Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (157)

Search Parameters:
Keywords = load-bearing behaviour

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7618 KiB  
Article
A Comparative Analysis of Axial Bearing Behaviour in Steel Pipe Piles and PHC Piles for Port Engineering
by Runze Zhang, Yizhi Liu, Lei Wang, Weiming Gong and Zhihui Wan
Buildings 2025, 15(15), 2738; https://doi.org/10.3390/buildings15152738 - 3 Aug 2025
Abstract
This paper addresses the critical challenge of selecting suitable pile foundations in port engineering by systematically investigating the axial bearing behavior of large-diameter steel pipe piles and prestressed high-strength concrete (PHC) piles. The study integrates both numerical simulations and field tests within the [...] Read more.
This paper addresses the critical challenge of selecting suitable pile foundations in port engineering by systematically investigating the axial bearing behavior of large-diameter steel pipe piles and prestressed high-strength concrete (PHC) piles. The study integrates both numerical simulations and field tests within the context of the Yancheng Dafeng Port Security Facilities Project. A self-balanced static load numerical model for PHC piles was developed using Plaxis 3D, enabling the simulation of load-displacement responses, axial force transfer, and side resistance distribution. The accuracy of the model was verified through a comparison with field static load test data. With the verified model parameters, the internal force distribution of steel pipe piles was analysed by modifying material properties and adjusting boundary conditions. A comparative analysis of the two pile types was conducted under identical working conditions. The results reveal that the ultimate bearing capacities of the 1# steel pipe pile and the 2# PHC pile are 6734 kN and 6788 kN, respectively. Despite the PHC pile having a 20% larger diameter, its ultimate bearing capacity is comparable to that of the steel pipe pile, suggesting a more efficient utilisation of material strength in the latter. Further numerical simulations indicate that, under the same working conditions, the ultimate bearing capacity of the steel pipe pile exceeds that of the PHC pile by 18.43%. Additionally, the axial force distribution along the steel pipe pile shaft is more uniform, and side resistance is mobilised more effectively. The reduction in side resistance caused by construction disturbances, combined with the slenderness ratio (L/D = 41.7) of the PHC pile, results in 33.87% of the pile’s total bearing capacity being attributed to tip resistance. The findings of this study provide crucial insights into the selection of optimal pile types for terminal foundations, considering factors such as bearing capacity, environmental conditions, and economic viability. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

30 pages, 4492 KiB  
Article
Hard Preloaded Duplex Ball Bearing Dynamic Model for Space Applications
by Pablo Riera, Luis Maria Macareno, Igor Fernandez de Bustos and Josu Aguirrebeitia
Machines 2025, 13(7), 581; https://doi.org/10.3390/machines13070581 - 4 Jul 2025
Viewed by 328
Abstract
Duplex ball bearings are common components in space satellite mechanisms, and their behaviour impacts the overall performance and reliability of these systems. During rocket launches, these bearings suffer high vibrational loads, making their dynamic response essential for their survival. To predict the dynamic [...] Read more.
Duplex ball bearings are common components in space satellite mechanisms, and their behaviour impacts the overall performance and reliability of these systems. During rocket launches, these bearings suffer high vibrational loads, making their dynamic response essential for their survival. To predict the dynamic behaviour under vibration, simulations and experimental tests are performed. However, published models for space applications fail to capture the variations observed in test responses. This study presents a multi-degree-of-freedom nonlinear multibody model of a hard-preloaded duplex space ball bearing, particularized for this work to the case in which the outer ring is attached to a shaker and the inner ring to a test dummy mass. The model incorporates the Hunt and Crossley contact damping formulation and employs quaternions to accurately represent rotational dynamics. The simulated model response is validated against previously published axial test data, and its response under step, sine, and random excitations is analysed both in the case of radial and axial excitation. The results reveal key insights into frequency evolution, stress distribution, gapping phenomena, and response amplification, providing a deeper understanding of the dynamic performance of space-grade ball bearings. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

