Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = lithospheric–atmospheric–ionospheric coupling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 9399 KiB  
Article
An Investigation of Pre-Seismic Ionospheric TEC and Acoustic–Gravity Wave Coupling Phenomena Using BDS GEO Measurements: A Case Study of the 2023 Jishishan Ms6.2 Earthquake
by Xiao Gao, Lina Shu, Zongfang Ma, Penggang Tian, Lin Pan, Hailong Zhang and Shuai Yang
Remote Sens. 2025, 17(13), 2296; https://doi.org/10.3390/rs17132296 - 4 Jul 2025
Viewed by 360
Abstract
This study investigates pre-seismic ionospheric anomalies preceding the 2023 Jishishan Ms6.2 earthquake using total electron content (TEC) data derived from BDS geostationary orbit (GEO) satellites. Multi-scale analysis integrating Butterworth filtering and wavelet transforms resolved TEC disturbances into three distinct frequency regimes: (1) high-frequency [...] Read more.
This study investigates pre-seismic ionospheric anomalies preceding the 2023 Jishishan Ms6.2 earthquake using total electron content (TEC) data derived from BDS geostationary orbit (GEO) satellites. Multi-scale analysis integrating Butterworth filtering and wavelet transforms resolved TEC disturbances into three distinct frequency regimes: (1) high-frequency perturbations (0.56–3.33 mHz) showed localized disturbances (amplitude ≤ 4 TECU, range < 300 km), potentially associated with near-field acoustic waves from crustal stress adjustments; (2) mid-frequency signals (0.28–0.56 mHz) exhibited anisotropic propagation (>1200 km) with azimuth-dependent N-shaped waveforms, consistent with the characteristics of acoustic–gravity waves (AGWs); and (3) low-frequency components (0.18–0.28 mHz) demonstrated phase reversal and power-law amplitude attenuation, suggesting possible lithosphere–atmosphere–ionosphere (LAI) coupling oscillations. The stark contrast between near-field residuals and far-field weak fluctuations highlighted the dominance of large-scale atmospheric gravity waves over localized acoustic disturbances. Geometry-based velocity inversion revealed incoherent high-frequency dynamics (5–30 min) versus anisotropic mid/low-frequency traveling ionospheric disturbance (TID) propagation (30–90 min) at 175–270 m/s, aligning with theoretical AGW behavior. During concurrent G1-class geomagnetic storm activity, spatial attenuation gradients and velocity anisotropy appear primarily consistent with seismogenic sources, providing insights for precursor discrimination and contributing to understanding multi-scale coupling in seismo-ionospheric systems. Full article
Show Figures

Figure 1

13 pages, 3745 KiB  
Communication
Seismo-Traveling Ionospheric Disturbances from the 2024 Hualien Earthquake: Altitude-Dependent Propagation Insights
by Zhiqiang Mao, Chieh-Hung Chen, Aisa Yisimayili, Jing Liu, Xuemin Zhang, Yang-Yi Sun, Yongxin Gao, Shengjia Zhang, Chuanqi Teng and Jianjun Zhao
Remote Sens. 2025, 17(7), 1241; https://doi.org/10.3390/rs17071241 - 31 Mar 2025
Viewed by 622
Abstract
The propagation of seismo-traveling ionospheric disturbances (STIDs) is generally observed at one specific altitude layer. On 2 April 2024, a Mw 7.4 earthquake struck Hualien, which was the biggest earthquake since the 1999 Chi-Chi earthquake in the Taiwan region. In this study, a [...] Read more.
The propagation of seismo-traveling ionospheric disturbances (STIDs) is generally observed at one specific altitude layer. On 2 April 2024, a Mw 7.4 earthquake struck Hualien, which was the biggest earthquake since the 1999 Chi-Chi earthquake in the Taiwan region. In this study, a co-located vertical monitoring system combined with the observation of two horizontal layers in the ionosphere was utilized to study the STIDs associated with the Hualien earthquake. The vertical monitoring system can capture disturbances from the ground surface up to a height of ~350 km. In addition, changes in electric currents and the TEC (total electron content) at two horizontal layers, ~100 km and ~350 km, were monitored by permanent geomagnetic stations and a ground-based GNSS (global navigation satellite system) receivers network, respectively. The observations from this four-dimensional (4D) monitoring network show that the STIDs at a height of ~100 km associated with Rayleigh waves can propagate as far as 2000 km from the epicenter, while at an altitude of ~350 km, they can only propagate to about 1000 km. At an altitude of about 200 km, STIDs were also captured by a high-frequency Doppler sounder in a vertical monitoring system, which was consistent with the results in the geomagnetic field. The results from the 4D monitoring network suggest that the STIDs associated with Rayleigh waves exhibit different propagation ranges at various altitudes and prefer to propagate at low ionosphere layers. The vertical propagating waves typically only reach the bottom of the ionosphere and struggle to propagate to higher regions over long distances. Full article
Show Figures

