Ionospheric and Meteorological Anomalies Associated with the Earthquake in Central Asia on 22 January 2024
Abstract
:1. Introduction
2. The M7 Earthquake on 22 January 2024
3. Geomagnetic Activity and Ionospheric Weather
3.1. Geomagnetic Indices and Solar Activity
3.2. Variation of TEC Measurements
4. Local Variations of Ne in the Topside Ionosphere during Seismic Activity
4.1. Swarm Satellites and Data
4.2. Ionospheric Disturbances over the EQ Area
5. Co-Located Atmospheric Disturbances
5.1. Specific Humidity
5.2. Latent Heat Flux and Aerosol Optical Depth
6. Discussion
6.1. Assessment of the E-Field Causing Ionospheric Irregularities over the EQ Area
6.2. On the Mechanismof Coseismic Effects in the Lower Atmosphere
7. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pulinets, S.A.; Boyarchuk, K.A. Ionospheric Precursors of Earthquakes; Springer: Berlin, Germany, 2004; 288p. [Google Scholar]
- Balasis, G.; Mandea, M. Can electromagnetic disturbances related to the recent great earthquakes be detected by satellite magnetometers? Tectonophysics 2007, 431, 173–195. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D. Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model—An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Hattori, K.; Taylor, P. (Eds.) Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; Wiley: New York, NY, USA, 2018; Volume 234, 384p. [Google Scholar]
- De Santis, A.; Marchetti, D.; Spogli, L.; Cianchini, G.; Pav’on-Carrasco, F.J.; De Franceschi, G.; Di Giovambattista, R.; Perrone, L.; Qamili, E.; Cesaroni, C.; et al. Magnetic field and electron density data analysis from Swarm satellites searching for ionospheric effects by great earthquakes: 12 case studies from 2014 to 2016. Atmosphere 2019, 10, 371. [Google Scholar] [CrossRef]
- Marchetti, D.; Pavón-Carrasco, F.J.; Cianchini, G.; Perrone, L.; Abbattista, C.; Alfonsi, L.; Amoruso, L.; Campuzano, S.A.; Carbone, M.; Cesaroni, C.; et al. Precursory worldwide signatures of earthquake occurrences on Swarm satellite data. Sci. Rep. 2019, 9, 20287. [Google Scholar] [CrossRef]
- Astafyeva, E. Ionospheric detection of natural hazards. Rev. Geophys. 2019, 57, 1265–1288. [Google Scholar] [CrossRef]
- Marchetti, D.; De Santis, A.; Shen, X.; Campuzano, S.A.; Perrone, L.; Piscini, A.; Di Giovambattista, R.; Jin, S.; Ippolito, A.; Cianchini, G.; et al. Possible Lithosphere-Atmosphere-Ionosphere Coupling effects prior to the 2018 Mw=7.5 Indonesia earthquake from seismic, atmospheric and ionospheric data. J. Asian Earth Sci. 2020, 188, 104097. [Google Scholar] [CrossRef]
- Parrot, M.; Tramutoli, V.; Liu, T.J.Y.; Pulinets, S.; Ouzounov, D.; Genzano, N.; Lisi, M.; Hattori, K.; Namgaladze, A. Atmospheric and ionospheric coupling phenomena related to large earthquakes. Nat. Hazard. Earth Syst. Sci. 2021, 230, 197–225. [Google Scholar] [CrossRef]
- Chisham, G.; Lester, M.; Milan, S.E.; Freeman, M.P.; Bristow, W.A.; Grocott, A.; McWilliams, K.A.; Ruohoniemi, J.M.; Yeoman, T.K.; Dyson, P.L.; et al. A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and future directions. Surv. Geophys. 2007, 28, 33–109. [Google Scholar] [CrossRef]