21 pages, 4884 KiB  
Article
Sandwich Panels Subjected to Point Loads: Design Approach Using Effective Widths in Elastic Range
by Niklas Ardelmann and Bernd Naujoks
Materials 2025, 18(12), 2910; https://doi.org/10.3390/ma18122910 - 19 Jun 2025
Viewed by 287
Abstract
Sandwich panels have established themselves as self-supporting and isolating construction elements for room closures in hall construction. As a result of subsequently installed photovoltaic (PV) systems or cladding, sandwich panels are subjected to point loads at the connection points to the substructure of [...] Read more.
Sandwich panels have established themselves as self-supporting and isolating construction elements for room closures in hall construction. As a result of subsequently installed photovoltaic (PV) systems or cladding, sandwich panels are subjected to point loads at the connection points to the substructure of additional systems. In the case of pressure-suction changes from wind, a cyclical local load also occurs. Therefore, for sandwich panels—which are designed and dimensioned for uniform surface loads (dead weight, wind, snow, temperature constraints)—the question must be answered as to how this local load introduction affects the load-bearing behaviour and stress distribution in the sandwich panel. To quantify any stress concentrations across the width of the panel, the method of effective widths is used here, based on stress distributions in the elastic range determined through component tests and numerical models. The results of these test series, along with the resulting design concept based on effective widths in the elastic range, as well as the failure under the ultimate load condition, are documented in this paper. Full article
(This article belongs to the Special Issue Experimental and Numerical Analysis of Sandwich Structures)
Show Figures

Figure 1

27 pages, 5468 KiB  
Article
Numerical Modelling and Parametric Study of Steel-Concrete Composite Slim-Floor Flexural Beam Using Dowel Shear Connectors
by Xinxin Xu, Xianghe Dai and Dennis Lam
Infrastructures 2025, 10(6), 146; https://doi.org/10.3390/infrastructures10060146 - 13 Jun 2025
Viewed by 686
Abstract
The use of steel-concrete composite slim-floor beams with dowel shear connectors is uncommon, and the design rules provided in Eurocode 4 for composite construction are not directly applicable to the slim-floor composite beam. In this paper, a finite element model is developed, followed [...] Read more.
The use of steel-concrete composite slim-floor beams with dowel shear connectors is uncommon, and the design rules provided in Eurocode 4 for composite construction are not directly applicable to the slim-floor composite beam. In this paper, a finite element model is developed, followed by a parametric study that examines the effects of various shear connector parameters on the structural behaviour of composite beams. The comparison and analysis show that the load-bearing capacity increases with a bigger concrete dowel, as long as the shear connection degree is less than 100% and the dowel diameter is not greater than 80 mm; the load-bearing capacity goes up about 5–10% for every 10 N/mm2 increase in concrete strength and about 2% for every 4 mm increase in rebar diameter in the dowel; also, the dowel central spacing has a big impact on the structural behaviour. The composite beams showed great flexibility, with the end slip at the highest load being more than 6 mm and the maximum load declining by less than 15% when the midspan deflection reached L/30. The proposed calculation method for bending moment resistance is more than 90% accurate for composite beams that have a shear connection degree greater than 40%. The findings from this research provided more profound insights into the behaviour of this type of slim-floor composite beam. Full article
(This article belongs to the Section Infrastructures and Structural Engineering)
Show Figures

