Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (452)

Search Parameters:
Keywords = local field reconstruction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 10137 KB  
Article
Urban-to-Rural Migration as an Influential Factor for Vernacular Village Revitalization: A Building-Scale Assessment of Migrants’ Spatial–Lifestyle Interventions on Traditional Values in Zhejiang, China
by Zhaoteng Jin and Kai Gong
Buildings 2025, 15(17), 3113; https://doi.org/10.3390/buildings15173113 (registering DOI) - 30 Aug 2025
Abstract
Urban-to-rural migration is reshaping vernacular villages through transformations in both architectural form and everyday life. This study focuses on three villages in Zhejiang Province, China, and their migrants from urban areas, investigating—through field surveys and interviews—how urban-to-rural migrants’ spatial and lifestyle interventions influence [...] Read more.
Urban-to-rural migration is reshaping vernacular villages through transformations in both architectural form and everyday life. This study focuses on three villages in Zhejiang Province, China, and their migrants from urban areas, investigating—through field surveys and interviews—how urban-to-rural migrants’ spatial and lifestyle interventions influence the preservation and transformation of traditional architecture and local cultural practices. Findings indicate that urban-to-rural migrants exhibit diverse spatial preferences and lifestyle patterns, leading to varied modes of building adaptation. Some prioritize modern styles and commercial functions, while others emphasize cultural continuity, community engagement, or individual expression. Most buildings undergo incremental modifications rather than complete reconstruction, reflecting a balance among regulatory constraints, financial considerations, and personal aspirations. Furthermore, some migrants retain traditional spatial hierarchies and layout logic in their architectural designs, thereby sustaining vernacular lifestyles such as intergenerational cohabitation and neighborhood interaction. These building practices also have demonstrative effects within the village, encouraging others to value local culture and spatial traditions. In contrast, other migrants, driven by modern aesthetics or commercial objectives, restructure or even disrupt traditional spatial models, resulting in the fragmentation and weakening of established value systems. These insights contribute to a deeper understanding of how urban-to-rural migration reshapes the spatial organization of traditional villages and can inform more flexible and context-sensitive rural planning practices. Full article
28 pages, 12093 KB  
Article
Static and Free-Boundary Vibration Analysis of Egg-Crate Honeycomb Core Sandwich Panels Using the VAM-Based Equivalent Model
by Ruihao Li, Hui Yuan, Zhenxuan Cai, Zhitong Liu, Yifeng Zhong and Yuxin Tang
Materials 2025, 18(17), 4014; https://doi.org/10.3390/ma18174014 - 27 Aug 2025
Viewed by 125
Abstract
This study proposes a novel egg-crate honeycomb core sandwich panel (SP-EHC) that combines the structural advantages of conventional lattice and grid configurations while mitigating their limitations in stability and mechanical performance. The design employs chamfered intersecting grid walls to create a semi-enclosed honeycomb [...] Read more.
This study proposes a novel egg-crate honeycomb core sandwich panel (SP-EHC) that combines the structural advantages of conventional lattice and grid configurations while mitigating their limitations in stability and mechanical performance. The design employs chamfered intersecting grid walls to create a semi-enclosed honeycomb architecture, enhancing out-of-plane stiffness and buckling resistance and enabling ventilation and drainage. To facilitate efficient and accurate structural analysis, a two-dimensional equivalent plate model (2D-EPM) is developed using the variational asymptotic method (VAM). This model significantly reduces the complexity of three-dimensional elasticity problems while preserving essential microstructural characteristics. A Reissner–Mindlin-type formulation is derived, enabling local field reconstruction for detailed stress and displacement evaluation. Model validation is conducted through experimental testing and three-dimensional finite element simulations. The 2D-EPM demonstrates high accuracy, with static analysis errors in load–displacement response within 10% and a maximum modal frequency error of 10.23% in dynamic analysis. The buckling and bending analyses, with or without initial deformation, show strong agreement with the 3D-FEM results, with deviations in the critical buckling load not exceeding 5.23%. Local field reconstruction achieves stress and displacement prediction errors below 2.7%, confirming the model’s fidelity at both global and local scales. Overall, the VAM-based 2D-EPM provides a robust and computationally efficient framework for the structural analysis and optimization of advanced sandwich panels. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 6925 KB  
Article
U2-LFOR: A Two-Stage U2 Network for Light-Field Occlusion Removal
by Mostafa Farouk Senussi, Mahmoud Abdalla, Mahmoud SalahEldin Kasem, Mohamed Mahmoud and Hyun-Soo Kang
Mathematics 2025, 13(17), 2748; https://doi.org/10.3390/math13172748 - 26 Aug 2025
Viewed by 300
Abstract
Light-field (LF) imaging transforms occlusion removal by using multiview data to reconstruct hidden regions, overcoming the limitations of single-view methods. However, this advanced capability often comes at the cost of increased computational complexity. To overcome this, we propose the U2-LFOR network, [...] Read more.
Light-field (LF) imaging transforms occlusion removal by using multiview data to reconstruct hidden regions, overcoming the limitations of single-view methods. However, this advanced capability often comes at the cost of increased computational complexity. To overcome this, we propose the U2-LFOR network, an end-to-end neural network designed to remove occlusions in LF images without compromising performance, addressing the inherent complexity of LF imaging while ensuring practical applicability. The architecture employs Residual Atrous Spatial Pyramid Pooling (ResASPP) at the feature extractor to expand the receptive field, capture localized multiscale features, and enable deep feature learning with efficient aggregation. A two-stage U2-Net structure enhances hierarchical feature learning while maintaining a compact design, ensuring accurate context recovery. A dedicated refinement module, using two cascaded residual blocks (ResBlock), restores fine details to the occluded regions. Experimental results demonstrate its competitive performance, achieving an average Peak Signal-to-Noise Ratio (PSNR) of 29.27 dB and Structural Similarity Index Measure (SSIM) of 0.875, which are two widely used metrics for evaluating reconstruction fidelity and perceptual quality, on both synthetic and real-world LF datasets, confirming its effectiveness in accurate occlusion removal. Full article
Show Figures

