloud has excellent vertical point coordinate precisions
(with a maximum value of σZ = 15 mm) with only minor deviations at the center and north
part of the sinkhole (Figure 2). The 2018 aerial point cloud displays the largest vertical
precision σZ of up to 60 mm. The precision map of the 2019 aerial point cloud shows a
distinct gradient of larger vertical precision values to the northeast, while the precision is
generally good (σZ of 6 mm to 33 mm).
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Figure 2. Vertical precision maps for the point clouds of the 2017 to 2019 terrestrial (a) Terrestrial 2017
precision map (σZ), (c) Terrestrial 2018 precision map (σZ), (e) Terrestrial 2019 precision map (σZ) and
aerial (b) Aerial 2017 precision map (σZ), (d) Aerial 2018 precision map (σZ), (f) Aerial 2019 precision
map (σZ) imagery. Gray color indicates areas where no point precision estimate was available from
the interpolation from the sparse point cloud. Note that in these areas, also, no detectable change can
be derived as no local level of detection is available. Additionally, please note the different minimum
and maximum precision estimate value of each point cloud as indicated by the colors shown in the
color scale.
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3.3. Point Cloud Comparison and Deformation Analysis

Comparing the point clouds resulting from using the different sensors, the percentage
of points with detectable change is a very interesting metric to look at, as it gives us the points
which show differences between the point clouds that exceed the precision uncertainty of
each point cloud. Any detectable changes or differences between the point clouds of the
same year are likely effects from the imagery and camera locations, as well as the different
sensors. The agreement between the terrestrial and aerial point clouds of 2018 and 2019 is
considered high, given that only 14% (2018) and 11% (2019) of the points have detectable
change (Table 4). The mean measured distance between these point clouds is also rather
small, with 3 mm or −11 mm (all points or points with detectable change in 2018) and 8 mm
or 19 mm (all points or points with detectable change in 2019). However, the comparison of
the 2017 terrestrial and aerial point clouds shows detectable change for 43% of all points of
the point cloud resulting from aerial imagery, with a mean measured distance of 40 mm on
the entire point cloud and of 78 mm for the points with detectable change (Table 4).

Table 4. Results of the M3C2 comparisons made between the terrestrial and aerial point clouds to
analyze the difference between using a different sensor and between the years to analyze the changes
within the sinkhole.

Comparison
ID

Reference
Cloud

Compared
Cloud

Mean Measured Distance (mm) Mean Local Level of Detection
(mm) % of Reference

Cloud Points
with Detectable

ChangeAll Points
Points with
Detectable

Change
All Points

Points with
Detectable

Change

TerrUAV 2017 2017 U 1 2017 T 2 40 78 54 47 43
TerrUAV 2018 2018 U 2018 T * 3 −11 48 44 14
TerrUAV 2019 2019 U 2019 T 8 19 55 51 11
Terr 2017/18 2017 T 2018 T * −49 −103 67 56 33
Terr 2018/19 2019 T 2018 T * 58 136 64 59 25
Terr 2017/19 2019 T 2017 T 25 20 73 65 30
UAV 2017/18 2018 U 2017 U −27 −39 32 30 52
UAV 2018/19 2018 U 2019 U 61 101 36 35 38
UAV 2017/19 2019 U 2017 U 37 20 21 65 62

