Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (384)

Search Parameters:
Keywords = local non-equilibrium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10909 KiB  
Article
Preparation Optimization and Antioxidant Properties of the β-Glucan and Ferulic Acid/Quercetin Complex from Highland Barley (Hordeum vulgare var. nudum)
by Yuanhang Ren, Yanting Yang, Mi Jiang, Wentao Gu, Yanan Cao, Liang Zou and Lianxin Peng
Foods 2025, 14(15), 2712; https://doi.org/10.3390/foods14152712 - 1 Aug 2025
Viewed by 124
Abstract
Polysaccharides and phenols are commonly co-localized in various plant-derived foods, including highland barley (Hordeum vulgare L. var. nudum Hook. f.). The interactions between these compounds can influence multiple characteristics of food products, including their physicochemical properties and functional performance, such as bioavailability, [...] Read more.
Polysaccharides and phenols are commonly co-localized in various plant-derived foods, including highland barley (Hordeum vulgare L. var. nudum Hook. f.). The interactions between these compounds can influence multiple characteristics of food products, including their physicochemical properties and functional performance, such as bioavailability, stability, and digestibility, which may support promising application of the phenol and polysaccharide complex in health food industry. In this study, two complexes with potential existence in highland barley, such as β-glucan-ferulic acid (GF) and β-glucan-quercetin (GQ), were prepared using the equilibrium dialysis method in vitro. FTIR and SEM results showed that ferulic acid and quercetin formed complexes with β-glucan separately, with covalent and non-covalent bonds and a dense morphological structure. The pH value, reaction temperature, and concentration of phosphate buffer solution (PBS) were confirmed to have an impact on the formation and yield of the complex. Through the test of the response surface, it was found that the optimum conditions for GF and (GQ) preparations were a pH of 6.5 (6), a PBS buffer concentration of 0.08 mol/L (0.3 mol/L), and a temperature of 8 °C (20 °C). Through in vitro assays, GF and GQ were found to possess good antioxidant activity, with a greater scavenging effect of DPPH, ABTS, and hydroxyl radical than the individual phenolic acids and glucans, as well as their physical mixtures. Taking GF as an example, the DPPH radical scavenging capacity ranked as GF (71.74%) > ferulic acid (49.50%) > PGF (44.43%) > β-glucan (43.84%). Similar trends were observed for ABTS radical scavenging (GF: 54.56%; ferulic acid: 44.37%; PGF: 44.95%; β-glucan: 36.42%) and hydroxyl radical elimination (GF: 39.16%; ferulic acid: 33.06%; PGF: 35.51%; β-glucan: 35.47%). In conclusion, the convenient preparation method and excellent antioxidant effect of the phenol–polysaccharide complexes from highland barley provide new opportunities for industrial-scale production, development, and design of healthy food based on these complexes. Full article
Show Figures

Figure 1

12 pages, 736 KiB  
Article
Hybrid Framework of Fermi–Dirac Spin Hydrodynamics
by Zbigniew Drogosz
Physics 2025, 7(3), 31; https://doi.org/10.3390/physics7030031 - 1 Aug 2025
Viewed by 96
Abstract
The paper outlines the hybrid framework of spin hydrodynamics, combining classical kinetic theory with the Israel–Stewart method of introducing dissipation. The local equilibrium expressions for the baryon current, the energy–momentum tensor, and the spin tensor of particles with spin 1/2 following the Fermi–Dirac [...] Read more.
The paper outlines the hybrid framework of spin hydrodynamics, combining classical kinetic theory with the Israel–Stewart method of introducing dissipation. The local equilibrium expressions for the baryon current, the energy–momentum tensor, and the spin tensor of particles with spin 1/2 following the Fermi–Dirac statistics are obtained and compared with the earlier derived versions where the Boltzmann approximation was used. The expressions in the two cases are found to have the same form, but the coefficients are shown to be governed by different functions. The relative differences between the tensor coefficients in the Fermi–Dirac and Boltzmann cases are found to grow exponentially with the baryon chemical potential. In the proposed formalism, nonequilibrium processes are studied including mathematically possible dissipative corrections. Standard conservation laws are applied, and the condition of positive entropy production is shown to allow for the transfer between the spin and orbital parts of angular momentum. Full article
(This article belongs to the Special Issue High Energy Heavy Ion Physics—Zimányi School 2024)
Show Figures