Figure 1

22 pages, 6186 KB  
Article
Introducing Fast Fourier Convolutions into Anomaly Detection
by Zhen Zhao and Jiali Zhou
Sensors 2025, 25(16), 5196; https://doi.org/10.3390/s25165196 - 21 Aug 2025
Viewed by 547
Abstract
Anomaly detection is inherently challenging, as anomalies typically emerge only at test time. While reconstruction-based methods are popular, their reliance on CNN backbones with local receptive fields limits discrimination and precise localization. We propose FFC-AD, a reconstruction framework using Fourier Feature Convolutions (FFCs) [...] Read more.
Anomaly detection is inherently challenging, as anomalies typically emerge only at test time. While reconstruction-based methods are popular, their reliance on CNN backbones with local receptive fields limits discrimination and precise localization. We propose FFC-AD, a reconstruction framework using Fourier Feature Convolutions (FFCs) to capture global information early, and we introduce Hidden Space Anomaly Simulation (HSAS), a latent-space regularization strategy that mitigates overgeneralization. Experiments on MVTec AD and VisA demonstrate that FFC-AD significantly outperforms state-of-the-art methods in both detection and segmentation accuracy. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

23 pages, 6924 KB  
Article
A Dynamic Multi-Scale Feature Fusion Network for Enhanced SAR Ship Detection
by Rui Cao and Jianghua Sui
Sensors 2025, 25(16), 5194; https://doi.org/10.3390/s25165194 - 21 Aug 2025
Viewed by 544
Abstract
This study aims to develop an enhanced YOLO algorithm to improve the ship detection performance of synthetic aperture radar (SAR) in complex marine environments. Current SAR ship detection methods face numerous challenges in complex sea conditions, including environmental interference, false detection, and multi-scale [...] Read more.
This study aims to develop an enhanced YOLO algorithm to improve the ship detection performance of synthetic aperture radar (SAR) in complex marine environments. Current SAR ship detection methods face numerous challenges in complex sea conditions, including environmental interference, false detection, and multi-scale changes in detection targets. To address these issues, this study adopts a technical solution that combines multi-level feature fusion with a dynamic detection mechanism. First, a cross-stage partial dynamic channel transformer module (CSP_DTB) was designed, which combines the transformer architecture with a convolutional neural network to replace the last two C3k2 layers in the YOLOv11n main network, thereby enhancing the model’s feature extraction capabilities. Second, a general dynamic feature pyramid network (RepGFPN) was introduced to reconstruct the neck network architecture, enabling more efficient multi-scale feature fusion and information propagation. Additionally, a lightweight dynamic decoupled dual-alignment head (DYDDH) was constructed to enhance the collaborative performance of localization and classification tasks through task-specific feature decoupling. Experimental results show that the proposed DRGD-YOLO algorithm achieves significant performance improvements. On the HRSID dataset, the algorithm achieves an average precision (mAP50) of 93.1% at an IoU threshold of 0.50 and an mAP50–95 of 69.2% over the IoU threshold range of 0.50–0.95. Compared to the baseline YOLOv11n algorithm, the proposed method improves mAP50 and mAP50–95 by 3.3% and 4.6%, respectively. The proposed DRGD-YOLO algorithm not only significantly improves the accuracy and robustness of synthetic aperture radar (SAR) ship detection but also demonstrates broad application potential in fields such as maritime surveillance, fisheries management, and maritime safety monitoring, providing technical support for the development of intelligent marine monitoring technology. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