Figure 1

26 pages, 3697 KiB  
Review
Chloride-Induced Corrosion Effects on the Structural Performance of Concrete with Rebar and Fibres: A Review
by Petar Bajić, Bruno Leporace-Guimil, Carmen Andrade, Nikola Tošić and Albert de la Fuente
Appl. Sci. 2025, 15(12), 6457; https://doi.org/10.3390/app15126457 - 8 Jun 2025
Viewed by 913
Abstract
Chloride-induced corrosion is a major contributor in the degradation of standardised steel-based products (e.g., rebars and fibres) commonly used for reinforcing concrete structures. Since cracked reinforced concrete elements are determined to be more susceptible to corrosion on the one hand, and fibres are [...] Read more.
Chloride-induced corrosion is a major contributor in the degradation of standardised steel-based products (e.g., rebars and fibres) commonly used for reinforcing concrete structures. Since cracked reinforced concrete elements are determined to be more susceptible to corrosion on the one hand, and fibres are effective in arresting crack growth and improving the post-cracking mechanical behaviour on the other hand, the use of fibres emerges as a promising strategy to enhance durability. This review is focused on the degradation of the load-bearing capacity, caused by chloride corrosion, in concrete elements reinforced with fibres and conventional rebar. Based on the recorded values of ultimate loads and the corresponding deflections in the reviewed studies, a lower decrease in the load-bearing capacity and less severe degradation of ductility were observed in elements where fibres (either steel or macro-synthetic) were used in combination with rebar compared with elements where only rebar was used. Furthermore, the recorded values of corrosion potential (Ecorr), corrosion current density (icorr) and gravimetric measurements indicated lower corrosion damage, delayed corrosion initiation and a prolonged propagation phase of corrosion. However, due to many differences in the methodology among the reviewed studies, the optimal fibre type or quantity cannot be identified unless more studies are performed. Full article
(This article belongs to the Special Issue Fiber-Reinforced Concrete: Recent Progress and Future Directions)
Show Figures

Figure 1

17 pages, 2770 KiB  
Article
Shear Strength of Sand: Integrated Analysis of Initial Porosity and Stress Effects
by Krzysztof Żarkiewicz and Roman Bednarek
Appl. Sci. 2025, 15(11), 5902; https://doi.org/10.3390/app15115902 - 23 May 2025
Viewed by 668
Abstract
This paper investigates the effects of initial porosity index and load range on the shear strength of a sand sample using direct shear tests performed with a standard direct shear apparatus under varying densities, from loose to compacted. This study focuses on the [...] Read more.
This paper investigates the effects of initial porosity index and load range on the shear strength of a sand sample using direct shear tests performed with a standard direct shear apparatus under varying densities, from loose to compacted. This study focuses on the distinction between the peak (ϕp) and critical (ϕcv) internal friction angles and their variation with stress level and initial porosity. Results show that the internal friction angle of sand depends on the stress state and initial porosity, reaching a peak value at maximum shear stresses and a critical value at constant sample volume. Higher initial compaction increases the peak friction angle, while higher effective stresses reduce the critical porosity index. The critical state line (CSL) defines the contraction and dilation behaviour of soils, with the critical porosity index varying with average soil stress. The analysis confirmed Bolton’s empirical relationship, linking the peak friction angle with the critical state angle and the dilation angle. This study emphasizes the importance of accurately defining the internal friction angle and considering the nonlinear relationship between shear strength and normal stresses. These findings are significant for geotechnical engineering, particularly in foundation bearing capacity, earth pressure, and slope stability analysis. Full article
Show Figures

Figure 1

16 pages, 2301 KiB  
Article
Research on Numerical Calculation Methods for Modelling the Dynamics of Diesel Engine Crankshaft System Substructures
by Zhongxu Tian, Zengbin Sun, Yun Zhou and You Zhou
Appl. Sci. 2025, 15(10), 5551; https://doi.org/10.3390/app15105551 - 15 May 2025
Viewed by 388
Abstract
The complex structure of a diesel engine crankshaft, combined with diverse and dynamically changing loads, leads to the interaction of torsional, bending, and longitudinal vibrations. These complexities present challenges in achieving comprehensive and efficient dynamic modelling and analysis. This paper presents a dynamic [...] Read more.
The complex structure of a diesel engine crankshaft, combined with diverse and dynamically changing loads, leads to the interaction of torsional, bending, and longitudinal vibrations. These complexities present challenges in achieving comprehensive and efficient dynamic modelling and analysis. This paper presents a dynamic modelling and numerical computation method for the crankshaft system based on the substructure dynamic model to address this. Specifically, the primary degrees of freedom (DOFs) of the crankshaft system are transformed through coupling between master and slave node DOFs and DOF condensation. A numerical method for free vibration analysis is developed using Cholesky decomposition and Jacobi iteration, while a dynamic response is computed based on the Newmark-β implicit integration algorithm. Additionally, an adaptive step-size control strategy based on the energy gradient criterion was proposed by introducing a dynamic relaxation factor, significantly enhancing computational efficiency. The study further examines the influence of primary DOF selection, coupling region size between master and finite element nodes, bearing support stiffness, and integration step size on the dynamic response. Numerical case studies demonstrate that the substructure model, with fewer DOFs, accurately characterizes the dynamic behaviour of the crankshaft by appropriately selecting primary DOFs and computational parameters, thereby enabling efficient dynamic analysis. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