Figure 1

21 pages, 3327 KiB  
Article
Numerical Analysis of Heat Transfer and Flow Characteristics in Porous Media During Phase-Change Process of Transpiration Cooling for Aerospace Thermal Management
by Junhyeon Bae, Jukyoung Shin and Tae Young Kim
Energies 2025, 18(15), 4070; https://doi.org/10.3390/en18154070 - 31 Jul 2025
Viewed by 207
Abstract
Transpiration cooling that utilizes the phase change of a liquid coolant is recognized as an effective thermal protection technique for extreme environments. However, the introduction of phase change within the porous structure brings about challenges, such as vapor blockage, pressure fluctuations, and temperature [...] Read more.
Transpiration cooling that utilizes the phase change of a liquid coolant is recognized as an effective thermal protection technique for extreme environments. However, the introduction of phase change within the porous structure brings about challenges, such as vapor blockage, pressure fluctuations, and temperature inversion, which critically influence system reliability. This study conducts numerical analyses of coupled processes of heat transfer, flow, and phase change in transpiration cooling using a Two-Phase Mixture Model. The simulation incorporates a Local Thermal Non-Equilibrium approach to capture the distinct temperature fields of the solid and fluid phases, enabling accurate prediction of the thermal response within two-phase and single-phase regions. The results reveal that under low heat flux, dominant capillary action suppresses dry-out and expands the two-phase region. Conversely, high heat flux causes vaporization to overwhelm the capillary supply, forming a superheated vapor layer and constricting the two-phase zone. The analysis also explains a paradoxical pressure drop, where an initial increase in flow rate reduces pressure loss by suppressing the high-viscosity vapor phase. Furthermore, a local temperature inversion, where the fluid becomes hotter than the solid matrix, is identified and attributed to vapor counterflow and its subsequent condensation. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

25 pages, 14199 KiB  
Article
A Nonlinear Cross-Diffusion Model for Disease Spread: Turing Instability and Pattern Formation
by Ravi P. Gupta, Arun Kumar and Shristi Tiwari
Mathematics 2025, 13(15), 2404; https://doi.org/10.3390/math13152404 - 25 Jul 2025
Viewed by 296
Abstract
In this article, we propose a novel nonlinear cross-diffusion framework to model the distribution of susceptible and infected individuals within their habitat using a reduced SIR model that incorporates saturated incidence and treatment rates. The study investigates solution boundedness through the theory of [...] Read more.
In this article, we propose a novel nonlinear cross-diffusion framework to model the distribution of susceptible and infected individuals within their habitat using a reduced SIR model that incorporates saturated incidence and treatment rates. The study investigates solution boundedness through the theory of parabolic partial differential equations, thereby validating the proposed spatio-temporal model. Through the implementation of the suggested cross-diffusion mechanism, the model reveals at least one non-constant positive equilibrium state within the susceptible–infected (SI) system. This work demonstrates the potential coexistence of susceptible and infected populations through cross-diffusion and unveils Turing instability within the system. By analyzing codimension-2 Turing–Hopf bifurcation, the study identifies the Turing space within the spatial context. In addition, we explore the results for Turing–Bogdanov–Takens bifurcation. To account for seasonal disease variations, novel perturbations are introduced. Comprehensive numerical simulations illustrate diverse emerging patterns in the Turing space, including holes, strips, and their mixtures. Additionally, the study identifies non-Turing and Turing–Bogdanov–Takens patterns for specific parameter selections. Spatial series and surfaces are graphed to enhance the clarity of the pattern results. This research provides theoretical insights into the implications of cross-diffusion in epidemic modeling, particularly in contexts characterized by localized mobility, clinically evident infections, and community-driven isolation behaviors. Full article
(This article belongs to the Special Issue Models in Population Dynamics, Ecology and Evolution)
Show Figures