22 pages, 1785 KB  
Article
LA-EAD: Simple and Effective Methods for Improving Logical Anomaly Detection Capability
by Zhixing Li, Zan Yang, Lijie Zhang, Lie Yang and Jiansheng Liu
Sensors 2025, 25(16), 5016; https://doi.org/10.3390/s25165016 - 13 Aug 2025
Viewed by 390
Abstract
In the field of intelligent manufacturing, image anomaly detection plays a pivotal role in automated product quality inspection. Most existing anomaly detection methods are adept at capturing local features of images, achieving high detection accuracy for structural anomalies such as cracks and scratches. [...] Read more.
In the field of intelligent manufacturing, image anomaly detection plays a pivotal role in automated product quality inspection. Most existing anomaly detection methods are adept at capturing local features of images, achieving high detection accuracy for structural anomalies such as cracks and scratches. However, logical anomalies typically appear normal within local regions of an image and are difficult to represent well by the anomaly score map, requiring the model to possess the capability to extract global context features. To address this challenge while balancing the detection of both structural and logical anomalies, this paper proposes a lightweight anomaly detection framework built upon EfficientAD. This framework integrates the reconstruction difference constraint (RDC) and a logical anomaly detection module. Specifically, the original EfficientAD relies on the coarse-grained reconstruction difference between the student and the autoencoder to detect logical anomalies; but, false detection may be caused by the local fine-grained reconstruction difference between the two models. RDC can promote the consistency of the fine-grained reconstruction between the student and the autoencoder, thereby effectively alleviating this problem. Furthermore, in order to detect anomalies that are difficult to represent by feature maps more effectively, the proposed logical anomaly detection module extracts and aggregates the context features of the image, and combines the feature-based method to calculate the overall anomaly score. Extensive experiments demonstrate our method’s significant improvement in logical anomaly detection, achieving 94.2 AU-ROC on MVTec LOCO, while maintaining strong structural anomaly detection performance at 98.4 AU-ROC on MVTec AD. Compared to the baseline, like EfficientAD, our framework achieves a state-of-the-art balance between both anomaly types. Full article
Show Figures

Figure 1

37 pages, 989 KB  
Review
In Vitro Skin Models for Skin Sensitisation: Challenges and Future Directions
by Ignacio Losada-Fernández, Ane San Martín, Sergio Moreno-Nombela, Leticia Suárez-Cabrera, Leticia Valencia, Paloma Pérez-Aciego and Diego Velasco
Cosmetics 2025, 12(4), 173; https://doi.org/10.3390/cosmetics12040173 - 12 Aug 2025
Viewed by 776
Abstract
Allergic contact dermatitis is one of the most common adverse events associated with cosmetic use. Accordingly, assessment of skin sensitisation hazard is required for safety evaluation of cosmetic ingredients. The transition to the use of alternative methods for testing has made skin sensitisation [...] Read more.
Allergic contact dermatitis is one of the most common adverse events associated with cosmetic use. Accordingly, assessment of skin sensitisation hazard is required for safety evaluation of cosmetic ingredients. The transition to the use of alternative methods for testing has made skin sensitisation an intense field in the past decades. The first alternative methods have been in place for almost a decade, but none as stand-alone replacement for the reference murine Local Lymph Node Assay (LLNA). While strategies to combine data from several methods are being evaluated and refined, individual methods face technical limitations. These include issues related to their applicability to highly lipophilic substances and the lack of reliable potency estimation, which remain important obstacles to their widespread adoption as replacement for animal methods. The unique characteristics of in vitro skin models represented an attractive alternative, potentially overcoming these limitations and offering a more physiologically relevant environment for the assessment of the response in keratinocytes and dendritic cells. In this review, we recapitulate how reconstructed human skin models have been used as platforms for skin sensitisation testing, including the latest approaches using organ-on-a-chip and microfluidic technologies, aimed to develop next-generation organotypic skin models with increased complexity and monitoring capabilities. Full article
Show Figures

