Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (776)

Search Parameters:
Keywords = local industrial networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 29559 KiB  
Article
CFRANet: Cross-Modal Frequency-Responsive Attention Network for Thermal Power Plant Detection in Multispectral High-Resolution Remote Sensing Images
by Qinxue He, Bo Cheng, Xiaoping Zhang and Yaocan Gan
Remote Sens. 2025, 17(15), 2706; https://doi.org/10.3390/rs17152706 - 5 Aug 2025
Viewed by 1
Abstract
Thermal Power Plants (TPPs), as widely used industrial facilities for electricity generation, represent a key task in remote sensing image interpretation. However, detecting TPPs remains a challenging task due to their complex and irregular composition. Many traditional approaches focus on detecting compact, small-scale [...] Read more.
Thermal Power Plants (TPPs), as widely used industrial facilities for electricity generation, represent a key task in remote sensing image interpretation. However, detecting TPPs remains a challenging task due to their complex and irregular composition. Many traditional approaches focus on detecting compact, small-scale objects, while existing composite object detection methods are mostly part-based, limiting their ability to capture the structural and textural characteristics of composite targets like TPPs. Moreover, most of them rely on single-modality data, failing to fully exploit the rich information available in remote sensing imagery. To address these limitations, we propose a novel Cross-Modal Frequency-Responsive Attention Network (CFRANet). Specifically, the Modality-Aware Fusion Block (MAFB) facilitates the integration of multi-modal features, enhancing inter-modal interactions. Additionally, the Frequency-Responsive Attention (FRA) module leverages both spatial and localized dual-channel information and utilizes Fourier-based frequency decomposition to separately capture high- and low-frequency components, thereby improving the recognition of TPPs by learning both detailed textures and structural layouts. Experiments conducted on our newly proposed AIR-MTPP dataset demonstrate that CFRANet achieves state-of-the-art performance, with a mAP50 of 82.41%. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

31 pages, 4141 KiB  
Article
Automated Quality Control of Candle Jars via Anomaly Detection Using OCSVM and CNN-Based Feature Extraction
by Azeddine Mjahad and Alfredo Rosado-Muñoz
Mathematics 2025, 13(15), 2507; https://doi.org/10.3390/math13152507 - 4 Aug 2025
Viewed by 160
Abstract
Automated quality control plays a critical role in modern industries, particularly in environments that handle large volumes of packaged products requiring fast, accurate, and consistent inspections. This work presents an anomaly detection system for candle jars commonly used in industrial and commercial applications, [...] Read more.
Automated quality control plays a critical role in modern industries, particularly in environments that handle large volumes of packaged products requiring fast, accurate, and consistent inspections. This work presents an anomaly detection system for candle jars commonly used in industrial and commercial applications, where obtaining labeled defective samples is challenging. Two anomaly detection strategies are explored: (1) a baseline model using convolutional neural networks (CNNs) as an end-to-end classifier and (2) a hybrid approach where features extracted by CNNs are fed into One-Class classification (OCC) algorithms, including One-Class SVM (OCSVM), One-Class Isolation Forest (OCIF), One-Class Local Outlier Factor (OCLOF), One-Class Elliptic Envelope (OCEE), One-Class Autoencoder (OCAutoencoder), and Support Vector Data Description (SVDD). Both strategies are trained primarily on non-defective samples, with only a limited number of anomalous examples used for evaluation. Experimental results show that both the pure CNN model and the hybrid methods achieve excellent classification performance. The end-to-end CNN reached 100% accuracy, precision, recall, F1-score, and AUC. The best-performing hybrid model CNN-based feature extraction followed by OCIF also achieved 100% across all evaluation metrics, confirming the effectiveness and robustness of the proposed approach. Other OCC algorithms consistently delivered strong results, with all metrics above 95%, indicating solid generalization from predominantly normal data. This approach demonstrates strong potential for quality inspection tasks in scenarios with scarce defective data. Its ability to generalize effectively from mostly normal samples makes it a practical and valuable solution for real-world industrial inspection systems. Future work will focus on optimizing real-time inference and exploring advanced feature extraction techniques to further enhance detection performance. Full article
Show Figures