Figure 1

27 pages, 4025 KiB  
Article
Vertical Total Electron Content Enhancements and Their Global Distribution in Relation to Tectonic Plate Boundaries
by Paweł Wielgosz, Wojciech Jarmołowski, Stanisław Mazur, Beata Milanowska and Anna Krypiak-Gregorczyk
Remote Sens. 2025, 17(4), 614; https://doi.org/10.3390/rs17040614 - 11 Feb 2025
Viewed by 951
Abstract
Atmospheric responses to earthquakes or volcanic eruptions have become an interesting topic and can potentially contribute to future forecasting of these events. Extensive anomalies of the total electron content (TEC) are most often linked with geomagnetic storms or Earth-dependent phenomena, like earthquakes, volcanic [...] Read more.
Atmospheric responses to earthquakes or volcanic eruptions have become an interesting topic and can potentially contribute to future forecasting of these events. Extensive anomalies of the total electron content (TEC) are most often linked with geomagnetic storms or Earth-dependent phenomena, like earthquakes, volcanic eruptions, or nuclear explosions. This study extends rarely discussed, but very frequent, interactions between tectonic plate boundaries and the ionosphere. Our investigations focus on the very frequent occurrence of TEC enhancements not exclusively linked with individual seismic phenomena but located over tectonic plate boundaries. The objective of this study is to provide a review of the global spatiotemporal distribution of TEC anomalies, facilitating the discussion of their potential relations with tectonic activity. We apply a Kriging-based UPC-IonSAT quarter-of-an-hour time resolution rapid global ionospheric map (UQRG) from the Polytechnic University of Catalonia (UPC) IonSAT group for the detection of relative vertical TEC (VTEC) changes. Our study describes global relative and normalized VTEC variations, which have spatial and temporal behaviours strongly indicating their relationship both with geomagnetic changes and the tectonic plate system. The variations in geomagnetic fields, including the storms, disturb the ionosphere and amplify TEC variations persisting for several hours over tectonic plate boundaries, mostly over the diverging ones. The seismic origin of the selected parts of these TEC enhancements and depletions and their link with tectonic plate edges are suspected from their duration, shape, and location. The changes in TEC originating from both sources can be observed separately or together, and therefore, there is an open question about the directions of the energy transfers. However, the importance of geomagnetic field lines seems to be probable, due to the frequent common occurrence of both types of TEC anomalies. This research also proves that permanent observation of global lithosphere–atmosphere–ionosphere coupling (LAIC) is also important in time periods without strong earthquake or volcanic events. The occurrence of TEC variations over diverging tectonic plate boundaries, sometimes combined with travelling anomalies of geomagnetic origin, can add to the studies on earthquake precursors and forecasting. Full article
Show Figures

Graphical abstract

20 pages, 34237 KiB  
Article
Spatiotemporal Analysis of Atmospheric Chemical Potential Anomalies Associated with Major Seismic Events (Ms ≥ 7) in Western China: A Multi-Case Study
by Qijun Jiao, Qinqin Liu, Changgui Lin, Feng Jing, Jiajun Li, Yuxiang Tian, Zhenxia Zhang and Xuhui Shen
Remote Sens. 2025, 17(2), 311; https://doi.org/10.3390/rs17020311 - 16 Jan 2025
Viewed by 846
Abstract
Focusing on major earthquakes (EQs; MS ≥ 7) in Western China, this study primarily analyzes the fluctuation in Atmospheric Chemical Potential (ACP) before and after the Wenchuan, Yushu, Lushan, Jiuzhaigou, and Maduo EQs via Climatological Analysis of Seismic Precursors Identification (CAPRI). The distribution [...] Read more.
Focusing on major earthquakes (EQs; MS ≥ 7) in Western China, this study primarily analyzes the fluctuation in Atmospheric Chemical Potential (ACP) before and after the Wenchuan, Yushu, Lushan, Jiuzhaigou, and Maduo EQs via Climatological Analysis of Seismic Precursors Identification (CAPRI). The distribution of vertical ACP revealed distinct altitude-dependent characteristics. The ACP at lower atmospheric layers (100–2000 m) exhibited a high correlation, and this correlation decreased with increasing altitude. Anomalies were detected within one month prior to each of the five EQs studied, with the majority occurring 14 to 30 days before the events, followed by a few additional anomalies. The spatial distribution of anomalies is consistent with the distribution of fault zones, with noticeable fluctuation in surrounding areas. The ACP at an altitude of 200 m gave a balance between sensitivity to seismic signals and minimal surface interference and proved to be optimal for EQ monitoring in Western China. The results offer a significant reference for remote sensing studies related to EQ monitoring and the Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model, thereby advancing our understanding of pre-seismic atmospheric variations in Western China. Full article
Show Figures