Figure 1

24 pages, 7960 KiB  
Article
Creep Behavior and Deformation Mechanism of Aluminum Alloy: Integrating Multiscale Simulation and Experiments
by Weizheng Lu, Jianguo Wu, Jiajun Liu, Xiaoai Yi, Qiyue Zhang, Yang Chen, Jia Li and Qihong Fang
Symmetry 2025, 17(7), 1146; https://doi.org/10.3390/sym17071146 - 17 Jul 2025
Viewed by 234
Abstract
Aluminum (Al) alloys exhibit exceptional mechanical properties, seeing widespread use in various industrial fields. Here, we use a multiscale simulation method combining phase field method, dislocation dynamics, and crystal plasticity finite element method to reveal the evolution law of precipitates, the interaction mechanism [...] Read more.
Aluminum (Al) alloys exhibit exceptional mechanical properties, seeing widespread use in various industrial fields. Here, we use a multiscale simulation method combining phase field method, dislocation dynamics, and crystal plasticity finite element method to reveal the evolution law of precipitates, the interaction mechanism between dislocations and precipitates, and the grain-level creep deformation mechanism in 7A09 Al alloy under creep loading. The phase field method indicates that Al alloys tend to form fewer but larger precipitates during the creep process, under the dominant effect of stress-assisted Ostwald ripening. The dynamic equilibrium process of precipitate is not only controlled by classical diffusion mechanisms, but also closely related to the local strain field induced by dislocations and the elastic interaction between precipitates. Dislocation dynamics simulations indicate that the appearance of multiple dislocation loops around the precipitate during the creep process is the main dislocation creep deformation mechanism. A crystal plasticity finite element model is established based on experimental characterization to investigate the macroscopic creep mechanism. The dislocation climb is hindered by grain boundaries during creep, and high-density dislocation bands are formed around specific grains, promoting non-uniform plastic strain and leading to strong strain gradients. This work provides fundamental insights into understanding creep behavior and deformation mechanism of Al alloy for deep-sea environments. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

20 pages, 967 KiB  
Article
A Comprehensive Investigation of the Two-Phonon Characteristics of Heat Conduction in Superlattices
by Pranay Chakraborty, Milad Nasiri, Haoran Cui, Theodore Maranets and Yan Wang
Crystals 2025, 15(7), 654; https://doi.org/10.3390/cryst15070654 - 17 Jul 2025
Viewed by 344
Abstract
The Anderson localization of phonons in disordered superlattices has been proposed as a route to suppress thermal conductivity beyond the limits imposed by conventional scattering mechanisms. A commonly used signature of phonon localization is the emergence of the nonmonotonic dependence of thermal conductivity [...] Read more.
The Anderson localization of phonons in disordered superlattices has been proposed as a route to suppress thermal conductivity beyond the limits imposed by conventional scattering mechanisms. A commonly used signature of phonon localization is the emergence of the nonmonotonic dependence of thermal conductivity κ on system length L, i.e., a κ-L maximum. However, such behavior has rarely been observed. In this work, we conduct extensive non-equilibrium molecular dynamics (NEMD) simulations, using the LAMMPS package, on both periodic superlattices (SLs) and aperiodic random multilayers (RMLs) constructed from Si/Ge and Lennard-Jones materials. By systematically varying acoustic contrast, interatomic bond strength, and average layer thickness, we examine the interplay between coherent and incoherent phonon transport in these systems. Our two-phonon model decomposition reveals that coherent phonons alone consistently exhibit a strong nonmonotonic κ-L. This localization signature is often masked by the diffusive, monotonically increasing contribution from incoherent phonons. We further extract the ballistic-limit mean free paths for both phonon types, and demonstrate that incoherent transport often dominates, thereby concealing localization effects. Our findings highlight the importance of decoupling coherent and incoherent phonon contributions in both simulations and experiments. This work provides new insights and design principles for achieving phonon Anderson localization in superlattice structures. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