Figure 1

17 pages, 37081 KiB  
Article
MADet: A Multi-Dimensional Feature Fusion Model for Detecting Typical Defects in Weld Radiographs
by Shuai Xue, Wei Xu, Zhu Xiong, Jing Zhang and Yanyan Liang
Materials 2025, 18(15), 3646; https://doi.org/10.3390/ma18153646 - 3 Aug 2025
Viewed by 199
Abstract
Accurate weld defect detection is critical for ensuring structural safety and evaluating welding quality in industrial applications. Manual inspection methods have inherent limitations, including inefficiency and inadequate sensitivity to subtle defects. Existing detection models, primarily designed for natural images, struggle to adapt to [...] Read more.
Accurate weld defect detection is critical for ensuring structural safety and evaluating welding quality in industrial applications. Manual inspection methods have inherent limitations, including inefficiency and inadequate sensitivity to subtle defects. Existing detection models, primarily designed for natural images, struggle to adapt to the characteristic challenges of weld X-ray images, such as high noise, low contrast, and inter-defect similarity, particularly leading to missed detections and false positives for small defects. To address these challenges, a multi-dimensional feature fusion model (MADet), which is a multi-branch deep fusion network for weld defect detection, was proposed. The framework incorporates two key innovations: (1) A multi-scale feature fusion network integrated with lightweight attention residual modules to enhance the perception of fine-grained defect features by leveraging low-level texture information. (2) An anchor-based feature-selective detection head was used to improve the discrimination and localization accuracy for five typical defect categories. Extensive experiments on both public and proprietary weld defect datasets demonstrated that MADet achieved significant improvements over the state-of-the-art YOLO variants. Specifically, it surpassed the suboptimal model by 7.41% in mAP@0.5, indicating strong industrial applicability. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

18 pages, 10811 KiB  
Article
Multimodal Feature Inputs Enable Improved Automated Textile Identification
by Magken George Enow Gnoupa, Andy T. Augousti, Olga Duran, Olena Lanets and Solomiia Liaskovska
Textiles 2025, 5(3), 31; https://doi.org/10.3390/textiles5030031 - 2 Aug 2025
Viewed by 131
Abstract
This study presents an advanced framework for fabric texture classification by leveraging macro- and micro-texture extraction techniques integrated with deep learning architectures. Co-occurrence histograms, local binary patterns (LBPs), and albedo-dependent feature maps were employed to comprehensively capture the surface properties of fabrics. A [...] Read more.
This study presents an advanced framework for fabric texture classification by leveraging macro- and micro-texture extraction techniques integrated with deep learning architectures. Co-occurrence histograms, local binary patterns (LBPs), and albedo-dependent feature maps were employed to comprehensively capture the surface properties of fabrics. A late fusion approach was applied using four state-of-the-art convolutional neural networks (CNNs): InceptionV3, ResNet50_V2, DenseNet, and VGG-19. Excellent results were obtained, with the ResNet50_V2 achieving a precision of 0.929, recall of 0.914, and F1 score of 0.913. Notably, the integration of multimodal inputs allowed the models to effectively distinguish challenging fabric types, such as cotton–polyester and satin–silk pairs, which exhibit overlapping texture characteristics. This research not only enhances the accuracy of textile classification but also provides a robust methodology for material analysis, with significant implications for industrial applications in fashion, quality control, and robotics. Full article
Show Figures

Graphical abstract

19 pages, 4612 KiB  
Article
User-Centered Design of a Computer Vision System for Monitoring PPE Compliance in Manufacturing
by Luis Alberto Trujillo-Lopez, Rodrigo Alejandro Raymundo-Guevara and Juan Carlos Morales-Arevalo
Computers 2025, 14(8), 312; https://doi.org/10.3390/computers14080312 - 1 Aug 2025
Viewed by 170
Abstract
In manufacturing environments, the proper use of Personal Protective Equipment (PPE) is essential to prevent workplace accidents. Despite this need, existing PPE monitoring methods remain largely manual and suffer from limited coverage, significant errors, and inefficiencies. This article focuses on addressing this deficiency [...] Read more.
In manufacturing environments, the proper use of Personal Protective Equipment (PPE) is essential to prevent workplace accidents. Despite this need, existing PPE monitoring methods remain largely manual and suffer from limited coverage, significant errors, and inefficiencies. This article focuses on addressing this deficiency by designing a computer vision desktop application for automated monitoring of PPE use. This system uses lightweight YOLOv8 models, developed to run on the local system and operate even in industrial locations with limited network connectivity. Using a Lean UX approach, the development of the system involved creating empathy maps, assumptions, product backlog, followed by high-fidelity prototype interface components. C4 and physical diagrams helped define the system architecture to facilitate modifiability, scalability, and maintainability. Usability was verified using the System Usability Scale (SUS), with a score of 87.6/100 indicating “excellent” usability. The findings demonstrate that a user-centered design approach, considering user experience and technical flexibility, can significantly advance the utility and adoption of AI-based safety tools, especially in small- and medium-sized manufacturing operations. This article delivers a validated and user-centered design solution for implementing machine vision systems into manufacturing safety processes, simplifying the complexities of utilizing advanced AI technologies and their practical application in resource-limited environments. Full article
Show Figures