Figure 1

56 pages, 48151 KiB  
Article
Excitation of ULF, ELF, and VLF Resonator and Waveguide Oscillations in the Earth–Atmosphere–Ionosphere System by Lightning Current Sources Connected with Hunga Tonga Volcano Eruption
by Yuriy G. Rapoport, Volodymyr V. Grimalsky, Andrzej Krankowski, Asen Grytsai, Sergei S. Petrishchevskii, Leszek Błaszkiewicz and Chieh-Hung Chen
Atmosphere 2025, 16(1), 97; https://doi.org/10.3390/atmos16010097 - 16 Jan 2025
Viewed by 1063
Abstract
The simulations presented here are based on the observational data of lightning electric currents associated with the eruption of the Hunga Tonga volcano in January 2022. The response of the lithosphere (Earth)–atmosphere–ionosphere–magnetosphere system to unprecedented lightning currents is theoretically investigated at low frequencies, [...] Read more.
The simulations presented here are based on the observational data of lightning electric currents associated with the eruption of the Hunga Tonga volcano in January 2022. The response of the lithosphere (Earth)–atmosphere–ionosphere–magnetosphere system to unprecedented lightning currents is theoretically investigated at low frequencies, including ultra low frequency (ULF), extremely low frequency (ELF), and very low frequency (VLF) ranges. The electric current source due to lightning near the location of the Hunga Tonga volcano eruption has a wide-band frequency spectrum determined in this paper based on a data-driven approach. The spectrum is monotonous in the VLF range but has many significant details at the lower frequencies (ULF, ELF). The decreasing amplitude tendency is maintained at frequencies exceeding 0.1 Hz. The density of effective lightning current in the ULF range reaches the value of the order of 10−7 A/m2. A combined dynamic/quasi-stationary method has been developed to simulate ULF penetration through the lithosphere (Earth)–atmosphere–ionosphere–magnetosphere system. This method is suitable for the ULF range down to 10−4 Hz. The electromagnetic field is determined from the dynamics in the ionosphere and from a quasi-stationary approach in the atmosphere, considering not only the electric component but also the magnetic one. An analytical/numerical method has been developed to investigate the excitation of the global Schumann resonator and the eigenmodes of the coupled Schumann and ionospheric Alfvén resonators in the ELF range and the eigenmodes of the Earth–ionosphere waveguide in the VLF range. A complex dispersion equation for the corresponding disturbances is derived. It is shown that oscillations at the first resonance frequency in the Schumann resonator can simultaneously cause noticeable excitation of the local ionospheric Alfvén resonator, whose parameters depend on the angle between the geomagnetic field and the vertical direction. VLF propagation is possible over distances of 3000–10,000 km in the waveguide Earth–ionosphere. The results of simulations are compared with the published experimental data. Full article
(This article belongs to the Special Issue Feature Papers in Upper Atmosphere (2nd Edition))
Show Figures