Figure 1

17 pages, 7341 KB  
Article
Three-Dimensional Environment Mapping with a Rotary-Driven Lidar in Real Time
by Baixin Tong, Fangdi Jiang, Bo Lu, Zhiqiang Gu, Yan Li and Shifeng Wang
Sensors 2025, 25(15), 4870; https://doi.org/10.3390/s25154870 - 7 Aug 2025
Viewed by 687
Abstract
Three-dimensional environment reconstruction refers to the creation of mathematical models of three-dimensional objects suitable for computer representation and processing. This paper proposes a novel 3D environment reconstruction approach that addresses the field-of-view limitations commonly faced by LiDAR-based systems. A rotary-driven LiDAR mechanism is [...] Read more.
Three-dimensional environment reconstruction refers to the creation of mathematical models of three-dimensional objects suitable for computer representation and processing. This paper proposes a novel 3D environment reconstruction approach that addresses the field-of-view limitations commonly faced by LiDAR-based systems. A rotary-driven LiDAR mechanism is designed to enable uniform and seamless full-field-of-view scanning, thereby overcoming blind spots in traditional setups. To complement the hardware, a multi-sensor fusion framework—LV-SLAM (LiDAR-Visual Simultaneous Localization and Mapping)—is introduced. The framework consists of two key modules: multi-threaded feature registration and a two-phase loop closure detection mechanism, both designed to enhance the system’s accuracy and robustness. Extensive experiments on the KITTI benchmark demonstrate that LV-SLAM outperforms state-of-the-art methods including LOAM, LeGO-LOAM, and FAST-LIO2. Our method reduces the average absolute trajectory error (ATE) from 6.90 m (LOAM) to 2.48 m, and achieves lower relative pose error (RPE), indicating improved global consistency and reduced drift. We further validate the system in real-world indoor and outdoor environments. Compared with fixed-angle scans, the rotary LiDAR mechanism produces more complete reconstructions with fewer occlusions. Geometric accuracy evaluation shows that the root mean square error between reconstructed and actual building dimensions remains below 5 cm. The proposed system offers a robust and accurate solution for high-fidelity 3D reconstruction, particularly suitable for GNSS-denied and structurally complex environments. Full article
Show Figures

Figure 1

17 pages, 1455 KB  
Article
Enhanced Graph Autoencoder for Graph Anomaly Detection Using Subgraph Information
by Chi Zhang and Jin-Woo Jung
Appl. Sci. 2025, 15(15), 8691; https://doi.org/10.3390/app15158691 - 6 Aug 2025
Viewed by 487
Abstract
Graph anomaly detection aims at identifying rare, unusual entities in attributed networks with respect to their patterns or structures that deviate significantly from the majority within a graph. Over the years, extensive efforts in this field have been dedicated to the powerful capability [...] Read more.
Graph anomaly detection aims at identifying rare, unusual entities in attributed networks with respect to their patterns or structures that deviate significantly from the majority within a graph. Over the years, extensive efforts in this field have been dedicated to the powerful capability of attributed networks to model real-world systems. Given the scarcity of labeled anomalies, current research primarily emphasizes model design via unsupervised learning. Graph autoencoders have been widely utilized for such purposes, leveraging the outstanding capabilities of Graph Neural Networks to model graph structured data. However, most existing graph autoencoder-based anomaly detectors do not exploit the nodes’ local subgraph information, limiting their ability to comprehensively understand the network for better representation learning. Moreover, these methods place greater emphasis on the attribute reconstruction process while neglecting the structure reconstruction aspect. This paper proposes an enhanced graph autoencoder framework for graph anomaly detection tasks that incorporates a subgraph extraction and aggregation preprocessing stage to utilize the nodes’ local topological information for enhanced embedding generation and to induce an additional node–subgraph view through model learning. A graph structure learning-based decoder is introduced as the structure decoder for better relationship learning. Finally, during the anomaly scoring stage, a node neighborhood selection technique is applied to enhance the detection performance. The effectiveness of the proposed framework is demonstrated through comprehensive experiments conducted on six commonly used real-world datasets. Full article
(This article belongs to the Special Issue Intelligent Computing for Sustainable Smart Cities)
Show Figures