34 pages, 12075 KiB  
Article
Offset Temperature and Amplitude–Frequency Effect on Convection Heat Transfer in Partially Gradient Porous Cavity with Different Outlet Port Locations
by Luma F. Ali and Amjad J. Humaidi
Processes 2025, 13(7), 2279; https://doi.org/10.3390/pr13072279 - 17 Jul 2025
Viewed by 321
Abstract
Based on admirable porous media performance and the popularity of additive manufacturing technology, gradient porous media are progressively being applied in increasing fields. In this study, convection heat transfer within a square vented cavity, partially occupied by two copper metal foam layers of [...] Read more.
Based on admirable porous media performance and the popularity of additive manufacturing technology, gradient porous media are progressively being applied in increasing fields. In this study, convection heat transfer within a square vented cavity, partially occupied by two copper metal foam layers of 10 and 20 PPI saturated with nanofluid, was assessed numerically. The left wall was heated uniformly and non-uniformly by applying multi-frequency spatial heating following a sinusoidal function. Governing equations, including continuity, the Darcy–Brinkmann–Forchheimer model, and local thermal non-equilibrium energy equations, were adopted and solved by employing the finite volume method. The influences of relevant parameters, including nanoparticle concentrations 0%φ10%, Reynolds number (1Re100), inlet and outlet port aspect ratios 0.1D/H0.4, three outlet vent opening locations (So=0 left, (So=H/2D/2) middle, and (So=HD) right), sinusoidal offset temperature (θo=0.5, 1), frequency (f=1, 3, 5), and amplitude (A=01), were examined. The results demonstrate that flow and heat transfer fields are impacted mainly by these parameters. Streamlines are more intensified at the upper-left corner when the outlet opening vent is shifted towards the right-corner upper wall. Fluid- and solid-phase Nusselt number increases Re, D/H, θo, A, and f are raised, specifically when A0.3. The Nusselt number remains constant when the frequency is raised from 3 to 5, definitely when D/H0.25. In uniform and non-uniform heating cases, the Nusselt number of both phases remains constant as the outlet port is shifted right for Re10 and slightly for higher Re as the outlet vent location is translated from left to right. Full article
Show Figures

Figure 1

23 pages, 2581 KiB  
Article
Tripartite Evolutionary Game Analysis of Waste Tire Pyrolysis Promotion: The Role of Differential Carbon Taxation and Policy Coordination
by Xiaojun Shen
Sustainability 2025, 17(14), 6422; https://doi.org/10.3390/su17146422 - 14 Jul 2025
Viewed by 273
Abstract
In China, the recycling system for waste tires is characterized by high output but low standardized recovery rates. This study examines the environmental and health risks caused by non-compliant treatment by individual recyclers and explores the barriers to the large-scale adoption of Pyrolysis [...] Read more.
In China, the recycling system for waste tires is characterized by high output but low standardized recovery rates. This study examines the environmental and health risks caused by non-compliant treatment by individual recyclers and explores the barriers to the large-scale adoption of Pyrolysis Technology. A Tripartite Evolutionary Game Model involving pyrolysis plants, waste tire recyclers, and government regulators is developed. The model incorporates pollutants from pretreatment and pyrolysis processes into a unified metric—Carbon Dioxide Equivalent (CO2-eq)—based on Global Warming Potential (GWP), and designs a Differential Carbon Taxation mechanism accordingly. The strategy dynamics and stability conditions for Evolutionary Stable Strategies (ESS) are analyzed. Multi-scenario numerical simulations explore how key parameter changes influence evolutionary trajectories and equilibrium outcomes. Six typical equilibrium states are identified, along with the critical conditions for achieving environmentally friendly results. Based on theoretical analysis and simulation results, targeted policy recommendations are proposed to promote standardized waste tire pyrolysis: (1) Establish a phased dynamic carbon tax with supporting subsidies; (2) Build a green market cultivation and price stabilization system; (3) Implement performance-based differential incentives; (4) Strengthen coordination between central environmental inspections and local carbon tax enforcement. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