Figure 1

21 pages, 5166 KiB  
Article
Meteorological Anomalies During Earthquake Preparation: A Case Study for the 1995 Kobe Earthquake (M = 7.3) Based on Statistical and Machine Learning-Based Analyses
by Masashi Hayakawa, Shinji Hirooka, Koichiro Michimoto, Stelios M. Potirakis and Yasuhide Hobara
Atmosphere 2025, 16(1), 88; https://doi.org/10.3390/atmos16010088 - 15 Jan 2025
Cited by 1 | Viewed by 991
Abstract
The purpose of this paper is to discuss the effect of earthquake (EQ) preparation on changes in meteorological parameters. The two physical quantities of temperature (T)/relative humidity (Hum) and atmospheric chemical potential (ACP) have been investigated with the use of the Japanese meteorological [...] Read more.
The purpose of this paper is to discuss the effect of earthquake (EQ) preparation on changes in meteorological parameters. The two physical quantities of temperature (T)/relative humidity (Hum) and atmospheric chemical potential (ACP) have been investigated with the use of the Japanese meteorological “open” data of AMeDAS (Automated Meteorological Data Acquisition System), which is a very dense “ground-based” network of meteorological stations with higher temporal and spatial resolutions than the satellite remote sensing open data. In order to obtain a clearer identification of any seismogenic effect, we have used the AMeDAS station data at local midnight (LT = 01 h) and our initial target EQ was chosen to be the famous 1995 Kobe EQ of 17 January 1995 (M = 7.3). Initially, we performed conventional statistical analysis with confidence bounds and it was found that the Kobe station (very close to the EQ epicenter) exhibited conspicuous anomalies in both physical parameters on 10 January 1995, just one week before the EQ, exceeding m (mean) + 3σ (standard deviation) in T/Hum and well above m + 2σ in ACP within the short-term window of one month before and two weeks after an EQ. When looking at the whole period of over one year including the day of the EQ, in the case of T/Hum only we detected three additional extreme anomalies, except in winter, but with unknown origins. On the other hand, the anomalous peak on 10 January 1995 was the largest for ACP. Further, the spatial distributions of the anomaly intensity of the two quantities have been presented using about 40 stations to provide a further support to the close relationship of this peak with the EQ. The above statistical analysis has been compared with an analysis with recent machine/deep learning methods. We have utilized a combinational use of NARX (Nonlinear Autoregressive model with eXogenous inputs) and Long Short-Term Memory (LSTM) models, which was successful in objectively re-confirming the anomalies in both parameters on the same day prior to the EQ. The combination of these analysis results elucidates that the meteorological anomalies on 10 January 1995 are considered to be a notable precursor to the EQ. Finally, we suggest a joint examination of our two meteorological quantities for their potential use in real short-term EQ prediction, as well as in the future lithosphere–atmosphere–ionosphere coupling (LAIC) studies as the information from the bottom part of LAIC. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

16 pages, 5768 KiB  
Article
On the Ionosphere–Atmosphere–Lithosphere Coupling During the 9 November 2022 Italian Earthquake
by Mirko Piersanti, Giulia D’Angelo, Dario Recchiuti, Fabio Lepreti, Paola Cusano, Enza De Lauro, Vincenzo Carbone, Pietro Ubertini and Mariarosaria Falanga
Geosciences 2025, 15(1), 22; https://doi.org/10.3390/geosciences15010022 - 10 Jan 2025
Viewed by 954
Abstract
In the last decades, the scientific community has been focused on searching earthquake signatures in the Earth’s atmosphere, ionosphere, and magnetosphere. This work investigates an offshore Mw 5.5 earthquake that struck off the Marche region’s coast (Italy) on 9 November 2022, with a [...] Read more.
In the last decades, the scientific community has been focused on searching earthquake signatures in the Earth’s atmosphere, ionosphere, and magnetosphere. This work investigates an offshore Mw 5.5 earthquake that struck off the Marche region’s coast (Italy) on 9 November 2022, with a focus on the potential coupling between the Earth’s lithosphere, atmosphere, and magnetosphere triggered by the seismic event. Analysis of atmospheric temperature data from ERA5 reveals a significant increase in potential energy (Ep) at the earthquake’s epicenter, consistent with the generation of Atmospheric Gravity Waves (AGWs). This finding is further corroborated by the MILC analytical model, which accurately simulates the observed Ep trends (within 5%), supporting the theory of Lithosphere–Atmosphere–Ionosphere–Magnetosphere coupling. The study also examines the vertical Total Electron Content (vTEC) and finds notable fluctuations at the epicenter, exhibiting periodicities (7–12 min) characteristic of AGWs and traveling ionospheric disturbances. The correlation between ERA5 observations and MILC model predictions, particularly in temperature deviations and Ep distributions, strengthens the hypothesis that earthquake-generated AGWs impact atmospheric conditions at high altitudes, leading to observable ionospheric perturbations. This research contributes to a deeper understanding of Lithosphere–Atmosphere–Ionosphere–Magnetosphere coupling mechanisms and the potential for developing reliable earthquake prediction tools. Full article
Show Figures