Figure 1

18 pages, 3506 KiB  
Review
A Review of Spatial Positioning Methods Applied to Magnetic Climbing Robots
by Haolei Ru, Meiping Sheng, Jiahui Qi, Zhanghao Li, Lei Cheng, Jiahao Zhang, Jiangjian Xiao, Fei Gao, Baolei Wang and Qingwei Jia
Electronics 2025, 14(15), 3069; https://doi.org/10.3390/electronics14153069 - 31 Jul 2025
Viewed by 205
Abstract
Magnetic climbing robots hold significant value for operations in complex industrial environments, particularly for the inspection and maintenance of large-scale metal structures. High-precision spatial positioning is the foundation for enabling autonomous and intelligent operations in such environments. However, the existing literature lacks a [...] Read more.
Magnetic climbing robots hold significant value for operations in complex industrial environments, particularly for the inspection and maintenance of large-scale metal structures. High-precision spatial positioning is the foundation for enabling autonomous and intelligent operations in such environments. However, the existing literature lacks a systematic and comprehensive review of spatial positioning techniques tailored to magnetic climbing robots. This paper addresses this gap by categorizing and evaluating current spatial positioning approaches. Initially, single-sensor-based methods are analyzed with a focus on external sensor approaches. Then, multi-sensor fusion methods are explored to overcome the shortcomings of single-sensor-based approaches. Multi-sensor fusion methods include simultaneous localization and mapping (SLAM), integrated positioning systems, and multi-robot cooperative positioning. To address non-uniform noise and environmental interference, both analytical and learning-based reinforcement approaches are reviewed. Common analytical methods include Kalman-type filtering, particle filtering, and correlation filtering, while typical learning-based approaches involve deep reinforcement learning (DRL) and neural networks (NNs). Finally, challenges and future development trends are discussed. Multi-sensor fusion and lightweight design are the future trends in the advancement of spatial positioning technologies for magnetic climbing robots. Full article
(This article belongs to the Special Issue Advancements in Robotics: Perception, Manipulation, and Interaction)
Show Figures

Figure 1

25 pages, 26404 KiB  
Review
Review of Deep Learning Applications for Detecting Special Components in Agricultural Products
by Yifeng Zhao and Qingqing Xie
Computers 2025, 14(8), 309; https://doi.org/10.3390/computers14080309 - 30 Jul 2025
Viewed by 355
Abstract
The rapid evolution of deep learning (DL) has fundamentally transformed the paradigm for detecting special components in agricultural products, addressing critical challenges in food safety, quality control, and precision agriculture. This comprehensive review systematically analyzes many seminal studies to evaluate cutting-edge DL applications [...] Read more.
The rapid evolution of deep learning (DL) has fundamentally transformed the paradigm for detecting special components in agricultural products, addressing critical challenges in food safety, quality control, and precision agriculture. This comprehensive review systematically analyzes many seminal studies to evaluate cutting-edge DL applications across three core domains: contaminant surveillance (heavy metals, pesticides, and mycotoxins), nutritional component quantification (soluble solids, polyphenols, and pigments), and structural/biomarker assessment (disease symptoms, gel properties, and physiological traits). Emerging hybrid architectures—including attention-enhanced convolutional neural networks (CNNs) for lesion localization, wavelet-coupled autoencoders for spectral denoising, and multi-task learning frameworks for joint parameter prediction—demonstrate unprecedented accuracy in decoding complex agricultural matrices. Particularly noteworthy are sensor fusion strategies integrating hyperspectral imaging (HSI), Raman spectroscopy, and microwave detection with deep feature extraction, achieving industrial-grade performance (RPD > 3.0) while reducing detection time by 30–100× versus conventional methods. Nevertheless, persistent barriers in the “black-box” nature of complex models, severe lack of standardized data and protocols, computational inefficiency, and poor field robustness hinder the reliable deployment and adoption of DL for detecting special components in agricultural products. This review provides an essential foundation and roadmap for future research to bridge the gap between laboratory DL models and their effective, trusted application in real-world agricultural settings. Full article
(This article belongs to the Special Issue Deep Learning and Explainable Artificial Intelligence)
Show Figures