1 Terrestrial (T); 2 UAV (U); * Coregistered.

Spatially, the areas of detectable change can mainly be found on the partly vegetated
sinkhole floor, while most of the steep slopes (unvegetated, except the western slope)
usually show a good agreement between the point clouds resulting from different sensors
(Figure 3). Please note that detectable change can only be assigned in areas where both
point clouds provide precision estimates and points. As the point cloud resulting from
the 2018 terrestrial imagery has a large area on the sinkhole floor with no points and
no precision estimates, no detectable change can be assigned there, which may lead to
artificially improved results of the percentage of points with detectable change. In all
years, the largest measured distances (larger than ±15 cm) can be found in vegetated areas
(Figure 3). In 2017, the rather large measured distances of 5 cm to 15 cm on the sinkhole
floor stand out compared to the results of the other years. The comparison of the sensors
in 2018 shows more areas of detectable change at the northwestern slope of the sinkhole,
where the structure reconstruction from the UAV has a higher surface (measured distances
of −5 cm to −15 cm) (Figure 1c,d). The negative change is locally disrupted by circular
blobs with measured distances larger than 15 cm, where the terrestrial point cloud is locally
higher than the aerial one. These areas coincide with the more abundant vegetation in 2018,
especially stalks. Dominant are areas with the missing points at the sinkhole floor (in gray)
and the vegetated area southeast of the earth pillar, which displayed too-low coverage
in the terrestrial images (Figure 3). In 2019, the pattern of change between the sensors
is visibly more complex, with a measured distance of most of the points between ±5 cm
(Figure 3). The aforementioned blobs of points in purple and dark blue (±15 cm) are also
present here, particularly across the sinkhole floor and western slope.
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detectable change. 

Figure 3. Measured distances and points with detectable change (brown) for comparisons of TerrUAV
2017, 2018, and 2019: (a) TerrUAV 2017 measured distance (m) between terrestrial and UAV point
cloud 2017, displayed on the UAV point cloud. (b) TerrUAV 2017 detectable change between terrestrial
and UAV point cloud 2017. (c) TerrUAV 2018 measured distance (m) between terrestrial and UAV
point cloud 2018, displayed on the UAV point cloud. (d) TerrUAV 2018 detectable change between
terrestrial and UAV point cloud 2018. (e) TerrUAV 2019 measured distance (m) between terrestrial
and UAV point cloud 2019, displayed on the UAV point cloud. (f) TerrUAV 2019 detectable change
between terrestrial and UAV point cloud 2019. Note the different information portrayed by the color
gray: in (a,c,e), gray areas show areas where no change was measured due to missing points in one
of the point clouds; in (b,d,f), the gray color shows points with no detectable change.
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Additionally, we were interested in the surface changes over time portrayed by each
surveying method. Using the terrestrial point clouds from 2017 to 2018, large portions
of the sinkhole are showing negative detectable change of larger than −5 cm within the
western slope and even larger than −15 cm visible at the earth pillar (Figure 4). The mean
measured distance of all points is −49 mm (or −103 mm for points with detectable change),
with 33% of all points of the 2017 terrestrial point cloud resulting in detectable change
(Table 4). The northern wall mainly shows changes of ±5 cm, which are, for the most
part, not reflected within the detectable change. The areas of detectable change there have
measured distances larger than −15 mm. The southern slope shows a positive detectable
change of 5 cm to 15 cm, which can be attributed to vegetation growth. Additionally,
small areas of negative change are detectable at the edge around the sinkhole. In contrast,
the comparison of terrestrial point clouds from 2018 to 2019 shows a positive change of 5 cm
and larger than 15 cm overall, with only a minority of negative measured distances. The
mean measured distance for all points is also positive, with 58 mm (136 mm for points with
detectable change) with a mean local level of detection of 64 mm (Table 4). The detectable
change (25% of all points of the 2019 terrestrial point cloud) shows a similar pattern to
the 2017/18 comparison: the difference between the point clouds is detectable within the
western slope and not detectable in the northern wall. The top of the earth pillar again
shows detectable but smaller areas of negative change (between minus 5 cm and minus
15 cm; Figure 4). The change detection over the full timespan from 2017 to 2019 using
terrestrial point clouds displays patterns of both single-year comparisons: most notably,
the detectable negative change at the earth pillar (larger than minus 15 cm) and the positive
change at the less steep parts of the western slope (patches of change larger than 15 cm) and
the steep southern slope (more than 15 cm). In addition, the negative change at the edge
of the sinkhole, which was not visible from 2018 to 2019, is present. The mean measured
distance in this comparison pair is 25 mm for all points (20 mm for points with detectable
change) at a mean local level of detection of 73 mm. A total of 30% of the points of the 2019
terrestrial point cloud were found to have measured distances exceeding the local level of
detection, resulting in detectable change.