Figure 1

29 pages, 5473 KiB  
Article
Sensitivity of Band-Pass Filtered In Situ Low-Earth Orbit and Ground-Based Ionosphere Observations to Lithosphere–Atmosphere–Ionosphere Coupling Over the Aegean Sea: Spectral Analysis of Two-Year Ionospheric Data Series
by Wojciech Jarmołowski, Anna Belehaki and Paweł Wielgosz
Sensors 2024, 24(23), 7795; https://doi.org/10.3390/s24237795 - 5 Dec 2024
Cited by 1 | Viewed by 1051
Abstract
This study demonstrates a rich complexity of the time–frequency ionospheric signal spectrum, dependent on the measurement type and platform. Different phenomena contributing to satellite-derived and ground-derived geophysical data that only selected signal bands can be potentially sensitive to seismicity over time, and they [...] Read more.
This study demonstrates a rich complexity of the time–frequency ionospheric signal spectrum, dependent on the measurement type and platform. Different phenomena contributing to satellite-derived and ground-derived geophysical data that only selected signal bands can be potentially sensitive to seismicity over time, and they are applicable in lithosphere–atmosphere–ionosphere coupling (LAIC) studies. In this study, satellite-derived and ground-derived ionospheric observations are filtered by a Fourier-based band-pass filter, and an experimental selection of potentially sensitive frequency bands has been carried out. This work focuses on band-pass filtered ionospheric observations and seismic activity in the region of the Aegean Sea over a two-year time period (2020–2021), with particular focus on the entire system of tectonic plate junctions, which are suspected to be a potential source of ionospheric disturbances distributed over hundreds of kilometers. The temporal evolution of seismicity power in the Aegean region is represented by the record of earthquakes characterized by M ≥ 4.5, used for the estimation of cumulative seismic energy. The ionospheric response to LAIC is explored in three data types: short inspections of in situ electron density (Ne) over a tectonic plate boundary by Swarm satellites, stationary determination of three Ne density profile parameters by the Athens Digisonde station AT138 (maximum frequency of the F2 layer: foF2; maximum frequency of the sporadic E layer: foEs; and frequency spread: ff), and stationary measure of vertical total electron content (VTEC) interpolated from a UPC-IonSAT Quarter-of-an-hour time resolution Rapid Global ionospheric map (UQRG) near Athens. The spectrograms are made with the use of short-term Fourier transform (STFT). These frequency bands in the spectrograms, which show a notable coincidence with seismicity, are filtered out and compared to cumulative seismic energy in the Aegean Sea, to the geomagnetic Dst index, to sunspot number (SN), and to the solar radio flux (F10.7). In the case of Swarm, STFT allows for precise removal of long-wavelength Ne signals related to specific latitudes. The application of STFT to time series of ionospheric parameters from the Digisonde station and GIM VTEC is crucial in the removal of seasonal signals and strong diurnal and semi-diurnal signal components. The time series formed from experimentally selected wavebands of different ionospheric observations reveal a moderate but notable correlation with the seismic activity, higher than with any solar radiation parameter in 8 out of 12 cases. The correlation coefficient must be treated relatively and with caution here, as we have not determined the shift between seismic and ionospheric events, as this process requires more data. However, it can be observed from the spectrograms that some weak signals from selected frequencies are candidates to be related to seismic processes. Full article
(This article belongs to the Special Issue Advanced Pre-Earthquake Sensing and Detection Technologies)
Show Figures

Figure 1

21 pages, 4546 KiB  
Article
Geophysical Coupling Before Three Earthquake Doublets Around the Arabian Plate
by Essam Ghamry, Dedalo Marchetti and Mohamed Metwaly
Atmosphere 2024, 15(11), 1318; https://doi.org/10.3390/atmos15111318 - 2 Nov 2024
Viewed by 1723
Abstract
In this study, we analysed lithospheric, atmospheric, and top-side ionospheric magnetic field data six months before the three earthquake doublets occurred in the last ten years around the Arabian tectonic plate. They occurred in 2014, close to Dehloran (Iran), in 2018, offshore Kilmia [...] Read more.
In this study, we analysed lithospheric, atmospheric, and top-side ionospheric magnetic field data six months before the three earthquake doublets occurred in the last ten years around the Arabian tectonic plate. They occurred in 2014, close to Dehloran (Iran), in 2018, offshore Kilmia (Yemen) and in 2022, close to Bandar-e Lengeh (Iran). For all the cases, we considered the equivalent event in terms of total released energy and mean epicentral coordinates. The lithosphere was investigated by calculating the cumulative Benioff strain with the USGS earthquake catalogue. Several atmospheric parameters (aerosol, SO2, CO, surface air temperature, surface latent heat flux humidity, and dimethyl sulphide) have been monitored using the homogeneous data from the MERRA-2 climatological archive. We used the three-satellite Swarm constellation for magnetic data, analysing the residuals after removing a geomagnetic model. The analysis of the three geo-layers depicted an interesting chain of lithosphere, atmosphere, and ionosphere anomalies, suggesting a geophysical coupling before the Dehloran (Iran) 2014 earthquake. In addition, we identified interesting seismic accelerations that preceded the last 20 days, the Kilmia (Yemen) 2018 and Bandar-e Lengeh (Iran) 2022 earthquake doublets. Other possible interactions between the geolayers have been observed, and this underlines the importance of a multiparametric approach to properly understand a geophysical complex topic as the preparation phase of an earthquake. Full article
(This article belongs to the Special Issue Ionospheric Sounding for Identification of Pre-seismic Activity)
Show Figures