Figure 1

24 pages, 1508 KB  
Article
Genomic Prediction of Adaptation in Common Bean (Phaseolus vulgaris L.) × Tepary Bean (P. acutifolius A. Gray) Hybrids
by Felipe López-Hernández, Diego F. Villanueva-Mejía, Adriana Patricia Tofiño-Rivera and Andrés J. Cortés
Int. J. Mol. Sci. 2025, 26(15), 7370; https://doi.org/10.3390/ijms26157370 - 30 Jul 2025
Cited by 1 | Viewed by 500
Abstract
Climate change is jeopardizing global food security, with at least 713 million people facing hunger. To face this challenge, legumes as common beans could offer a nature-based solution, sourcing nutrients and dietary fiber, especially for rural communities in Latin America and Africa. However, [...] Read more.
Climate change is jeopardizing global food security, with at least 713 million people facing hunger. To face this challenge, legumes as common beans could offer a nature-based solution, sourcing nutrients and dietary fiber, especially for rural communities in Latin America and Africa. However, since common beans are generally heat and drought susceptible, it is imperative to speed up their molecular introgressive adaptive breeding so that they can be cultivated in regions affected by extreme weather. Therefore, this study aimed to couple an advanced panel of common bean (Phaseolus vulgaris L.) × tolerant Tepary bean (P. acutifolius A. Gray) interspecific lines with Bayesian regression algorithms to forecast adaptation to the humid and dry sub-regions at the Caribbean coast of Colombia, where the common bean typically exhibits maladaptation to extreme heat waves. A total of 87 advanced lines with hybrid ancestries were successfully bred, surpassing the interspecific incompatibilities. This hybrid panel was genotyped by sequencing (GBS), leading to the discovery of 15,645 single-nucleotide polymorphism (SNP) markers. Three yield components (yield per plant, and number of seeds and pods) and two biomass variables (vegetative and seed biomass) were recorded for each genotype and inputted in several Bayesian regression models to identify the top genotypes with the best genetic breeding values across three localities on the Colombian coast. We comparatively analyzed several regression approaches, and the model with the best performance for all traits and localities was BayesC. Also, we compared the utilization of all markers and only those determined as associated by a priori genome-wide association studies (GWAS) models. Better prediction ability with the complete SNP set was indicative of missing heritability as part of GWAS reconstructions. Furthermore, optimal SNP sets per trait and locality were determined as per the top 500 most explicative markers according to their β regression effects. These 500 SNPs, on average, overlapped in 5.24% across localities, which reinforced the locality-dependent nature of polygenic adaptation. Finally, we retrieved the genomic estimated breeding values (GEBVs) and selected the top 10 genotypes for each trait and locality as part of a recommendation scheme targeting narrow adaption in the Caribbean. After validation in field conditions and for screening stability, candidate genotypes and SNPs may be used in further introgressive breeding cycles for adaptation. Full article
(This article belongs to the Special Issue Plant Breeding and Genetics: New Findings and Perspectives)
Show Figures