- Fejer, B.G. Low Latitude Ionospheric Electrodynamics. Space Sci. Rev. 2011, 158, 145–166. [Google Scholar] [CrossRef]
- Lukianova, R.; Christiansen, F. Modeling of the global distribution of ionospheric electric fields based on realistic maps of field-aligned currents. J. Geophys. Res. 2006, 111, A03213. [Google Scholar] [CrossRef]
- Sarkar, S.; Choudhary, S.; Sonakia, A.; Vishwakarma, A.; Gwal, A.K. Ionospheric anomalies associated with the Haiti earthquake of 12 January 2010 observed by DEMETER satellite. Nat. Hazards Earth Syst. Sci. 2012, 12, 671–678. [Google Scholar] [CrossRef]
- Fan, Y.; Du, X.; An, Z.; Liu, J.; Tan, D.; Chen, J. Earthquake-related Electric Field Changes Observed in the Ionosphere and Ground. Acta Geophys. 2015, 63, 679–697. [Google Scholar] [CrossRef]
- Li, M.; Shen, X.; Parrot, M.; Zhang, X.; Zhang, Y.; Yu, C.; Yan, R.; Liu, D.; Lu, H.; Guo, F.; et al. Primary Joint Statistical Seismic Influence on Ionospheric Parameters Recorded by the CSES and DEMETER Satellites. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028116. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Chen, C.H.; Liu, C.Y.; Chen, C.Y.; Nishihashi, M.; Li, J.Z.; Xia, Y.Q.; Oyama, K.I.; Hattori, K.; et al. Seismo-ionospheric GPS total electron content anomalies observed before the 12 May 2008 Mw 7.9 Wenchuan earthquake. J. Geophys. Res. 2009, 114, A04320. [Google Scholar] [CrossRef]
- Kuo, C.L.; Huba, J.D.; Joyce, G.; Lee, L.C. Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges. J. Geophys. Res. 2011, 116, A10317. [Google Scholar] [CrossRef]
- De Santis, A.; Balasis, G.; Pavon-Carrasco, F.J.; Cianchini, G.; Mandea, M. Potential earthquake precursory pattern from space: The 2015 Nepal event as seen by magnetic Swarm satellites. Earth Planet. Sci. Lett. 2017, 461, 119–126. [Google Scholar] [CrossRef]
- Heki, K. Ionospheric electron enhancement preceding the 2011 Tohoku-Oki Earthquake. Geophys. Res. Lett. 2011, 38, 1–5. [Google Scholar] [CrossRef]
- Sharma, G.; Nayak, K.; Romero-Andrade, R.; Aslam, M.A.M.; Sarma, K.K.; Aggarwal, S.P. Low Ionosphere Density Above the Earthquake Epicentre Region of Mw7.2, El Mayor–Cucapah Earthquake Evident from Dense CORS Data. J. Indian. Soc. Remote Sens. 2024, 52, 543–555. [Google Scholar] [CrossRef]
- Nayak, K.; López-Urías, C.; Romero-Andrade, R.; Sharma, G.; Guzmán-Acevedo, G.M.; Trejo-Soto, M.E. Ionospheric Total Electron Content (TEC) Anomalies as Earthquake Precursors: Unveiling the Geophysical Connection Leading to the 2023 Moroccan 6.8 Mw Earthquake. Geosciences 2023, 13, 319. [Google Scholar] [CrossRef]
- Zhu, F.; Wu, Y.; Zhou, Y.; Lin, J. A statistical investigation of pre-earthquake ionospheric TEC anomalies. Geodesy Geodyn. 2011, 2, 61–65. [Google Scholar] [CrossRef]
- Heki, K.; Enomoto, Y. Mw ependence of the preseismic ionospheric electron enhancements. J. Geophys. Res. Space Phys. 2015, 120, 7006–7020. [Google Scholar] [CrossRef]
- Li, W.; Yue, J.; Guo, J.; Yang, Y.; Zou, B.; Shen, Y.; Zhang, K. Statistical seismo-ionospheric precursors of M7.0+ earthquakes in Circum-Pacific seismic belt by GPS TEC measurements. Adv. Space Res. 2018, 61, 1206–1219. [Google Scholar] [CrossRef]