Figure 1

18 pages, 1578 KiB  
Review
The Generation of Seismogenic Anomalous Electric Fields in the Lower Atmosphere, and Its Application to Very-High-Frequency and Very-Low-Frequency/Low-Frequency Emissions: A Review
by Masashi Hayakawa, Yasuhide Hobara, Koichiro Michimoto and Alexander P. Nickolaenko
Atmosphere 2024, 15(10), 1173; https://doi.org/10.3390/atmos15101173 - 30 Sep 2024
Cited by 2 | Viewed by 1162
Abstract
The purpose of this paper is, first of all, to review the previous works on the seismic (or earthquake (EQ)-related) direct current (DC) (or quasi-stationary) electric fields in the lower atmosphere, which is likely to be generated by the conductivity current flowing in [...] Read more.
The purpose of this paper is, first of all, to review the previous works on the seismic (or earthquake (EQ)-related) direct current (DC) (or quasi-stationary) electric fields in the lower atmosphere, which is likely to be generated by the conductivity current flowing in the closed atmosphere–ionosphere electric circuit during the preparation phase of an EQ. The current source is electromotive force (EMF) caused by upward convective transport and the gravitational sedimentation of radon and charged aerosols injected into the atmosphere by soil gasses during the course of the intensification of seismic processes. The theoretical calculations predict that pre-EQ DC electric field enhancement in the atmosphere can reach the breakdown value at the altitudes 2–6 km, suggesting the generation of a peculiar seismic-related thundercloud. Then, we propose to apply this theoretical inference to the observational results of seismogenic VHF (very high frequency) and VLF/LF (very low frequency/low frequency) natural radio emissions. The formation of such a peculiar layer initiates numerous chaotic electrical discharges within this region, leading to the generation of VHF electromagnetic radiation. Earlier works on VHF seismogenic radiation performed in Greece have been compared with the theoretical estimates, and showed a good agreement in the frequency range and intensity. The same idea can also be applied, for the first time, to seismogenic VLF/LF lightning discharges, which is completely the same mechanism with conventional cloud-to-ground lightning discharges. In fact, such seismogenic VLF/LF lightning discharges have been observed to appear before an EQ. So, we conclude in this review that both seismogenic VHF radiation and VLF/LF lightning discharges are regarded as indirect evidence of the generation of anomalous electric fields in the lowest atmosphere due to the emanation of radioactive radon and charged aerosols during the preparation phase of EQs. Finally, we have addressed the most fundamental issue of whether VHF and VLF/LF radiation reported in earlier works is either of atmospheric origin (as proposed in this paper) or of lithospheric origin as the result of microfracturing in the EQ fault region, which has long been hypothesized. This paper will raise a question regarding this hypothesis of lithospheric origin by proposing an alternative atmospheric origin outlined in this review. Also, the data on seismogenic electromagnetic radiation and its inference on perturbations in the lower atmosphere will be suggested to be extensively integrated in future lithosphere–atmosphere–ionosphere coupling (LAIC) studies. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

12 pages, 3994 KiB  
Article
Possible Identification of Precursor ELF Signals on Recent EQs That Occurred Close to the Recording Station
by Ioannis Contopoulos, Janusz Mlynarczyk, Jerzy Kubisz and Vasilis Tritakis
Atmosphere 2024, 15(9), 1134; https://doi.org/10.3390/atmos15091134 - 19 Sep 2024
Cited by 3 | Viewed by 1703
Abstract
The Lithospheric–Atmospheric–Ionospheric Coupling (LAIC) mechanism stands as the leading model for the prediction of seismic activities. It consists of a cascade of physical processes that are initiated days before a major earthquake. The onset is marked by the discharge of ionized gases, such [...] Read more.
The Lithospheric–Atmospheric–Ionospheric Coupling (LAIC) mechanism stands as the leading model for the prediction of seismic activities. It consists of a cascade of physical processes that are initiated days before a major earthquake. The onset is marked by the discharge of ionized gases, such as radon, through subterranean fissures that develop in the lead-up to the quake. This discharge augments the ionization at the lower atmospheric layers, instigating disturbances that extend from the Earth’s surface to the lower ionosphere. A critical component of the LAIC sequence involves the distinctive perturbations of Extremely Low Electromagnetic Frequencies (ELF) within the Schumann Resonances (SR) spectrum of 2 to 50 Hz, detectable days ahead of the seismic event. Our study examines 10 earthquakes that transpired over a span of 3.5 months—averaging nearly three quakes monthly—which concurrently generated 45 discernible potential precursor seismic signals. Notably, each earthquake originated in Southern Greece, within a radius of 30 to 250 km from the observatory on Mount Parnon. Our research seeks to resolve two important issues. The first concerns the association between specific ELF signals and individual earthquakes—a question of significant importance in seismogenic regions like Greece, where earthquakes occur frequently. The second inquiry concerns the parameters that determine the detectability of an earthquake by a given station, including the requisite proximity and magnitude. Initial findings suggest that SR signals can be reliably linked to a particular earthquake if the observatory is situated within the earthquake’s preparatory zone. Conversely, outside this zone, the correlation becomes indeterminate. Additionally, we observe a differentiation in SR signals based on whether the earthquake took place over land or offshore. The latter category exhibits unique signal behaviors, potentially attributable to the water layers above the epicenter acting as a barrier to the ascending gases, thereby affecting the atmospheric–ionospheric ionization process. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