The change detection over time using the point clouds from the aerial (UAV) imagery
resulted in partly similar patterns and mean measured distances compared to the changes
found in the point clouds from the terrestrial imagery, with generally lower mean local
levels of detection and larger areas of detectable change: The 2017/18 comparison shows
detectable negative change at the earth pillar (but smaller areas with distances larger than
−15 mm) and at the upper part of the western slope (−15 mm to 5 mm), and shorter
measured distances in areas of detectable change in the northern wall (mainly ±5 mm and
only small areas of −15 mm to −5 mm). The large areas of negative detectable change at
the bottom of the western slope are missing. Only the positive blobs of the stalks at the
transition of the steep western slope to the flatter lower part are also visible at the same
measured distance in the comparison of the aerial point clouds of 2017/18. The mean
measured distance for all points is −27 mm (−39 mm for points with detectable change)
at a mean local level of detection of 32 mm. A total of 52% of the 2018 aerial point cloud
resulted in detectable change. From 2018 to 2019, the point clouds resulting from aerial
imagery show more measured distances at the western and northern slope within ±5 mm
and similar detectable change on the western and eastern sinkhole floor (larger than 5 mm
and 15 mm). The negative change at the stalks is also visible at the same measured distance
(larger than −15 mm). The distances measured at the earth pillar are comparable to the
terrestrial result, range within −5 mm and −15 mm, and are considered detectable. The
mean measured distance is 61 mm for all points (101 mm for the points with detectable
change) and the mean local level of detection is 36 mm, which resulted in 38% of the 2018
aerial point cloud showing detectable change. The two-year comparison (2017 to 2019)
gives a clearer image of the changes, and the results of this comparison pair are also most
similar to the results of using the terrestrial imagery for the point cloud computation. We
found negative detectable measured distances between −5 mm and −15 mm at the upper
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part of the western slope and larger than −15 mm at the earth pillar, comparable to the
results of the terrestrial point clouds (Figure 5). Positive detectable measured distances
(larger than 5 mm) at the lower part of the western slope, the southern slope, and the
bottom of the sinkhole are also comparable. However, there are some differences, most
strikingly at the sinkhole floor north of the earth pillar, where the terrestrial point clouds
(2017/19) showed negative change larger than −15 mm while the aerial point clouds
(2017/19) mainly showed positive change. The mean measured distance between the aerial
point clouds of 2017 and 2019 is 37 mm for all points (20 mm for points with detectable
change) and the mean local level of detection is 21 mm. This comparison pair resulted in
the largest area of detectable change, with 62% of the points of the 2019 aerial point cloud.
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of terrestrial 2017 to terrestrial 2018. (b) Terr 2017/18 detectable change, Terr 2017/18: detectable
change of terrestrial 2017 to terrestrial 2018. (c) Terr 2018/19 measured distance (m), Terr 2018/19:
M3C2 distances of terrestrial 2018 to terrestrial 2019. (d) Terr 2018/19 detectable change, Terr 2018/19:
detectable change of terrestrial 2018 to terrestrial 2019. (e) Terr 2017/19 measured distance (m), Terr
2017/19: measured distances of terrestrial 2017 to terrestrial 2019. (f) Terr 2017/19 detectable change,
Terr 2017/19: detectable change of terrestrial 2017 to terrestrial 2019. Note the different information
portrayed by the color gray: in (a,c,e), gray areas show areas where no change was measured (due to
missing points or the maximum depth of 1 m was exceeded); in (b,d,f), the gray color shows points
with no detectable change.
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distances of UAV 2017 to UAV 2018. (b) UAV 2017/18 detectable change, UAV 2017/18: detectable
change of UAV 2017 to UAV 2018. (c) UAV 2018/19 measured distance (m), UAV 2018/19: measured
distances of UAV 2018 to UAV 2019. (d) UAV 2018/19 detectable change, UAV 2018/19: detectable
change of UAV 2018 to UAV 2019. (e) UAV 2017/19 measured distance (m), UAV 2017/19: measured
distances of UAV 2017 to UAV 2019. (f) UAV 2017/19 detectable change, UAV 2017/19: detectable
change of UAV 2017 to UAV 2019. Note the different information portrayed by the color gray: in
(a,c,e), gray areas show areas where no change was measured (due to missing points or the maximum
depth of 1 m was exceeded); in (b,d,f), the gray color shows points with no detectable change.