22 pages, 323 KiB  
Article
Bridge, Reverse Bridge, and Their Control
by Andrea Baldassarri and Andrea Puglisi
Entropy 2025, 27(7), 718; https://doi.org/10.3390/e27070718 - 2 Jul 2025
Viewed by 265
Abstract
We investigate the bridge problem for stochastic processes, that is, we analyze the statistical properties of trajectories constrained to begin and terminate at a fixed position within a time interval τ. Our primary focus is the time-reversal symmetry of these trajectories: under [...] Read more.
We investigate the bridge problem for stochastic processes, that is, we analyze the statistical properties of trajectories constrained to begin and terminate at a fixed position within a time interval τ. Our primary focus is the time-reversal symmetry of these trajectories: under which conditions do the statistical properties remain invariant under the transformation tτt? To address this question, we compare the stochastic differential equation describing the bridge, derived equivalently via Doob’s transform or stochastic optimal control, with the corresponding equation for the time-reversed bridge. We aim to provide a concise overview of these well-established derivation techniques and subsequently obtain a local condition for the time-reversal asymmetry that is specifically valid for the bridge. We are specifically interested in cases in which detailed balance is not satisfied and aim to eventually quantify the bridge asymmetry and understand how to use it to derive useful information about the underlying out-of-equilibrium dynamics. To this end, we derived a necessary condition for time-reversal symmetry, expressed in terms of the current velocity of the original stochastic process and a quantity linked to detailed balance. As expected, this formulation demonstrates that the bridge is symmetric when detailed balance holds, a sufficient condition that was already known. However, it also suggests that a bridge can exhibit symmetry even when the underlying process violates detailed balance. While we did not identify a specific instance of complete symmetry under broken detailed balance, we present an example of partial symmetry. In this case, some, but not all, components of the bridge display time-reversal symmetry. This example is drawn from a minimal non-equilibrium model, namely Brownian Gyrators, that are linear stochastic processes. We examined non-equilibrium systems driven by a "mechanical” force, specifically those in which the linear drift cannot be expressed as the gradient of a potential. While Gaussian processes like Brownian Gyrators offer valuable insights, it is known that they can be overly simplistic, even in their time-reversal properties. Therefore, we transformed the model into polar coordinates, obtaining a non-Gaussian process representing the squared modulus of the original process. Despite this increased complexity and the violation of detailed balance in the full process, we demonstrate through exact calculations that the bridge of the squared modulus in the isotropic case, constrained to start and end at the origin, exhibits perfect time-reversal symmetry. Full article
(This article belongs to the Special Issue Control of Driven Stochastic Systems: From Shortcuts to Optimality)
26 pages, 4143 KiB  
Article
Spatial Distribution Patterns and Sustainable Development Drivers of China’s National Famous, Special, Excellent, and New Agricultural Products
by Shasha Ouyang and Jun Wen
Agriculture 2025, 15(13), 1430; https://doi.org/10.3390/agriculture15131430 - 2 Jul 2025
Viewed by 396
Abstract
China’s National Famous, Special, Excellent, and New Agricultural Products are key rural economic assets, yet their spatial patterns and sustainability drivers remain underexplored. Based on the geospatial data of 1932 National Famous, Special, Excellent and New Agricultural Products in China, this study systematically [...] Read more.
China’s National Famous, Special, Excellent, and New Agricultural Products are key rural economic assets, yet their spatial patterns and sustainability drivers remain underexplored. Based on the geospatial data of 1932 National Famous, Special, Excellent and New Agricultural Products in China, this study systematically analyzes their spatial distribution pattern by using GIS spatial analysis techniques, including the standard deviation ellipse, kernel density estimation, geographic concentration index and Lorenz curve, and quantitatively explores the driving factors of sustainable development by using geographic detectors. The research results of this paper are as follows. (1) The spatial distribution shows a significant non-equilibrium characteristic of “high-density concentration in the central and eastern part of the country and low-density sparseness in the western part of the country” and the geographic concentration index (G = 22.95) and the standard deviation ellipse indicate that the center of gravity of the distribution is located in the North China Plain (115° E–35° N), and the main direction extends along the longitude of 110° E–120° E. (2) Driving factor analysis showed that railroad mileage (X10) (q = 0.5028, p = 0.0025 < 0.01), highway mileage (X11) (q = 0.4633, p = 0.0158 < 0.05), and population size (X3) (q = 0.4469, p = 0.0202 < 0.05) are the core drivers. (3) Three-dimensional kernel density mapping reveals that the eastern coast and central plains (kernel density > 0.08) form high-density clusters due to the advantages of the transportation network and market, while the western part shows a gradient decline due to the limitation of topography and transportation conditions. The study suggests that the sustainable development of National Famous, Special, Excellent, and New Agricultural Products should be promoted by strengthening transportation and digital logistics systems, enhancing cold-chain distribution for perishable goods, tailoring regional branding strategies, and improving synergy among local governments, thereby providing actionable guidance for policymakers and producers to increase market competitiveness and income stability. The study provides a quantitative, policy-oriented assessment of China’s branded agricultural resource allocation and its sustainability drivers, offering specific recommendations to guide infrastructure investment, e-commerce logistics enhancement, and targeted subsidy design for balanced regional development. The study highlights three key contributions: (1) an innovative integration of geospatial analytics and geographical detectors to reveal spatial patterns; (2) clear empirical evidence for policymakers to prioritize transport and digital logistics investments; and (3) practical guidance for producers and brand managers to enhance product market reach, optimize supply chains, and strengthen regional competitiveness in line with sustainable development goals. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