Figure 1

19 pages, 1761 KiB  
Article
Prediction of China’s Silicon Wafer Price: A GA-PSO-BP Model
by Jining Wang, Hui Chen and Lei Wang
Mathematics 2025, 13(15), 2453; https://doi.org/10.3390/math13152453 - 30 Jul 2025
Viewed by 180
Abstract
The BP (Back-Propagation) neural network model (hereafter referred to as the BP model) often gets stuck in local optima when predicting China’s silicon wafer price, which hurts the accuracy of the forecasts. This study addresses the issue by enhancing the BP model. It [...] Read more.
The BP (Back-Propagation) neural network model (hereafter referred to as the BP model) often gets stuck in local optima when predicting China’s silicon wafer price, which hurts the accuracy of the forecasts. This study addresses the issue by enhancing the BP model. It integrates the principles of genetic algorithm (GA) with particle swarm optimization (PSO) to develop a new model called the GA-PSO-BP. This study also considers the material price from both the supply and demand sides of the photovoltaic industry. These prices are important factors in China’s silicon wafer price prediction. This research indicates that improving the BP model by integrating GA allows for a broader exploration of potential solution spaces. This approach helps to prevent local minima and identify the optimal solution. The BP model converges more quickly by using PSO for weight initialization. Additionally, the method by which particles share information decreases the probability of being confined to local optima. The upgraded GA-PSO-BP model demonstrates improved generalization capabilities and makes more accurate predictions. The MAE (Mean Absolute Error) value of the GA-PSO-BP model is 31.01% lower than those of the standalone BP model and also falls by 19.36% and 16.28% relative to the GA-BP and PSO-BP models, respectively. The smaller the value, the closer the prediction result of the model is to the actual value. This model has proven effective and superior in China’s silicon wafer price prediction. This capability makes it an essential resource for market analysis and decision-making within the silicon wafer industry. Full article
Show Figures

Figure 1

18 pages, 5309 KiB  
Article
LGM-YOLO: A Context-Aware Multi-Scale YOLO-Based Network for Automated Structural Defect Detection
by Chuanqi Liu, Yi Huang, Zaiyou Zhao, Wenjing Geng and Tianhong Luo
Processes 2025, 13(8), 2411; https://doi.org/10.3390/pr13082411 - 29 Jul 2025
Viewed by 220
Abstract
Ensuring the structural safety of steel trusses in escalators is critical for the reliable operation of vertical transportation systems. While manual inspection remains widely used, its dependence on human judgment leads to extended cycle times and variable defect-recognition rates, making it less reliable [...] Read more.
Ensuring the structural safety of steel trusses in escalators is critical for the reliable operation of vertical transportation systems. While manual inspection remains widely used, its dependence on human judgment leads to extended cycle times and variable defect-recognition rates, making it less reliable for identifying subtle surface imperfections. To address these limitations, a novel context-aware, multi-scale deep learning framework based on the YOLOv5 architecture is proposed, which is specifically designed for automated structural defect detection in escalator steel trusses. Firstly, a method called GIES is proposed to synthesize pseudo-multi-channel representations from single-channel grayscale images, which enhances the network’s channel-wise representation and mitigates issues arising from image noise and defocused blur. To further improve detection performance, a context enhancement pipeline is developed, consisting of a local feature module (LFM) for capturing fine-grained surface details and a global context module (GCM) for modeling large-scale structural deformations. In addition, a multi-scale feature fusion module (MSFM) is employed to effectively integrate spatial features across various resolutions, enabling the detection of defects with diverse sizes and complexities. Comprehensive testing on the NEU-DET and GC10-DET datasets reveals that the proposed method achieves 79.8% mAP on NEU-DET and 68.1% mAP on GC10-DET, outperforming the baseline YOLOv5s by 8.0% and 2.7%, respectively. Although challenges remain in identifying extremely fine defects such as crazing, the proposed approach offers improved accuracy while maintaining real-time inference speed. These results indicate the potential of the method for intelligent visual inspection in structural health monitoring and industrial safety applications. Full article
Show Figures