4. Discussion
4.1. Comparing Terrestrial and UAV Patterns of Change

Looking at the results of comparing the point clouds resulting from terrestrial or
aerial imagery from the same year, the sometimes small (2019) or larger differences (2017)
between the point clouds are to some extent surprising. As this is a comparison of sensors
with data taken at the same day within minutes of each other, we can safely assume no
change of the sinkhole happened between acquisition of the aerial and terrestrial imagery.
All differences measured here are produced by the different sensors, perspective, camera
locations, and SfM and MVS processes. Particularly, the differences in the 2017 point cloud
pair showing large differences on the sinkhole floor are interesting. We assume the higher
position may be attributed to the limited viewing angles of the terrestrial camera resulting
in a bad image quality in areas of the sinkhole floor. It could also be related to some sort
of doming effect resulting from poor camera and ground control point positioning. These
errors are explicitly not portrayed in the point precision maps [5]. However, with the 2019
terrestrial survey design being very similar, this different representation of the sinkhole
floor did not happen then. Therefore, the exact reason for the difference remains unclear.
The small but detectable differences between the point clouds resulting from the two
sensors in 2019 show a pattern that may be attributed to point precision variations resulting
from the randomness during photogrammetry 3D reconstruction [38,53,54] and/or to
differences in the reconstruction of the vegetation on the sinkhole floor (such as due to
gradual filtering or vegetation movement).

With the multitemporal comparison using the same survey method but point clouds
of different years, we had different challenges. While we have no means of knowing
which measured distances portray the real change within the sinkhole over time, we can
apply general geomorphological knowledge and principles to evaluate the validity or
plausibility of the changes we measured. Additionally, it is beneficial to only look at mainly
vegetation-free areas or areas with only very low vegetation. In these areas, the influences
of the gradual filtering tool and the vegetation movement and growth during and in
between the surveys are assumed to play no role in the point cloud quality or the spatial
pattern of measured distances. We also assume that changes we see in both terrestrial and
aerial comparison pairs of the respective years might be real changes (erosion, deposition,
or vegetation growth) that occurred within the sinkhole. Looking at the multitemporal
point cloud comparison results of comparison pairs, using the 2018 terrestrial point cloud
seems least geomorphologically plausible.

While the patterns of change detected within point clouds resulting from terrestrial
or aerial imagery appeared quite different whenever the 2018 terrestrial point cloud was
involved, the patterns of change found between the years 2017 and 2019 (particularly the
erosion at the earth pillar and western steep slope and deposition at the lower western
slope) are comparable. The representation quality seems to have been very good at the
earth pillar in all years and we can see that in the first year (2017 to 2018), when a lot of
precipitation was recorded, the largest amount of erosion took place at the top of the earth
pillar. From 2018 to 2019 there was still some erosion at the top but much less, which fits
very well with the low recorded precipitation in those years. Depending on the aimed-for
level of detection or measured distances with detectable change and the main surveyed area
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(slope or sinkhole floor), the choice of preferable survey method might be different. Our
results confirm that similar patterns of change can be detected using either survey method
at the cost of higher (terrestrial) or lower (aerial) local levels of detection and smaller areas
of detectable change (terrestrial), if the survey itself is performed properly. We assume
that the slightly different approach of larger distances between the camera locations along
the sinkhole edge and orientation towards the sinkhole in the terrestrial survey 2018 (with
larger angular changes in between the single images; Figure A1) is what caused the trouble
with the alignment (which is why the coalignment was necessary) and resulted in a point
cloud with very large areas of the sinkhole (floor) missing. Angular changes greater than
25–30◦ between images have been found to be troubling for feature detectors [55]. This
finding of not-optimal image acquisition methods applied with the handheld camera in
2018 is supported by survey method recommendations summarized by Bemis et al. [20],
James and Robson [56], and Lin et al. [57]. Therefore, we strongly advise against the 2018
terrestrial survey approach and against overinterpreting the results which involve this
point cloud, particularly as the large areas of change on the western slope (negative change
in the comparison pair Terrestrial 2017/18 and positive change in the comparison pair
Terrestrial 2018/19) can be attributed to the 2018 terrestrial point cloud (as it is not visible
in the respective aerial results) and do not seem plausible from a geomorphological point
of view.