Figure 1

14 pages, 1882 KB  
Article
Carbon-Negative Construction Material Based on Rice Production Residues
by Jüri Liiv, Catherine Rwamba Githuku, Marclus Mwai, Hugo Mändar, Peeter Ritslaid, Merrit Shanskiy and Ergo Rikmann
Materials 2025, 18(15), 3534; https://doi.org/10.3390/ma18153534 - 28 Jul 2025
Viewed by 459
Abstract
This study presents a cost-effective, carbon-negative construction material for affordable housing, developed entirely from locally available agricultural wastes: rice husk ash, wood ash, and rice straw—materials often problematic to dispose of in many African regions. Rice husk ash provides high amorphous silica, acting [...] Read more.
This study presents a cost-effective, carbon-negative construction material for affordable housing, developed entirely from locally available agricultural wastes: rice husk ash, wood ash, and rice straw—materials often problematic to dispose of in many African regions. Rice husk ash provides high amorphous silica, acting as a strong pozzolanic agent. Wood ash contributes calcium oxide and alkalis to serve as a reactive binder, while rice straw functions as a lightweight organic filler, enhancing thermal insulation and indoor climate comfort. These materials undergo natural pozzolanic reactions with water, eliminating the need for Portland cement—a major global source of anthropogenic CO2 emissions (~900 kg CO2/ton cement). This process is inherently carbon-negative, not only avoiding emissions from cement production but also capturing atmospheric CO2 during lime carbonation in the hardening phase. Field trials in Kenya confirmed the composite’s sufficient structural strength for low-cost housing, with added benefits including termite resistance and suitability for unskilled laborers. In a collaboration between the University of Tartu and Kenyatta University, a semi-automatic mixing and casting system was developed, enabling fast, low-labor construction of full-scale houses. This innovation aligns with Kenya’s Big Four development agenda and supports sustainable rural development, post-disaster reconstruction, and climate mitigation through scalable, eco-friendly building solutions. Full article
Show Figures

Figure 1

17 pages, 6870 KB  
Article
Edge- and Color–Texture-Aware Bag-of-Local-Features Model for Accurate and Interpretable Skin Lesion Diagnosis
by Dichao Liu and Kenji Suzuki
Diagnostics 2025, 15(15), 1883; https://doi.org/10.3390/diagnostics15151883 - 27 Jul 2025
Viewed by 511
Abstract
Background/Objectives: Deep models have achieved remarkable progress in the diagnosis of skin lesions but face two significant drawbacks. First, they cannot effectively explain the basis of their predictions. Although attention visualization tools like Grad-CAM can create heatmaps using deep features, these features [...] Read more.
Background/Objectives: Deep models have achieved remarkable progress in the diagnosis of skin lesions but face two significant drawbacks. First, they cannot effectively explain the basis of their predictions. Although attention visualization tools like Grad-CAM can create heatmaps using deep features, these features often have large receptive fields, resulting in poor spatial alignment with the input image. Second, the design of most deep models neglects interpretable traditional visual features inspired by clinical experience, such as color–texture and edge features. This study aims to propose a novel approach integrating deep learning with traditional visual features to handle these limitations. Methods: We introduce the edge- and color–texture-aware bag-of-local-features model (ECT-BoFM), which limits the receptive field of deep features to a small size and incorporates edge and color–texture information from traditional features. A non-rigid reconstruction strategy ensures that traditional features enhance rather than constrain the model’s performance. Results: Experiments on the ISIC 2018 and 2019 datasets demonstrated that ECT-BoFM yields precise heatmaps and achieves high diagnostic performance, outperforming state-of-the-art methods. Furthermore, training models using only a small number of the most predictive patches identified by ECT-BoFM achieved diagnostic performance comparable to that obtained using full images, demonstrating its efficiency in exploring key clues. Conclusions: ECT-BoFM successfully combines deep learning and traditional visual features, addressing the interpretability and diagnostic accuracy challenges of existing methods. ECT-BoFM provides an interpretable and accurate framework for skin lesion diagnosis, advancing the integration of AI in dermatological research and clinical applications. Full article
Show Figures

Figure 1

27 pages, 30210 KB  
Article
Research on a Rapid Three-Dimensional Compressor Flow Field Prediction Method Integrating U-Net and Physics-Informed Neural Networks
by Chen Wang and Hongbing Ma
Mathematics 2025, 13(15), 2396; https://doi.org/10.3390/math13152396 - 25 Jul 2025
Viewed by 267
Abstract
This paper presents a neural network model, PINN-AeroFlow-U, for reconstructing full-field aerodynamic quantities around three-dimensional compressor blades, including regions near the wall. This model is based on structured CFD training data and physics-informed loss functions and is proposed for direct 3D compressor flow [...] Read more.
This paper presents a neural network model, PINN-AeroFlow-U, for reconstructing full-field aerodynamic quantities around three-dimensional compressor blades, including regions near the wall. This model is based on structured CFD training data and physics-informed loss functions and is proposed for direct 3D compressor flow prediction. It maps flow data from the physical domain to a uniform computational domain and employs a U-Net-based neural network capable of capturing the sharp local transitions induced by fluid acceleration near the blade leading edge, as well as learning flow features associated with internal boundaries (e.g., the wall boundary). The inputs to PINN-AeroFlow-U are the flow-field coordinate data from high-fidelity multi-geometry blade solutions, the 3D blade geometry, and the first-order metric coefficients obtained via mesh transformation. Its outputs include the pressure field, temperature field, and velocity vector field within the blade passage. To enhance physical interpretability, the network’s loss function incorporates both the Euler equations and gradient constraints. PINN-AeroFlow-U achieves prediction errors of 1.063% for the pressure field and 2.02% for the velocity field, demonstrating high accuracy. Full article
Show Figures