22 pages, 2843 KiB  
Article
Ionospheric and Meteorological Anomalies Associated with the Earthquake in Central Asia on 22 January 2024
by Renata Lukianova, Gulbanu Daurbayeva and Akgenzhe Siylkanova
Remote Sens. 2024, 16(17), 3112; https://doi.org/10.3390/rs16173112 - 23 Aug 2024
Cited by 5 | Viewed by 2241
Abstract
On 22 January 2024, at 18 UT, a strong earthquake (EQ), Mw = 7, occurred with the epicenter at 41°N, 79°E. This seismic event generated a complex response, the elements of which correspond to the concept of lithosphere–atmosphere–ionosphere coupling through electromagnetic processes. While [...] Read more.
On 22 January 2024, at 18 UT, a strong earthquake (EQ), Mw = 7, occurred with the epicenter at 41°N, 79°E. This seismic event generated a complex response, the elements of which correspond to the concept of lithosphere–atmosphere–ionosphere coupling through electromagnetic processes. While flying over the EQ area on the night-ide of the Earth, the tandem of low-orbiting Swarm satellites observed small-scale irregularities in the plasma density with an amplitude of ~1.5 × 104 el/cm3, which are likely associated with the penetration of the coseismic electric field into the ionosphere. The local anomaly was detected against the background of a global increase in total electron content, TEC (although geomagnetic indices remained quiet), since the moment of EQ coincided with the ionospheric response to a solar flare. In the troposphere, specific humidity decreased while latent heat flux and aerosol optical depth increased, all exhibiting the co-located disturbances that can be attributed to the effect of increased air ionization rates, resulting in greater electrical conductivity in the near-Earth boundary layer. Anomalies started developing over the epicenter the day before and maximized on the day of the main shock and aftershocks. Full article
Show Figures

Figure 1

18 pages, 937 KiB  
Article
Integrated Analysis of Multi-Parameter Precursors to the Fukushima Offshore Earthquake (Mj = 7.3) on 13 February 2021 and Lithosphere–Atmosphere–Ionosphere Coupling Channels
by Masashi Hayakawa and Yasuhide Hobara
Atmosphere 2024, 15(8), 1015; https://doi.org/10.3390/atmos15081015 - 21 Aug 2024
Cited by 6 | Viewed by 2806
Abstract
The preparation phase of earthquakes (EQs) has been investigated by making full use of multi-parameter and multi-layer observations of EQ precursors, in order to better understand the lithosphere–atmosphere–ionosphere coupling (LAIC) process. For this purpose, we chose a specific target EQ, the huge EQ [...] Read more.
The preparation phase of earthquakes (EQs) has been investigated by making full use of multi-parameter and multi-layer observations of EQ precursors, in order to better understand the lithosphere–atmosphere–ionosphere coupling (LAIC) process. For this purpose, we chose a specific target EQ, the huge EQ of Fukushima-ken-oki EQ on 13 February 2021 (magnitude Mj = 7.3). We initially reported on EQ precursors in different physical parameters not only of the lithosphere, but also of the atmosphere and ionosphere (Hayakawa et al. followed by Akhoondzadeh et al. and Draz et al., both based on satellite observations). Our first two papers dealt with seven electromagnetic precursors in the three layers (with emphasis on our own ground-based observations in the atmosphere and lower ionosphere), while the second paper dealt with Swarm satellite observations of magnetic field, electron density, and GPS TEC in the ionosphere, and the third paper dealt only with climatological parameters on and above the Earth’s surface (together with GPS TEC). We have extensively reviewed all of these results, and have coordinated the temporal evolutions of various physical parameters relevant to the LAIC system; we have sought to understand which hypothesis is more plausible in explaining the LAIC process. Then, we came to a conclusion that two possible LAIC channels seem to exist simultaneously for this EQ: a fast channel (nearly simultaneous responses on the ground and ionosphere), and a slow channel (or diffusion-type), with a time delay of a few to several days, in which the agent effects in the lithosphere and lowest atmosphere seem to propagate up to the ionosphere with a definite time delay. Finally, we have suggested some research directions for the future elucidation of LAIC channels, and also made some comments on an early EQ warning system. Full article
(This article belongs to the Special Issue Ionospheric Sounding for Identification of Pre-seismic Activity)
Show Figures