The difference between the range and spatial coverage of the local level of detection for
terrestrial and aerial point clouds is striking, making the aerial point clouds more appealing
when trying to achieve centimeter-precision surveys. The spatial coverage is a result of the
presence of information on point precision estimates in both point clouds of the comparison
pair. This presence of local levels of detection is directly affecting the (potential) size of the
area of detectable change. Detectable change can only be assigned for points which have a
precision estimate in both point clouds. This is highly dependent on the point distribution
in each sparse point cloud as the point precision estimates are computed on the sparse
point cloud and later interpolated to the dense point cloud. The sparse point clouds of
the aerial imagery seem well distributed over the sinkhole, allowing a good interpolation
of the values on the dense point cloud, resulting in a good spatial coverage. However,
the terrestrial sparse point cloud points are less well distributed, which resulted in dense
cloud points missing precision estimates, given our applied interpolation method, only
allowing limited areas of extrapolation. Generally, our resulting precision map patterns
may be interpreted as variations in precision estimates originating from the randomness
in the photogrammetry rather than from the ground control points [38]. The 2019 aerial
point cloud is an exception to this, as the precision map shows a distinct gradient which
may be attributed to weak GCPs [38]. However, the same GCPs were used for the 2019
terrestrial point cloud which shows a different pattern in the precision maps. The very low
point precision estimates of the 2017 aerial point cloud may be attributed to a very strong
image network geometry with pictures taken from different distances from well around
and within the sinkhole, as recommended by Micheletti et al. [3], and to a good ground
sampling distance (Figure A1). In general, the aerial point clouds show a lower RMSE of
the ground control points, which is related to the closer ground sampling distance of the
aerial imagery, a relationship also found by Smith and Vericat [21] and Eltner et al. [4].

4.2. Challenges in Multitemporal/Multisensor Comparison

In multitemporal comparison changes, such as different locations of GNSS surveyed
points, illumination differences and vegetation growth pose challenges, which we discuss
in the following.

Due to the site location, potential erosion on the sinkhole edge, and limited possibili-
ties of installing semipermanent georeference targets, the location of the base station and
the ground control points (GCPs; targets) changed slightly in between the years. Addi-
tionally, it was not possible to place independent control points inside the sinkhole itself
due to potentially hazardous conditions and missing equipment such as a total station.
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Additionally, we found the manual setting of the markers much easier in the aerial imagery
than the terrestrial imagery (due to better viewing angles and resolution). Potential uncer-
tainties arising from these circumstances might be eliminated by applying the Time-SIFT
method [58]. It could be applied to reduce the work and potential errors of manually setting
the markers for each year, potentially reducing errors in coregistration and to have more
CPs available to analyze the quality of the 3D reconstruction. This Time-SIFT, or also a
refined coalignment approach [52], could be of particular interest for practitioners to reduce
the work during each survey while still accomplishing good-quality point clouds.