32 pages, 2664 KiB  
Article
Bifurcation and Optimal Control Analysis of an HIV/AIDS Model with Saturated Incidence Rate
by Marsudi Marsudi, Trisilowati Trisilowati and Raqqasyi R. Musafir
Mathematics 2025, 13(13), 2149; https://doi.org/10.3390/math13132149 - 30 Jun 2025
Viewed by 242
Abstract
In this paper, we develop an HIV/AIDS epidemic model that incorporates a saturated incidence rate to reflect the limited transmission capacity and the impact of behavioral saturation in contact patterns. The model is formulated as a system of seven non-linear ordinary differential equations [...] Read more.
In this paper, we develop an HIV/AIDS epidemic model that incorporates a saturated incidence rate to reflect the limited transmission capacity and the impact of behavioral saturation in contact patterns. The model is formulated as a system of seven non-linear ordinary differential equations representing key population compartments. In addition to model formulation, we introduce an optimal control problem involving three control measures: educational campaigns, screening of unaware infected individuals, and antiretroviral treatment for aware infected individuals. We begin by establishing the positivity and boundedness of the model solutions under constant control inputs. The existence and local and global stability of both the disease-free and endemic equilibrium points are analyzed, depending on the effective reproduction number (Re). Bifurcation analysis reveals that the model undergoes a forward bifurcation at Re=1. A local sensitivity analysis of Re identifies the disease transmission rate as the most sensitive parameter. The optimal control problem is then formulated by incorporating the dynamics of infected subpopulations, control costs, and time-dependent controls. The existence of optimal control solutions is proven, and the necessary conditions for optimality are derived using Pontryagin’s Maximum Principle. Numerical simulations support the theoretical analysis and confirm the stability of the equilibrium points. The optimal control strategies, evaluated using the Incremental Cost-Effectiveness Ratio (ICER), indicate that implementing both screening and treatment (Strategy D) is the most cost-effective intervention. These results provide important insights for designing effective and economically sustainable HIV/AIDS intervention policies. Full article
Show Figures