23 pages, 7096 KiB  
Article
Structural Behaviour of Concrete Deep Beams Reinforced with Aluminium Alloy Bars
by Kagan Sogut
Appl. Sci. 2025, 15(10), 5453; https://doi.org/10.3390/app15105453 - 13 May 2025
Cited by 2 | Viewed by 408
Abstract
Aluminium alloy (AA) bars have emerged in structural engineering applications mainly to reduce deterioration caused by corrosion. However, research on AA-reinforced concrete (RC) beams has been limited, despite RC beams reinforced with AA bars providing a study area with great potential. Therefore, this [...] Read more.
Aluminium alloy (AA) bars have emerged in structural engineering applications mainly to reduce deterioration caused by corrosion. However, research on AA-reinforced concrete (RC) beams has been limited, despite RC beams reinforced with AA bars providing a study area with great potential. Therefore, this study mainly aims to investigate the behaviour of AA RC deep beams. The investigated parameters include concrete strength, tension reinforcement ratio, beam size, a/d ratio, and transverse reinforcement ratio, most of which have not yet been thoroughly studied. A finite element (FE) model was developed to obtain accurate predictions. The developed FE model predicted the actual load-bearing capacity with a mean value of 1.00. The findings indicated a clear trend in which shear force capacity increased from 124.1 to 181.4 kN with increasing concrete compressive strength from 20 to 40 MPa. A strong relationship between the reinforcement ratio and failure mode was obtained. The shear strength decreased from 2.95 to 2.1 MPa as the effective depth increased from 175 to 350 mm. An increase in transverse reinforcement ratio instigated an enhancement in shear force capacity. Finally, the applicability of the design models in the current literature was evaluated. The design formulations gave accurate predictions with an error of 3%. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

28 pages, 15377 KiB  
Article
Development of a Piezoelectric-Driven XYθz Nano-Positioning Stage with High Load-Bearing Capacity Enabled by Over-Constrained Guiding Configuration
by Bin Liu, Lingchen Meng, Shuaishuai Lu, Fei Wang, Pengbo Liu and Peng Yan
Micromachines 2025, 16(5), 548; https://doi.org/10.3390/mi16050548 - 30 Apr 2025
Viewed by 471
Abstract
A novel over-constrained XYθz nano-positioning stage with a high load-bearing capacity is proposed. This serially connected displacement stage adopts an embedded structural design that integrates a translation stage with a rotation stage in series. The Z-axis amplification mechanism employs out-of-plane actuation, realising [...] Read more.
A novel over-constrained XYθz nano-positioning stage with a high load-bearing capacity is proposed. This serially connected displacement stage adopts an embedded structural design that integrates a translation stage with a rotation stage in series. The Z-axis amplification mechanism employs out-of-plane actuation, realising a compact solution for three-axis independent motion. The hybrid amplification mechanism designed in the translation stage ensures enhanced output displacement and structural stiffness. The hybrid-parallel amplification mechanism comprises a lever-type displacement amplifier and a Scott–Russell displacement amplifier connected in series, which is then connected in parallel with a bridge-type displacement amplifier. An over-constrained mechanism is introduced to impose redundant constraints along the Z-axis, effectively suppressing parasitic displacement in the Z-direction while enhancing resistance to out-of-plane deformation. A quasi-static model of the XYθz motion stage was established to comprehensively characterise the deformation behaviour of the stage, which was verified by finite element simulations and experiments on the prototype. The experimental results indicate that the XYθz stage achieves a large motion range (up to 152.22 μm × 151.3 μm × 2.885 mrad) while maintaining excellent anti-deformation capability 200 nm at 4 kg loading. Full article
Show Figures