Figure 1

25 pages, 1343 KiB  
Article
Low-Latency Edge-Enabled Digital Twin System for Multi-Robot Collision Avoidance and Remote Control
by Daniel Poul Mtowe, Lika Long and Dong Min Kim
Sensors 2025, 25(15), 4666; https://doi.org/10.3390/s25154666 - 28 Jul 2025
Viewed by 382
Abstract
This paper proposes a low-latency and scalable architecture for Edge-Enabled Digital Twin networked control systems (E-DTNCS) aimed at multi-robot collision avoidance and remote control in dynamic and latency-sensitive environments. Traditional approaches, which rely on centralized cloud processing or direct sensor-to-controller communication, are inherently [...] Read more.
This paper proposes a low-latency and scalable architecture for Edge-Enabled Digital Twin networked control systems (E-DTNCS) aimed at multi-robot collision avoidance and remote control in dynamic and latency-sensitive environments. Traditional approaches, which rely on centralized cloud processing or direct sensor-to-controller communication, are inherently limited by excessive network latency, bandwidth bottlenecks, and a lack of predictive decision-making, thus constraining their effectiveness in real-time multi-agent systems. To overcome these limitations, we propose a novel framework that seamlessly integrates edge computing with digital twin (DT) technology. By performing localized preprocessing at the edge, the system extracts semantically rich features from raw sensor data streams, reducing the transmission overhead of the original data. This shift from raw data to feature-based communication significantly alleviates network congestion and enhances system responsiveness. The DT layer leverages these extracted features to maintain high-fidelity synchronization with physical robots and to execute predictive models for proactive collision avoidance. To empirically validate the framework, a real-world testbed was developed, and extensive experiments were conducted with multiple mobile robots. The results revealed a substantial reduction in collision rates when DT was deployed, and further improvements were observed with E-DTNCS integration due to significantly reduced latency. These findings confirm the system’s enhanced responsiveness and its effectiveness in handling real-time control tasks. The proposed framework demonstrates the potential of combining edge intelligence with DT-driven control in advancing the reliability, scalability, and real-time performance of multi-robot systems for industrial automation and mission-critical cyber-physical applications. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

25 pages, 4296 KiB  
Article
StripSurface-YOLO: An Enhanced Yolov8n-Based Framework for Detecting Surface Defects on Strip Steel in Industrial Environments
by Haomin Li, Huanzun Zhang and Wenke Zang
Electronics 2025, 14(15), 2994; https://doi.org/10.3390/electronics14152994 - 27 Jul 2025
Viewed by 395
Abstract
Recent advances in precision manufacturing and high-end equipment technologies have imposed ever more stringent requirements on the accuracy, real-time performance, and lightweight design of online steel strip surface defect detection systems. To reconcile the persistent trade-off between detection precision and inference efficiency in [...] Read more.
Recent advances in precision manufacturing and high-end equipment technologies have imposed ever more stringent requirements on the accuracy, real-time performance, and lightweight design of online steel strip surface defect detection systems. To reconcile the persistent trade-off between detection precision and inference efficiency in complex industrial environments, this study proposes StripSurface–YOLO, a novel real-time defect detection framework built upon YOLOv8n. The core architecture integrates an Efficient Cross-Stage Local Perception module (ResGSCSP), which synergistically combines GSConv lightweight convolutions with a one-shot aggregation strategy, thereby markedly reducing both model parameters and computational complexity. To further enhance multi-scale feature representation, this study introduces an Efficient Multi-Scale Attention (EMA) mechanism at the feature-fusion stage, enabling the network to more effectively attend to critical defect regions. Moreover, conventional nearest-neighbor upsampling is replaced by DySample, which produces deeper, high-resolution feature maps enriched with semantic content, improving both inference speed and fusion quality. To heighten sensitivity to small-scale and low-contrast defects, the model adopts Focal Loss, dynamically adjusting to sample difficulty. Extensive evaluations on the NEU-DET dataset demonstrate that StripSurface–YOLO reduces FLOPs by 11.6% and parameter count by 7.4% relative to the baseline YOLOv8n, while achieving respective improvements of 1.4%, 3.1%, 4.1%, and 3.0% in precision, recall, mAP50, and mAP50:95. Under adverse conditions—including contrast variations, brightness fluctuations, and Gaussian noise—SteelSurface-YOLO outperforms the baseline model, delivering improvements of 5.0% in mAP50 and 4.7% in mAP50:95, attesting to the model’s robust interference resistance. These findings underscore the potential of StripSurface–YOLO to meet the rigorous performance demands of real-time surface defect detection in the metal forging industry. Full article
Show Figures