Figure 1

13 pages, 1309 KiB  
Article
Thermal Conductivity of Graphene Moiré Superlattices at Small Twist Angles: An Approach-to-Equilibrium Molecular Dynamics and Boltzmann Transport Study
by Lorenzo Manunza, Riccardo Dettori, Antonio Cappai and Claudio Melis
C 2025, 11(3), 46; https://doi.org/10.3390/c11030046 - 30 Jun 2025
Viewed by 903
Abstract
We investigate the thermal conductivity of graphene Moiré superlattices formed by twisting bilayer graphene (TBG) at small angles, employing approach-to-equilibrium molecular dynamics and lattice dynamics calculations based on the Boltzmann Transport Equation. Our simulations reveal a non-monotonic dependence of the thermal conductivity on [...] Read more.
We investigate the thermal conductivity of graphene Moiré superlattices formed by twisting bilayer graphene (TBG) at small angles, employing approach-to-equilibrium molecular dynamics and lattice dynamics calculations based on the Boltzmann Transport Equation. Our simulations reveal a non-monotonic dependence of the thermal conductivity on the twisting angle, with a local minimum near the first magic angle (θ1.1°). This behavior is attributed to the evolution of local stacking configurations—AA, AB, and saddle-point (SP)—across the Moiré superlattice, which strongly affect phonon transport. A detailed analysis of phonon mean free paths (MFP) and mode-resolved thermal conductivity shows that AA stacking suppresses thermal transport, while AB and SP stackings exhibit enhanced conductivity owing to more efficient low-frequency phonon transport. Furthermore, we establish a direct correlation between the thermal conductivity of twisted structures and the relative abundance of stacking domains within the Moiré supercell. Our results demonstrate that even very small changes in twisting angle (<2°) can lead to thermal conductivity variations of over 30%, emphasizing the high tunability of thermal transport in TBG. Full article
(This article belongs to the Special Issue 10th Anniversary of C — Journal of Carbon Research)
Show Figures

Figure 1

29 pages, 3774 KiB  
Article
Improving the Minimum Free Energy Principle to the Maximum Information Efficiency Principle
by Chenguang Lu
Entropy 2025, 27(7), 684; https://doi.org/10.3390/e27070684 - 26 Jun 2025
Viewed by 993
Abstract
Friston proposed the Minimum Free Energy Principle (FEP) based on the Variational Bayesian (VB) method. This principle emphasizes that the brain and behavior coordinate with the environment, promoting self-organization. However, it has a theoretical flaw, a possibility of being misunderstood, and a limitation [...] Read more.
Friston proposed the Minimum Free Energy Principle (FEP) based on the Variational Bayesian (VB) method. This principle emphasizes that the brain and behavior coordinate with the environment, promoting self-organization. However, it has a theoretical flaw, a possibility of being misunderstood, and a limitation (only likelihood functions are used as constraints). This paper first introduces the semantic information G theory and the R(G) function (where R is the minimum mutual information for the given semantic mutual information G). The G theory is based on the P-T probability framework and, therefore, allows for the use of truth, membership, similarity, and distortion functions (related to semantics) as constraints. Based on the study of the R(G) function and logical Bayesian Inference, this paper proposes the Semantic Variational Bayesian (SVB) and the Maximum Information Efficiency (MIE) principle. Theoretic analysis and computing experiments prove that RG = FH(X|Y) (where F denotes VFE, and H(X|Y) is Shannon conditional entropy) instead of F continues to decrease when optimizing latent variables; SVB is a reliable and straightforward approach for latent variables and active inference. This paper also explains the relationship between information, entropy, free energy, and VFE in local non-equilibrium and equilibrium systems, concluding that Shannon information, semantic information, and VFE are analogous to the increment of free energy, the increment of exergy, and physical conditional entropy. The MIE principle builds upon the fundamental ideas of the FEP, making them easier to understand and apply. It needs to combine deep learning methods for wider applications. Full article
(This article belongs to the Special Issue Information-Theoretic Approaches for Machine Learning and AI)
Show Figures