Figure 1

21 pages, 94814 KB  
Article
MaizeStar-YOLO: Precise Detection and Localization of Seedling-Stage Maize
by Taotao Chu, Hainie Zha, Yuanzhi Wang, Zhaosheng Yao, Xingwang Wang, Chenliang Wu and Jianfeng Liao
Agronomy 2025, 15(8), 1788; https://doi.org/10.3390/agronomy15081788 - 25 Jul 2025
Viewed by 500
Abstract
Efficient detection and localization of maize seedlings in complex field environments is essential for accurate plant segmentation and subsequent three-dimensional morphological reconstruction. To overcome the limited accuracy and high computational cost of existing models, we propose an enhanced architecture named MaizeStar-YOLO. The redesigned [...] Read more.
Efficient detection and localization of maize seedlings in complex field environments is essential for accurate plant segmentation and subsequent three-dimensional morphological reconstruction. To overcome the limited accuracy and high computational cost of existing models, we propose an enhanced architecture named MaizeStar-YOLO. The redesigned backbone integrates a novel C2F_StarsBlock to improve multi-scale feature fusion, while a PKIStage module is introduced to enhance feature representation under challenging field conditions. Evaluations on a diverse dataset of maize seedlings show that our model achieves a mean average precision (mAP) of 92.8%, surpassing the YOLOv8 baseline by 3.6 percentage points, while reducing computational complexity to 3.0 GFLOPs, representing a 63% decrease. This efficient and high-performing framework enables precise plant–background segmentation and robust three-dimensional feature extraction for morphological analysis. Additionally, it supports downstream applications such as pest and disease diagnosis and targeted agricultural interventions. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

25 pages, 6911 KB  
Article
Image Inpainting Algorithm Based on Structure-Guided Generative Adversarial Network
by Li Zhao, Tongyang Zhu, Chuang Wang, Feng Tian and Hongge Yao
Mathematics 2025, 13(15), 2370; https://doi.org/10.3390/math13152370 - 24 Jul 2025
Viewed by 649
Abstract
To address the challenges of image inpainting in scenarios with extensive or irregular missing regions—particularly detail oversmoothing, structural ambiguity, and textural incoherence—this paper proposes an Image Structure-Guided (ISG) framework that hierarchically integrates structural priors with semantic-aware texture synthesis. The proposed methodology advances a [...] Read more.
To address the challenges of image inpainting in scenarios with extensive or irregular missing regions—particularly detail oversmoothing, structural ambiguity, and textural incoherence—this paper proposes an Image Structure-Guided (ISG) framework that hierarchically integrates structural priors with semantic-aware texture synthesis. The proposed methodology advances a two-stage restoration paradigm: (1) Structural Prior Extraction, where adaptive edge detection algorithms identify residual contours in corrupted regions, and a transformer-enhanced network reconstructs globally consistent structural maps through contextual feature propagation; (2) Structure-Constrained Texture Synthesis, wherein a multi-scale generator with hybrid dilated convolutions and channel attention mechanisms iteratively refines high-fidelity textures under explicit structural guidance. The framework introduces three innovations: (1) a hierarchical feature fusion architecture that synergizes multi-scale receptive fields with spatial-channel attention to preserve long-range dependencies and local details simultaneously; (2) spectral-normalized Markovian discriminator with gradient-penalty regularization, enabling adversarial training stability while enforcing patch-level structural consistency; and (3) dual-branch loss formulation combining perceptual similarity metrics with edge-aware constraints to align synthesized content with both semantic coherence and geometric fidelity. Our experiments on the two benchmark datasets (Places2 and CelebA) have demonstrated that our framework achieves more unified textures and structures, bringing the restored images closer to their original semantic content. Full article
Show Figures

Figure 1

Back to TopTop