The success of the feature detection within images necessary for the 3D reconstruction
is highly dependent on the success of identifying matching unique features in the image
set [59]. This is reportedly influenced by anything that makes the unique features appear
differently in between images: the image quality and resolution, number of images, changes
in illumination (e.g., arising from changes in the sun position and shadows or filtering by
clouds resulting in potential over-or underexposure of (parts of) images), and changes in the
observed object (e.g., wind shifting vegetation [5,20]). While the image quality and number
can be controlled easily in between surveys, the changes in the illumination and within the
observed object are challenging in multitemporal/multisensor studies in natural settings.
Ideally, the images during each year would be collected under very similar illumination
conditions. However, this is not always possible to obtain when scheduling field work.
Since our study objective was comparing aerial and terrestrial surveys for change detection,
the most important part of the experiment design was to acquire imagery on the same
date, with no erosion and deposition occurring between the surveys, which we did achieve.
However, in our study, challenges were posed by changing illumination (sun and shadows
causing over- und underexposure of parts of the images) during the survey and in between
the survey years and by wind shifting vegetation and vegetation growth. We assume that
shadows occurring in the sinkhole (in 2017 and 2019) resulted in over-or underexposure
in the images, which affected the 3D reconstruction and potentially the precision of the
resulting point cloud (2017 Terr [27]). Additionally, different illumination can influence the
identification of the targets in the images, and, therefore, the quality of the GCP marking,
as we noticed with overexposure due to sunlight in the 2017 imagery.

Due to windy conditions, the moving vegetation (or parts of it) was not reconstructed
properly, which, combined with the gradual filtering, resulted in holes of the 3D point
cloud mainly at the bottom of the sinkhole. Additionally, we observed a good growth of
the vegetation within parts of the sinkhole over the years. Obstruction by vegetation is
challenging for optical sensors, as the wavelengths are not able to penetrate the foliage,
resulting in local loss of surface information in vegetated areas and highly irregular surfaces
with holes. While we are aware that growing vegetation has a large influence on the
change detection of the slopes and the sinkhole floor, we still decided to keep the sinkhole
undisturbed from artificial processes such as our survey. As the vegetation growth was
not of interest for our study we looked for ways of eliminating the vegetation from the
point clouds. Our approach of reducing the vegetation within the point clouds by using
the gradual filtering tool was only partly successful: vegetation growing higher from
the ground (small trees or higher plants with stems) was reduced to mainly the stems;
vegetation growing close to the ground could not be removed. Here, other approaches, such
as the usage of the local variance [12], automatic classification of the point cloud (vegetation
and no vegetation [60]), adapting a cloth simulation filter [61], or more time-consuming
manual filtering of the vegetation from the point clouds, might be promising. However,
the different appearance (color) of the vegetation in all three years and the complex terrain
are expected to pose challenges for automated filtering processes.

5. Conclusions

Our comparison of terrestrial and aerial SFM surveying of the sinkhole showed that
using imagery from aerial surveying results in better-quality point clouds. The point clouds
resulting from the aerial imagery show the best spatial coverage of the sinkhole, the lowest
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point precision estimate range, and the best spatial coverage with point precision estimates.
However, given an ideal surveying and image-taking method, the terrestrial imagery still
results in good quality and interpretable point clouds fit for change detection, as shown
with the 2019 survey. This is confirmed by the comparisons of the observed patterns of
change in between the years which were found to be comparable between using terrestrial
or aerial imagery for computing the point clouds. Therefore, it depends on the intended
scope, scale of measured changes, and aimed local level of detection as to which survey
method may be chosen in similar surveys.

Furthermore, although one might be under the impression that it is possible to obtain
a good point cloud from any set of images, we need to conclude that the spacing between
image locations and degree of angular changes between images are decisive to obtain a
reliable point cloud, fit for multitemporal comparisons.

The point precision estimates and derived local levels of detection were valuable
sources for correctly interpreting the measured distances within the sinkhole. However,
a clear limitation of this approach is the dependence on the sparse point cloud and its
interpolation to the dense point cloud. Consequently, for points with no precision estimates,
no detectable change can be assigned.
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clouds reflect areas with no information point precision estimates available in any of the point clouds
of the comparison pair. In the color scale the gray areas show that there are no values available,
therefore they are indicating the range of the local levels of detection of the respective comparison pair.
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