Figure 1

21 pages, 22092 KiB  
Article
Analysis of Different Guide Elements’ Designs in Hydraulic Cylinders
by Jan Pustavrh, Ana Trajkovski, Vito Tič, Marko Polajnar, Uroš Bohinc and Franc Majdič
Appl. Sci. 2025, 15(9), 4738; https://doi.org/10.3390/app15094738 - 24 Apr 2025
Viewed by 602
Abstract
In this study, the frictional behaviours of three different guide elements—guide rings, labyrinth seals, and hydrostatic bearings—in hydraulic cylinders is investigated experimentally. A modular, double-acting hydraulic cylinder was designed to compare these three different design elements under different pressures (0 bar, 120 bar, [...] Read more.
In this study, the frictional behaviours of three different guide elements—guide rings, labyrinth seals, and hydrostatic bearings—in hydraulic cylinders is investigated experimentally. A modular, double-acting hydraulic cylinder was designed to compare these three different design elements under different pressures (0 bar, 120 bar, and 240 bar), velocities, and radial loads. The results show that the guide rings exhibit the highest friction, especially at high pressures. Labyrinth seals exhibit significantly lower friction and extend the service life of the components. Hydrostatic bearings allow low friction but require precise control of the fluid, which limits their use. The results provide practical guidelines for selecting guide elements and optimising the friction performance, durability, and efficiency of hydraulic systems. We found that the best solution from the points of view of design, friction, and economics is to use labyrinth seals as guiding elements for the fast reciprocal moving rods of hydraulic cylinders. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

27 pages, 23631 KiB  
Article
Traditional Malay House Preservation: Guidelines for Structural Evaluation
by Sara Alsheikh Mahmoud and Huzaifa Bin Hashim
Buildings 2025, 15(5), 782; https://doi.org/10.3390/buildings15050782 - 27 Feb 2025
Viewed by 1967
Abstract
The traditional Malay house is a significant component of the Malay cultural heritage and a key example of vernacular architecture. It is characterised by its outstanding design and the various styles across Malaysia. Traditional Malay houses experience deterioration and damage due to various [...] Read more.
The traditional Malay house is a significant component of the Malay cultural heritage and a key example of vernacular architecture. It is characterised by its outstanding design and the various styles across Malaysia. Traditional Malay houses experience deterioration and damage due to various threats, resulting in many houses being abandoned. A thorough structural evaluation is crucial for preserving the traditional Malay house. This research aimed to develop guidelines for the global structural evaluation of the Malay house. A case study approach was adopted in this research. Site visits, visual surveys, geometrical surveys, and dilapidation surveys were also employed. The research involved structural analysis using SAP2000. The results revealed the vulnerability of the houses to lateral forces, sliding, and differential settlement under scouring. The key structural members have adequate load-bearing capacity, which might be compromised under certain conditions, as in the case of deterioration. These results helped identify potential safety concerns and led to the development of guidelines for the global structural evaluation of Malay houses. The guidelines cover analysis inputs and modelling techniques in terms of material, geometry, joints, and foundations. They address load criteria and the impacts of flooding and scouring on the structural behaviour of the traditional Malay house. The guidelines, finally, recommend that structural checks be considered. This research contributes to traditional Malay house preservation by providing an evidence-based approach to designing preservation measures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 9171 KiB  
Article
Resonant Frequency Response to Mechanical Loading in Conformal Load-Bearing Antenna Systems
by Shouxun Lu, Kelvin J. Nicholson, Joel Patniotis, John Wang and Wing Kong Chiu
Sensors 2025, 25(5), 1323; https://doi.org/10.3390/s25051323 - 21 Feb 2025
Viewed by 453
Abstract
This study investigates the impact of mechanical loading on the electromagnetic performance of conformal load-bearing antenna structures (CLASs), focusing on the resonant frequency response. Using 6-ply [0/90] GFRP as the CLAS substrate, the research evaluated the effects of two mechanical loading scenarios: the [...] Read more.
This study investigates the impact of mechanical loading on the electromagnetic performance of conformal load-bearing antenna structures (CLASs), focusing on the resonant frequency response. Using 6-ply [0/90] GFRP as the CLAS substrate, the research evaluated the effects of two mechanical loading scenarios: the quasi-static uniaxial tensile test and cyclic fatigue. The quasi-static tests explore the response of CLASs to significant elongation, while the cyclic fatigue tests simulate localised damage propagation under operational loads. The results from the quasi-static tests demonstrated that the dominant effect under uniaxial tensile loading is the increase in substrate permittivity due to damage, causing a decrease in resonant frequency. The cyclic fatigue tests employed two configurations: removeable antenna patch (RAP), which isolates the antenna from mechanical loading to focus on substrate damage; and surface-mounted antenna patch (SMAP), which examines the combined effects of substrate damage and antenna elongation. The RAP results showed a consistent correlation between substrate damage and resonant frequency decrease, while SMAP demonstrated complex frequency behaviour due to competing effects of substrate damage and antenna elongation. A comparison with [±45]6 GFRP results showed that the resonant behaviour remained consistent regardless of ply configuration during the initial damage accumulation induced by cyclic fatigue. However, with significant elongation in quasi-static tests, resonant frequency behaviour was affected by the specimen’s ply configuration, with substrate permittivity changes due to mechanical loading being the dominant factor. These findings provide valuable insights into the relationship between damage sustained by the CLAS system and resonant frequency shifts, providing critical information for predicting CLAS’s reliability and service life. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