- De Santis, A.; Abbattista, C.; Alfonsi, L.; Amoruso, L.; Campuzano, S.A.; Carbone, M.; Cesaroni, C.; Cianchini, G.; De Franceschi, G.; De Santis, A.; et al. Geosystemics View of Earthquakes. Entropy 2019, 21, 412. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhao, X.; Yang, D.; Wu, Y.; Li, Q. A study to investigate the relationship between ionospheric disturbance and seismic activity based on Swarm satellite data. Phys. Earth Planet. Inter. 2022, 323, 106826. [Google Scholar] [CrossRef]
- Haralambous, H.; Paul, K.S. Travelling Ionospheric Disturbance Direction of Propagation Detection Using SwarmA-C In-Situ Electron Density. Remote Sens. 2023, 15, 897. [Google Scholar] [CrossRef]
- Bhattacharyya, A. Equatorial Plasma Bubbles: A Review. Atmosphere 2022, 13, 1637. [Google Scholar] [CrossRef]
- Arras, C.; Wickert, J.; Beyerle, G.; Heise, S.; Schmidt, T.; Jacobi, C. A global climatology of ionosphericir regularities derived from GPS radio occultation. Geophys. Res. Lett. 2008, 35, L14809. [Google Scholar] [CrossRef]
- Kikuchi, T. Penetration of the Magnetospheric Electric Fields to the Low Latitude Ionosphere. In Ionosphere Dynamics and Applications; Huang, C., Lu, G., Zhang, Y., Paxton, L.J., Eds.; American Geophysical Union: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Lukianova, R.; Uvarov, V.M.; Coisson, P. High-latitude F region large-scale ionospheric irregularities under different solar wind and zenith angle conditions. Adv. Space Res. 2017, 59, 557–570. [Google Scholar] [CrossRef]
- Namgaladze, A.; Karpov, M.; Knyazeva, M. Aerosols and seismo-ionosphere coupling: A review. J. Atmos. Sol.-Terr. Phys. 2018, 171, 83–93. [Google Scholar] [CrossRef]
- Denisenko, V.V.; Boudjada, M.Y.; Lammer, H. Propagation of seismogenic electric currents. J. Geophys. Res. Space Phys. 2018, 123, 4290–4297. [Google Scholar] [CrossRef]
- Denisenko, V.V.; Rycroft, M.J.; Harrison, R.G. Mathematical Simulation of the Ionospheric Electric Field as a part of the Global Electric Circuit. Surv. Geophys. 2019, 40, 1–35. [Google Scholar] [CrossRef]
- Pulinets, S.; Khachikyan, G. The Global Electric Circuit and Global Seismicity. Geosciences 2021, 11, 491. [Google Scholar] [CrossRef]
- Akhoondzadeh, M. Ant Colony Optimization detects anomalous aerosol variations associated with the Chile earthquake of 27 February 010. Adv. Space Res. 2015, 55, 1754–1763. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Ouzounov, D. The Possibility of Earthquake Forecasting: Learning from Nature; IOP Publishing: Bristol, UK, 2018; Volume 167. [Google Scholar] [CrossRef]
- USGS. Earthquakes. Available online: https://www.usgs.gov/programs/earthquake-hazards/earthquakes (accessed on 20 March 2024).
- Zelenin, E.A.; Bachmanov, D.M.; Garipova, S.T.; Trifonov, V.G.; Kozhurin, A.I. The Active Faults of Eurasia Database (AFEAD): Theontology and design behind the continental-scale dataset. Earth Syst. Sci. Data 2022, 14, 4489–4503. [Google Scholar] [CrossRef]
- Active Faults of Eurasia Database (AFEAD). Available online: http://neotec.ginras.ru/index/english/database_eng.html (accessed on 2 June 2024).
- Active Faults of Eurasia Database (AFEAD). ViewonMapBox. Available online: http://neotec.ginras.ru/index/mapbox/database_map.html (accessed on 2 June 2024).