Figure 1

17 pages, 2269 KiB  
Article
Will Road Infrastructure Become the New Engine of Urban Growth? A Consideration of the Economic Externalities
by Cheng Xue, Yiying Chao, Shangwei Xie and Kebiao Yuan
Sustainability 2025, 17(15), 6813; https://doi.org/10.3390/su17156813 - 27 Jul 2025
Viewed by 237
Abstract
Highway accessibility plays a vital role in supporting local economic development, particularly in regions lacking access to sea or river ports. Recognizing the functional transformation of road infrastructure, the Chinese government has made substantial investments in its expansion. Nevertheless, a theoretical gap remains [...] Read more.
Highway accessibility plays a vital role in supporting local economic development, particularly in regions lacking access to sea or river ports. Recognizing the functional transformation of road infrastructure, the Chinese government has made substantial investments in its expansion. Nevertheless, a theoretical gap remains in justifying whether such investments yield significant economic returns. Drawing on the theory of economic externalities, this study investigates the causal relationship between highway development and regional economic growth, and assesses whether highway construction leads to an acceleration in growth rates. Utilizing panel data from 14 Chinese cities spanning 2000 to 2014, the synthetic control method (SCM) is employed to evaluate the economic externalities of highway investment. The results indicate a positive impact on surrounding industries. Furthermore, a growth rate forecasting analysis based on Back-Propagation Neural Networks (BPNNs) is conducted using industrial enterprise data from 2005 to 2014. The growth rate in the treated city is 1.144%, which is close to the real number 1.117%, higher than the number for the weighted control group, which is 1.000%. The findings suggest that the growth rate of total industrial output improved significantly, confirming the existence of positive spillover effects. This not only enriches the empirical literature on transport infrastructure but also provides targeted enlightenment for the sustainable development of urban economy in terms of policy guidance. Full article
Show Figures

Figure 1

27 pages, 4682 KiB  
Article
DERIENet: A Deep Ensemble Learning Approach for High-Performance Detection of Jute Leaf Diseases
by Mst. Tanbin Yasmin Tanny, Tangina Sultana, Md. Emran Biswas, Chanchol Kumar Modok, Arjina Akter, Mohammad Shorif Uddin and Md. Delowar Hossain
Information 2025, 16(8), 638; https://doi.org/10.3390/info16080638 - 27 Jul 2025
Viewed by 218
Abstract
Jute, a vital lignocellulosic fiber crop with substantial industrial and ecological relevance, continues to suffer considerable yield and quality degradation due to pervasive foliar pathologies. Traditional diagnostic modalities reliant on manual field inspections are inherently constrained by subjectivity, diagnostic latency, and inadequate scalability [...] Read more.
Jute, a vital lignocellulosic fiber crop with substantial industrial and ecological relevance, continues to suffer considerable yield and quality degradation due to pervasive foliar pathologies. Traditional diagnostic modalities reliant on manual field inspections are inherently constrained by subjectivity, diagnostic latency, and inadequate scalability across geographically distributed agrarian systems. To transcend these limitations, we propose DERIENet, a robust and scalable classification approach within a deep ensemble learning framework. It is meticulously engineered by integrating three high-performing convolutional neural networks—ResNet50, InceptionV3, and EfficientNetB0—along with regularization, batch normalization, and dropout strategies, to accurately classify jute leaf diseases such as Cercospora Leaf Spot, Golden Mosaic Virus, and healthy leaves. A key methodological contribution is the design of a novel augmentation pipeline, termed Geometric Localized Occlusion and Adaptive Rescaling (GLOAR), which dynamically modulates photometric and geometric distortions based on image entropy and luminance to synthetically upscale a limited dataset (920 images) into a significantly enriched and diverse dataset of 7800 samples, thereby mitigating overfitting and enhancing domain generalizability. Empirical evaluation, utilizing a comprehensive set of performance metrics—accuracy, precision, recall, F1-score, confusion matrices, and ROC curves—demonstrates that DERIENet achieves a state-of-the-art classification accuracy of 99.89%, with macro-averaged and weighted average precision, recall, and F1-score uniformly at 99.89%, and an AUC of 1.0 across all disease categories. The reliability of the model is validated by the confusion matrix, which shows that 899 out of 900 test images were correctly identified and that there was only one misclassification. Comparative evaluations of the various ensemble baselines, such as DenseNet201, MobileNetV2, and VGG16, and individual base learners demonstrate that DERIENet performs noticeably superior to all baseline models. It provides a highly interpretable, deployment-ready, and computationally efficient architecture that is ideal for integrating into edge or mobile platforms to facilitate in situ, real-time disease diagnostics in precision agriculture. Full article
Show Figures