23 pages, 15091 KiB  
Article
The Load-Bearing Capacity Assessment of GFRP Foundation Piles for Transmission Line Poles Using Experimental Tests and Numerical Calculations
by Anna Derlatka, Sławomir Labocha and Piotr Lacki
Appl. Sci. 2025, 15(4), 2231; https://doi.org/10.3390/app15042231 - 19 Feb 2025
Viewed by 578
Abstract
This article proposes a novel tube foundation intended for use under transmission line poles. The glass fibre reinforcement polymer (GFRP) piles were driven into sand. A steel tube pole, approximately 6 m high, was mounted on the foundation. The analysed foundations were designed [...] Read more.
This article proposes a novel tube foundation intended for use under transmission line poles. The glass fibre reinforcement polymer (GFRP) piles were driven into sand. A steel tube pole, approximately 6 m high, was mounted on the foundation. The analysed foundations were designed as a monopile to be implemented in the construction of low- and medium-voltage overhead transmission lines. Experimental field tests of innovative piles made of the composite material were carried out on a 1:1 scale. The aim of this work was to develop an isotropic material model treating the GFRP composite as homogeneous. This approach does not fully reproduce the anisotropic behaviour of the composite, but it allows for the engineering design of structures made of the composite material. Laboratory tests in the form of a static tensile test on the samples and a tensile test on the rings cut from a hollow section were performed. The results of the experimental tests and FEM models of the GFRP rings and monopile embedded in sand were compared. The ultimate limit state (ULS) and serviceability limit state (SLS) of the analysed pile were assessed as 14.4 and 9.6 kNm, respectively. The developed numerical model, based on FEM, allows for the load-bearing capacity of the monopile made of GFRP to be reliably determined. From an engineering point of view, the developed numerical model of the GFRP material can be used to calculate the pile load-bearing capacity using engineering software that has limited capabilities in defining material models. Full article
Show Figures