Figure 1

33 pages, 18761 KiB  
Article
Earthquake Precursors: The Physics, Identification, and Application
by Sergey Pulinets and Victor Manuel Velasco Herrera
Geosciences 2024, 14(8), 209; https://doi.org/10.3390/geosciences14080209 - 5 Aug 2024
Cited by 7 | Viewed by 4442
Abstract
The paper presents the author’s vision of the problem of earthquake hazards from the physical point of view. The first part is concerned with the processes of precursor’s generation. These processes are a part of the complex system of the lithosphere–atmosphere–ionosphere–magnetosphere coupling, which [...] Read more.
The paper presents the author’s vision of the problem of earthquake hazards from the physical point of view. The first part is concerned with the processes of precursor’s generation. These processes are a part of the complex system of the lithosphere–atmosphere–ionosphere–magnetosphere coupling, which is characteristic of many other natural phenomena, where air ionization, atmospheric thermodynamic instability, and the Global Electric Circuit are involved in the processes of the geosphere’s interaction. The second part of the paper is concentrated on the reliable precursor’s identification. The specific features helping to identify precursors are separated into two groups: the absolute signatures such as the precursor’s locality or equatorial anomaly crests generation in conditions of absence of natural east-directed electric field and the conditional signatures due to the physical uniqueness mechanism of their generation, or necessity of the presence of additional precursors as multiple consequences of air ionization demonstrating the precursor’s synergy. The last part of the paper is devoted to the possible practical applications of the described precursors for purposes of the short-term earthquake forecast. A change in the paradigm of the earthquake forecast is proposed. The problem should be placed into the same category as weather forecasting or space weather forecasting. Full article
Show Figures

Figure 1

31 pages, 11063 KiB  
Article
The Preparation Phase of the 2023 Kahramanmaraş (Turkey) Major Earthquakes from a Multidisciplinary and Comparative Perspective
by Gianfranco Cianchini, Massimo Calcara, Angelo De Santis, Alessandro Piscini, Serena D’Arcangelo, Cristiano Fidani, Dario Sabbagh, Martina Orlando, Loredana Perrone, Saioa A. Campuzano, Mariagrazia De Caro, Adriano Nardi and Maurizio Soldani
Remote Sens. 2024, 16(15), 2766; https://doi.org/10.3390/rs16152766 - 29 Jul 2024
Cited by 9 | Viewed by 1989
Abstract
On 6 February 2023, Turkey experienced its most powerful earthquake in over 80 years, with a moment magnitude (Mw) of 7.7. This was then followed by a second earthquake of Mw 7.6 just nine hours later. According to the lithosphere–atmosphere–ionosphere coupling (LAIC) models, [...] Read more.
On 6 February 2023, Turkey experienced its most powerful earthquake in over 80 years, with a moment magnitude (Mw) of 7.7. This was then followed by a second earthquake of Mw 7.6 just nine hours later. According to the lithosphere–atmosphere–ionosphere coupling (LAIC) models, such a significant seismic activity is expected to cause anomalies across various observables, from the Earth’s surface to the ionosphere. This multidisciplinary study investigates the preparatory phase of these two major earthquakes by identifying potential precursors across the lithosphere, atmosphere, and ionosphere. Our comprehensive analysis successfully identified and collected various anomalies, revealing that their cumulative occurrence follows an accelerating trend, either exponential or power-law. Most anomalies appeared to progress from the lithosphere upward through the atmosphere to the ionosphere, suggesting a sequential chain of processes across these geospheres. Notably, some anomalies deviated from this overall trend, manifesting as oscillating variations. We propose that these anomalies support a two-way coupling model preceding major earthquakes, highlighting the potential role of fluid chemistry in facilitating these processes. Full article
(This article belongs to the Section Earth Observation for Emergency Management)
Show Figures

Graphical abstract

Back to TopTop