Figure 1

18 pages, 2783 KiB  
Article
Study of an SSA-BP Neural Network-Based Strength Prediction Model for Slag–Cement-Stabilized Soil
by Bei Zhang, Xingyu Tao, Han Zhang and Jun Yu
Materials 2025, 18(15), 3520; https://doi.org/10.3390/ma18153520 - 27 Jul 2025
Viewed by 408
Abstract
As an industrial waste, slag powder can be processed and incorporated into cement-based materials as an additive, significantly improving the engineering properties of cement–soil. The strength of slag–cement-stabilized soil is subject to nonlinear interactions among multiple factors, including cement content, slag powder dosage, [...] Read more.
As an industrial waste, slag powder can be processed and incorporated into cement-based materials as an additive, significantly improving the engineering properties of cement–soil. The strength of slag–cement-stabilized soil is subject to nonlinear interactions among multiple factors, including cement content, slag powder dosage, curing age, and moisture content, forming a complex influence mechanism. To achieve accurate strength prediction and mix proportion optimization for slag–cement-stabilized soil, this study prepared cement-stabilized soil specimens with different slag powder contents using typical sandy soil and clay from the Nantong region, and obtained sample data through unconfined compressive strength tests. A Back Propagation (BP) neural network prediction model was also established. Addressing the limitations of traditional BP neural networks in prediction accuracy caused by random initial weight thresholds and susceptibility to local optima, the sparrow search algorithm (SSA) was introduced to optimize initial network parameters, constructing an SSA-BP model that effectively enhances convergence speed and generalization capability. Research results demonstrated that the SSA-BP model reduced prediction error by 53.4% compared with the traditional BP model, showing superior prediction accuracy and effective characterization of multifactor nonlinear relationships. This study provides theoretical support and an efficient prediction tool for industrial waste recycling and environmentally friendly solidified soil engineering design. Full article
Show Figures

Figure 1

41 pages, 1344 KiB  
Article
Strengthening Smart Specialisation Strategies (S3) Through Network Analysis: Policy Insights from a Decade of Innovation Projects in Aragón
by David Rodríguez Ochoa, Nieves Arranz and Marta Fernandez de Arroyabe
Economies 2025, 13(8), 218; https://doi.org/10.3390/economies13080218 - 26 Jul 2025
Viewed by 294
Abstract
This paper applies a multi-level social network analysis to examine Aragón’s innovation ecosystem, focusing on a decade of competitive public projects (2014–2023) aligned with the region’s Smart Specialisation Strategy (S3) 2021–2027. By mapping and weighting the participation of regional entities across regional, national, [...] Read more.
This paper applies a multi-level social network analysis to examine Aragón’s innovation ecosystem, focusing on a decade of competitive public projects (2014–2023) aligned with the region’s Smart Specialisation Strategy (S3) 2021–2027. By mapping and weighting the participation of regional entities across regional, national, and European calls, the study uncovers how all types of local actors organise themselves around key specialisation areas. Moreover, a comparative benchmark is introduced by analysing more than 33,000 Horizon 2020 and Horizon Europe initiatives without Aragonese partners, revealing how to fill structural gaps and enrich the regional ecosystem through international collaboration. Results show strong funding concentration in four fields—Energy, Health, Agri-Food, and Advanced Technologies—while other historically strategic areas like Hydrogen and Water remain underrepresented. Although leading institutions (UNIZAR, CIRCE, ITA, AITIIP) play central roles in connecting academia and industry, direct collaboration among them is limited, pointing to missed synergies. Expanding previous SNA-based assessments, this study introduces a diagnostic tool to guide policy, proposing targeted actions such as challenge-driven calls, dedicated support programs, and cross-border consortia with top EU partners. Applied to two contrasting specialisation areas, the method offers sector-specific recommendations, helping policymakers align Aragón’s innovation capabilities with EU priorities and strengthen its position in both established and emerging domains. Full article
Show Figures

Figure 1

Back to TopTop