Figure 1

23 pages, 7840 KiB  
Article
Assessment of RC Columns Under Axial Compression for Un-Corroded and Corroded Stirrups Scenarios: A Practice-Oriented Numerical Approach
by Aabith Ahamed, Fathima Nifla, Julian Thamboo, Mohammad Asad and Tatheer Zahra
Buildings 2025, 15(4), 579; https://doi.org/10.3390/buildings15040579 - 13 Feb 2025
Viewed by 941
Abstract
This paper presents a practice-oriented numerical modelling procedure to assess the loadbearing capacity of reinforced concrete (RC) columns under axial compression loading. A simplified procedure was incorporated to analyse the performance of RC columns with corroded stirrups, a prevalent deterioration phenomenon in corroded [...] Read more.
This paper presents a practice-oriented numerical modelling procedure to assess the loadbearing capacity of reinforced concrete (RC) columns under axial compression loading. A simplified procedure was incorporated to analyse the performance of RC columns with corroded stirrups, a prevalent deterioration phenomenon in corroded RC columns. The modelling framework incorporates material and geometric nonlinearities caused by material and buckling failure under axial compression, utilising the Arc-length algorithm with integrated geometric imperfections. Stirrup corrosion scenarios were incorporated by removing stirrups and modifying core concrete confinement properties, providing a practice-oriented approach to assess the loadbearing capacity of corroded columns. The study focused on square RC columns that are commonly used in low-rise buildings with nominal reinforcement detailing. The modelling method was validated against experimental data, and it showed a good agreement. A comprehensive parametric analysis was then conducted to examine the effects of critical design parameters, including (1) slenderness, (2) eccentricity, (3) stirrup corrosion, and (4) material properties, on axial compression performance. Parametric analyses demonstrated that the developed modelling technique appropriately predicted the axial compression behaviour of un-corroded RC columns in alignment with analytical design rules. For stirrup-corroded RC columns, the absence of confinement for up to 300 mm length near the base, due to stirrup corrosion, led to premature buckling. Based on the analysed cases, the reduction in bearing capacity of the stirrup-corroded RC columns could range between 4.9 and 18.6% (higher for slender columns) as compared to corresponding un-corroded RC columns. Full article
(This article belongs to the Special Issue Research on Corrosion Resistance of Reinforced Concrete)
Show Figures

Figure 1

17 pages, 11853 KiB  
Article
An Experimental Study on the Shear Performance of a CFRP–Steel Composite Component Bushing Bolt Connection
by Bing Guo, Guangxin Luo, Ziyu Wang, Deyi Wang, Qun Zhang, Longbo Zhang and Xingxing Wang
Coatings 2025, 15(1), 35; https://doi.org/10.3390/coatings15010035 - 2 Jan 2025
Viewed by 902
Abstract
Carbon Fiber Reinforced Polymers (CFRPs) are extensively utilized in civil engineering and other domains due to their exceptional mechanical properties. Integrating CFRPs with steel presents an approach to structural design, characterized by enhanced load-bearing capabilities and extended service life. Static tensile and hysteretic [...] Read more.
Carbon Fiber Reinforced Polymers (CFRPs) are extensively utilized in civil engineering and other domains due to their exceptional mechanical properties. Integrating CFRPs with steel presents an approach to structural design, characterized by enhanced load-bearing capabilities and extended service life. Static tensile and hysteretic tests were employed to examine the influence of the bolt diameter and steel plate thickness on the shear resistance of component. The results indicate that under monotonic loading, the load–displacement curves for each component undergo three distinct phases: the linear stage, damage evolution stage, and failure stage, ultimately leading to a bolt pull-off failure in all six groups of components. Under cyclic loading, the component with a 1.5 mm thick steel plate and a 4.6 mm diameter bushing bolt experienced bolt shear failure, primarily caused by the increased steel plate thickness, which enhanced the component’s load-carrying capacity, ultimately leading to the overloading and failure of the M4 bolt. The other five groups of components experienced pull-off failures. The hysteresis curve analysis revealed that enhancements in steel plate thickness and bolt diameter improve the hysteresis behaviour of the connections. However, there was a significant reduction in the strength degradation coefficient and hoop stiffness, which decreased to approximately 55% and 40% of their initial values, respectively. Full article
Show Figures

Figure 1

Back to TopTop