- Gopalswamy, N. History and development of coronal mass ejections as a key player in solar terrestrial relationship. Geosci. Lett. 2016, 3, 8. [Google Scholar] [CrossRef]
- Rozhnoi, A.; Solovieva, M.; Fedun, V.; Gallagher, P.; McCauley, J.; Boudjada, M.J.; Shelyag, S.; Eichelberger, H.U. Strong influence of solar X-ray flares on low-frequency electromagnetic signals in middle latitudes. Ann. Geophys. 2019, 37, 843–850. [Google Scholar] [CrossRef]
- OMNI WebPlus Data and Service. Available online: https://omniweb.gsfc.nasa.gov/ (accessed on 2 June 2024).
- GOES-R Space Weather. Available online: https://www.ngdc.noaa.gov/stp/satellite/goes-r.html (accessed on 2 June 2024).
- Space Weather Live Viewing Archive, >10 MeV Solar Protons. Available online: https://www.spaceweatherlive.com/en/archive/2024/01/22/proton.html (accessed on 15 June 2024).
- NOAA Space Weather Prediction Center. Solar Proton Events Affecting the Earth Environment. Available online: https://www.ngdc.noaa.gov/stp/space-weather/interplanetary-data/solar-proton-events/SEP%20page%20code.html (accessed on 15 June 2024).
- Mironova, I.A.; Aplin, K.L.; Arnold, F.; Bazilevskaya, G.A.; Harrison, R.G.; Krivolutsky, A.A.; Nicoll, K.A.; Rozanov, E.V.; Turunen, E.; Usoskin, I.G. Energetic particle influence on the Earth’s atmosphere. Space Sci. Rev. 2015, 194, 1–96. [Google Scholar] [CrossRef]
- Lukianova, R. Magnetospheric response to sudden changes in solar wind dynamic pressure inferred from polar ap index. J. Geophys. Res. 2003, 108, 1428. [Google Scholar] [CrossRef]
- Mannucci, A.J.; Wilson, B.D.; Yuan, D.N.; Ho, C.M.; Lindqwister, U.J.; Runge, T.F. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci. 1998, 33, 565–582. [Google Scholar] [CrossRef]
- 51 Jet Propulsion Laboratory. Global GNSS Data Service. Available online: https://sideshow.jpl.nasa.gov/pub/iono_daily/ (accessed on 2 May 2024).
- Sori, T.; Shinbori, A.; Otsuka, Y.; Nishioka, M.; Perwitasari, S. Dependence of ionospheric responses on solar wind dynamic pressure during geomagnetic storms using global long-term GNSS-TEC data. J. Geophys. Res. Space Phys. 2023, 128, e2022JA030913. [Google Scholar] [CrossRef]
- Friis-Christensen, E.; Luhr, H.; Knudsen, D.; Haagmans, R. Swarm—An earth observation mission investigating geospace. Adv. Space Res. 2008, 41, 210–216. [Google Scholar] [CrossRef]
- Dobrovolsky, I.; Zubkov, S.; Miachki, V. Estimation of the size of earthquake preparation zone. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Kuo, C.L.; Lee, L.C.; Huba, J.D. An Improved Coupling Model for the Lithosphere-Atmosphere-Ionosphere System. J. Geophys. Res. Space Phys. 2014, 119, 3189–3205. [Google Scholar] [CrossRef]