Figure 1

29 pages, 862 KiB  
Article
Exploring SEIR Influenza Epidemic Model via Fuzzy ABC Fractional Derivatives with Crowley–Martin Incidence Rate
by F. Gassem, Ashraf A. Qurtam, Mohammed Almalahi, Mohammed Rabih, Khaled Aldwoah, Abdelaziz El-Sayed and E. I. Hassan
Fractal Fract. 2025, 9(7), 402; https://doi.org/10.3390/fractalfract9070402 - 23 Jun 2025
Viewed by 519
Abstract
Despite initial changes in respiratory illness epidemiology due to SARS-CoV-2, influenza activity has returned to pre-pandemic levels, highlighting its ongoing challenges. This paper investigates an influenza epidemic model using a Susceptible-Exposed-Infected-Recovered (SEIR) framework, extended with fuzzy Atangana–Baleanu–Caputo (ABC) fractional derivatives to incorporate uncertainty [...] Read more.
Despite initial changes in respiratory illness epidemiology due to SARS-CoV-2, influenza activity has returned to pre-pandemic levels, highlighting its ongoing challenges. This paper investigates an influenza epidemic model using a Susceptible-Exposed-Infected-Recovered (SEIR) framework, extended with fuzzy Atangana–Baleanu–Caputo (ABC) fractional derivatives to incorporate uncertainty (via fuzzy numbers for state variables) and memory effects (via the ABC fractional derivative for non-local dynamics). We establish the theoretical foundation by defining the fuzzy ABC derivatives and integrals based on the generalized Hukuhara difference. The existence and uniqueness of the solutions for the fuzzy fractional SEIR model are rigorously proven using fixed-point theorems. Furthermore, we analyze the system’s disease-free and endemic equilibrium points under the fractional framework. A numerical scheme based on the fractional Adams–Bashforth method is used to approximate the fuzzy solutions, providing interval-valued results for different uncertainty levels. The study demonstrates the utility of fuzzy fractional calculus in providing a more flexible and potentially realistic approach to modeling epidemic dynamics under uncertainty. Full article
(This article belongs to the Special Issue Fractional Order Modelling of Dynamical Systems)
Show Figures

Figure 1

27 pages, 1024 KiB  
Article
Nonlinear Dynamical Model and Analysis of Emotional Propagation Based on Caputo Derivative
by Liang Hong and Lipu Zhang
Mathematics 2025, 13(13), 2044; https://doi.org/10.3390/math13132044 - 20 Jun 2025
Viewed by 285
Abstract
Conventional integer-order models fail to adequately capture non-local memory effects and constrained nonlinear interactions in emotional dynamics. To address these limitations, we propose a coupled framework that integrates Caputo fractional derivatives with hyperbolic tangent–based interaction functions. The fractional-order term quantifies power-law memory decay [...] Read more.
Conventional integer-order models fail to adequately capture non-local memory effects and constrained nonlinear interactions in emotional dynamics. To address these limitations, we propose a coupled framework that integrates Caputo fractional derivatives with hyperbolic tangent–based interaction functions. The fractional-order term quantifies power-law memory decay in affective states, while the nonlinear component regulates connection strength through emotional difference thresholds. Mathematical analysis establishes the existence and uniqueness of solutions with continuous dependence on initial conditions and proves the local asymptotic stability of network equilibria (Wij*=1δsech2(EiEj), e.g., W*1.40 under typical parameters η=0.5, δ=0.3). We further derive closed-form expressions for the steady-state variance under stochastic perturbations (Var(Wij)=σζ22ηδ) and demonstrate a less than 6% deviation between simulated and theoretical values when σζ=0.1. Numerical experiments using the Euler–Maruyama method validate the convergence of connection weights toward the predicted equilibrium, reveal Gaussian features in the stationary distributions, and confirm power-law scaling between noise intensity and variance. The numerical accuracy of the fractional system is further verified through L1 discretization, with observed error convergence consistent with theoretical expectations for μ=0.5. This framework advances the mechanistic understanding of co-evolutionary dynamics in emotion-modulated social networks, supporting applications in clinical intervention design, collective sentiment modeling, and psychophysiological coupling research. Full article
(This article belongs to the Special Issue Research on Delay Differential Equations and Their Applications)
Show Figures

Figure 1

Back to TopTop