- Alken, P.; Thébault, E.; Beggan, C.D.; Amit, H.; Aubert, J.; Baerenzung, J.; Bondar, T.N.; Brown, W.J.; Califf, S.; Chambodut, A.; et al. International Geomagnetic Reference Field: The Thirteenth Generation. Earth Planets Space 2021, 73, 49. [Google Scholar] [CrossRef]
- Kelley, M.C. The Earth’s Ionosphere: Plasma Physics and Electrodynamics, 2nd ed.; Academic Press: Burlington, MA, USA, 2009; Volume 96, pp. 267–342. [Google Scholar]
- Spogli, L.; Jin, Y.; Urbář, J.; Wood, A.G.; Donegan-Lawley, E.; Clausen, L.; Shahtahmassebi, G.; Alfonsi, L.; Rawlings, J.T.; Cicone, A.; et al. Statistical models of the variability of plasma in the topside ionosphere: 2. Performance assessment. J. Space Weather. Space Clim. 2024, 14, 4. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The modern-era retrospective analysis for research and applications, version-2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Wu, L.; Zheng, S.; De Santis, A.; Qin, K.; Di Mauro, R.; Liu, S.; Rainone, M.L. Geosphere coupling and hydrothermal anomalies before the 2009 Mw6.3 L’Aquila earthquake in Italy. Nat. Hazards Earth Syst. Sci. 2016, 16, 1859–1880. [Google Scholar] [CrossRef]
- Liu, S.; Cui, Y.; Wei, L.; Liu, W.; Ji, M. Pre-earthquake MBT anomalies in the Central and Eastern Qinghai-Tibet Plateau and their association to earthquakes. Remote Sens. Environ. 2023, 298, 113815. [Google Scholar] [CrossRef]
- Pal, S.; Chakraborty, S.; Chakrabarti, S.K. On the use of Very Low Frequency transmitter data for remote sensing of atmospheric gravity and planetary waves. Adv. Space Res. 2015, 55, 1190–1198. [Google Scholar] [CrossRef]
- Denisenko, V.V.; Boudjada, M.Y.; Horn, M.; Pomozov, E.V.; Biernat, H.K.; Schwingenschuh, K.; Lammer, H.; Prattes, G.; Cristea, E. Ionospheric conductivity effects on electrostatic field penetration into the ionosphere. Nat. Hazards Earth Syst. Sci. 2008, 8, 1009–1017. [Google Scholar] [CrossRef]
- Ampferer, M.; Denisenko, V.V.; Hausleitner, W.; Krauss, S.; Stangl, G.; Boudjada, M.Y.; Biernat, H.K. Decrease of the electric field penetration into the ionosphere due to low conductivity at the near ground atmospheric layer. Ann. Geophys. 2010, 28, 779–787. [Google Scholar] [CrossRef]
- Hayakawa, M.; Molchanov, O. Seismo-Electromagnetics (Lithosphere–Atmosphere–IonosphereCoupling); Terrapub: Tokyo, Japan, 2002; 477p. [Google Scholar]
- Bilitza, D.; Pezzopane, M.; Truhlik, V.; Altadill, D.; Reinisch, B.W.; Pignalberi, A. The International Reference Ionosphere model: A review and description of an ionospheric benchmark. Rev. Geophys. 2022, 60, e2022RG000792. [Google Scholar] [CrossRef]
- CCMC Instant Run System. Available online: https://kauai.ccmc.gsfc.nasa.gov/instantrun/iri/ (accessed on 2 May 2024).
- Fejer, B.G.; Emmert, J.T. Low-latitude ionospheric disturbance electric field effects during the recovery phase of the 19–21 October 1998 magnetic storm. J. Geophys. Res. 2003, 108, 1454. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Ouzounov, D.P.; Karelin, A.V.; Davidenko, D.V. Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system. Geomagn. Aeron. 2015, 55, 521–538. [Google Scholar] [CrossRef]
- Klimenko, M.V.; Klimenko, V.V.; Zakharenkova, I.E.; Pulinets, S.A.; Zhao, B.; Tzidilina, M.N. Formation mechanism of great positive TEC disturbances prior to Wenchuan earthquake on May 12, 2008. Adv. Space Res. 2011, 48, 488–499. [Google Scholar] [CrossRef]
- Rycroft, M.J.; Harrison, G.R.; Nicoll, K.A.; Mareev, E.A. An overview of Earth’s global electric circuit and atmospheric conductivity. Space Sci. Rev. 2008, 137, 83–105. [Google Scholar] [CrossRef]
- Burns, G.; Frank-Kamenetsky, A.; Tinsley, B.; French, W.; Grigioni, P.; Camporeale, G.; Bering, E. Atmospheric Global Circuit Variations from Vostok and Concordia Electric Field Measurements. J. Atmos. Sci. 2017, 74, 783–800. [Google Scholar] [CrossRef]
- Nicoll, K.; Harrison, R.; Barta, V.; Bor, J.; Brugge, R.; Chillingarian, A.; Chum, J.; Georgoulias, A.; Guha, A.; Kourtidis, K.; et al. A global atmospheric electricity monitoring network for climate and geophysical research. J. Atmos. Sol.-Terr. Phys. 2019, 184, 18–29. [Google Scholar] [CrossRef]
- Sorokin, V.; Hayakawa, M. Generation of seismic-related DC electric fields and lithosphere atmosphere-ionosphere coupling. Modern Appl. Sci. 2013, 7, 1–25. [Google Scholar] [CrossRef]
- Huba, J.D.; Joyce, G.; Krall, J. Three-dimensional equatorial spread F modeling. Geophys. Res. Lett. 2008, 35, L10102. [Google Scholar] [CrossRef]
- Li, M.; Parrot, M. Statistical analysis of an ionospheric parameter as a base for earthquake prediction. J. Geophys. Res. Space Phys. 2013, 118, 3731–3739. [Google Scholar] [CrossRef]
- Xiong, P.; Marchetti, D.; De Santis, A.; Zhang, X.; Shen, X. SafeNet: SwArm for Earthquake Perturbations Identification Using Deep Learning Networks. Remote Sens. 2021, 13, 5033. [Google Scholar] [CrossRef]
- Marchetti, D.; De Santis, A.; Campuzano, S.A.; Zhu, K.; Soldani, M.; D’Arcangelo, S.; Orlando, M.; Wang, T.; Cianchini, G.; Di Mauro, D.; et al. Worldwide Statistical Correlation of Eight Years of Swarm Satellite Data with M5.5+ Earthquakes: New Hints about the Preseismic Phenomena from Space. Remote Sens. 2022, 14, 2649. [Google Scholar] [CrossRef]
- Ouzounov, D.; Khachikyan, G. Studying the Impact of the Geospace Environment on Solar Lithosphere Coupling and Earthquake Activity. Remote Sens. 2024, 16, 24. [Google Scholar] [CrossRef]
- Sorokin, V.; Yaschenko, A.; Mushkarev, G.; Novikov, V. Telluric Currents Generated by Solar Flare Radiation: Physical Model and Numerical Estimations. Atmosphere 2023, 14, 458. [Google Scholar] [CrossRef]
Sat | Orbit | Appr. UT | Appr. LT |
---|---|---|---|
Swarm_A, Swarm_C | ascending | 12 | 17 |
descending | 23 | 05 | |
Swarm_B | ascending | 02 | 08 |
descending | 14 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukianova, R.; Daurbayeva, G.; Siylkanova, A. Ionospheric and Meteorological Anomalies Associated with the Earthquake in Central Asia on 22 January 2024. Remote Sens. 2024, 16, 3112. https://doi.org/10.3390/rs16173112
Lukianova R, Daurbayeva G, Siylkanova A. Ionospheric and Meteorological Anomalies Associated with the Earthquake in Central Asia on 22 January 2024. Remote Sensing. 2024; 16(17):3112. https://doi.org/10.3390/rs16173112
Chicago/Turabian StyleLukianova, Renata, Gulbanu Daurbayeva, and Akgenzhe Siylkanova. 2024. "Ionospheric and Meteorological Anomalies Associated with the Earthquake in Central Asia on 22 January 2024" Remote Sensing 16, no. 17: 3112. https://doi.org/10.3390/rs16173112
APA StyleLukianova, R., Daurbayeva, G., & Siylkanova, A. (2024). Ionospheric and Meteorological Anomalies Associated with the Earthquake in Central Asia on 22 January 2024. Remote Sensing, 16(17), 3112. https://doi.org/10.3390/rs16173112