Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (224)

Search Parameters:
Keywords = lithium/electrolyte interface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 8108 KB  
Review
A Review of Cross-Scale State Estimation Techniques for Power Batteries in Electric Vehicles: Evolution from Single-State to Multi-State Cooperative Estimation
by Ning Chen, Yihang Xie, Yuanhao Cheng, Huaiqing Wang, Yu Zhou, Xu Zhao, Jiayao Chen and Chunhua Yang
Energies 2025, 18(19), 5289; https://doi.org/10.3390/en18195289 - 6 Oct 2025
Viewed by 395
Abstract
As a critical technological foundation for electric vehicles, power battery state estimation primarily involves estimating the State of Charge (SOC), the State of Health (SOH) and the Remaining Useful Life (RUL). This paper systematically categorizes battery state estimation methods into three distinct generations, [...] Read more.
As a critical technological foundation for electric vehicles, power battery state estimation primarily involves estimating the State of Charge (SOC), the State of Health (SOH) and the Remaining Useful Life (RUL). This paper systematically categorizes battery state estimation methods into three distinct generations, tracing the evolutionary progression from single-state to multi-state cooperative estimation approaches. First-generation methods based on equivalent circuit models offer straightforward implementation but accumulate SOC-SOH estimation errors during battery aging, as they fail to account for the evolution of microscopic parameters such as solid electrolyte interphase film growth, lithium inventory loss, and electrode degradation. Second-generation data-driven approaches, which leverage big data and deep learning, can effectively model highly nonlinear relationships between measurements and battery states. However, they often suffer from poor physical interpretability and generalizability due to the “black-box” nature of deep learning. The emerging third-generation technology establishes transmission mechanisms from microscopic electrode interface parameters via electrochemical impedance spectroscopy to macroscopic SOC, SOH, and RUL states, forming a bidirectional closed-loop system integrating estimation, prediction, and optimization that demonstrates potential to enhance both full-operating-condition adaptability and estimation accuracy. This progress supports the development of high-reliability, long-lifetime electric vehicles. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

45 pages, 2145 KB  
Review
MXenes in Solid-State Batteries: Multifunctional Roles from Electrodes to Electrolytes and Interfacial Engineering
by Francisco Márquez
Batteries 2025, 11(10), 364; https://doi.org/10.3390/batteries11100364 - 2 Oct 2025
Viewed by 385
Abstract
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface [...] Read more.
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface terminations, and mechanical resilience, which makes them suitable for diverse functions within the cell architecture. Current studies have shown that MXene-based anodes can deliver reversible lithium storage with Coulombic efficiencies approaching ~98% over 500 cycles, while their use as conductive additives in cathodes significantly improves electron transport and rate capability. As interfacial layers or structural scaffolds, MXenes effectively buffer volume fluctuations and suppress lithium dendrite growth, contributing to extended cycle life. In solid polymer and composite electrolytes, MXene fillers have been reported to increase Li+ conductivity to the 10−3–10−2 S cm−1 range and enhance Li+ transference numbers (up to ~0.76), thereby improving both ionic transport and mechanical stability. Beyond established Ti-based systems, double transition metal MXenes (e.g., Mo2TiC2, Mo2Ti2C3) and hybrid heterostructures offer expanded opportunities for tailoring interfacial chemistry and optimizing energy density. Despite these advances, large-scale deployment remains constrained by high synthesis costs (often exceeding USD 200–400 kg−1 for Ti3C2Tx at lab scale), restacking effects, and stability concerns, highlighting the need for greener etching processes, robust quality control, and integration with existing gigafactory production lines. Addressing these challenges will be crucial for enabling MXene-based SSBs to transition from laboratory prototypes to commercially viable, safe, and high-performance energy storage systems. Beyond summarizing performance, this review elucidates the mechanistic roles of MXenes in SSBs—linking lithiophilicity, field homogenization, and interphase formation to dendrite suppression at Li|SSE interfaces, and termination-assisted salt dissociation, segmental-motion facilitation, and MWS polarization to enhanced electrolyte conductivity—thereby providing a clear design rationale for practical implementation. Full article
(This article belongs to the Collection Feature Papers in Batteries)
Show Figures

Figure 1

27 pages, 6990 KB  
Review
Multiscale Insights into Inorganic Filler Regulation, Ion Transport Mechanisms, and Characterization Advances in Composite Solid-State Electrolytes
by Xinhao Xu, Dingyuan Lu, Sipeng Huang, Fuming Wang, Yulin Min and Qunjie Xu
Processes 2025, 13(9), 2795; https://doi.org/10.3390/pr13092795 - 1 Sep 2025
Viewed by 605
Abstract
All-solid-state lithium batteries (ASSLBs) are emerging as a promising alternative to conventional lithium-ion batteries, offering solutions to challenges related to energy density and safety. Their core advancement relies on breakthroughs in solid-state electrolytes (SEs). SEs can be broadly grouped into two main types: [...] Read more.
All-solid-state lithium batteries (ASSLBs) are emerging as a promising alternative to conventional lithium-ion batteries, offering solutions to challenges related to energy density and safety. Their core advancement relies on breakthroughs in solid-state electrolytes (SEs). SEs can be broadly grouped into two main types: inorganic solid electrolytes (ISEs) and organic solid electrolytes (OSEs). ISEs offer high ionic conductivity (0.1~1 mS cm−1), a lithium-ion transference number close to 1, and excellent thermal stability, but their intrinsic brittleness leads to poor interfacial wettability and processing difficulties, limiting practical applications. In contrast, OSEs exhibit good flexibility and interfacial compatibility but suffer from poor ionic conductivity (10−4~10−2 mS cm−1) due to high crystallinity at room temperature, in addition to poor thermal stability and weak mechanical integrity, making it difficult to match high-voltage cathodes and suppress lithium dendrite growth. Against this backdrop, the stability of the organic–inorganic interface plays a crucial role. However, challenges such as low overall conductivity and unstable interfaces still limit their performance. This review provides a microscopic perspective on lithium-ion transport pathways across the polymer phase, the inorganic filler phase, and their interfacial regions. It categorizes inert fillers and active fillers, analyzing their structure–performance relationships and emphasizing the synergistic effects of filler dimensionality, surface chemistry, and interfacial interactions. In addition, cutting-edge analytical methods such as time-of-flight secondary ion mass spectrometry (TOF-SIMS) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) have also been employed and are summarized into their roles for revealing the microstructures and dynamic interfacial behaviors of OICSEs. Finally, future directions are proposed, such as hierarchical pore structure design, surface functionalization, and simulation-guided optimization, aiming to provide theoretical insights and technological strategies for the development of high-performance composite electrolytes for ASSLBs. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

38 pages, 6998 KB  
Review
Silicon Carbide (SiC) and Silicon/Carbon (Si/C) Composites for High-Performance Rechargeable Metal-Ion Batteries
by Sara Adnan Mahmood, Nadhratun Naiim Mobarak, Arofat Khudayberdieva, Malika Doghmane, Sabah Chettibi and Kamel Eid
Int. J. Mol. Sci. 2025, 26(16), 7757; https://doi.org/10.3390/ijms26167757 - 11 Aug 2025
Cited by 1 | Viewed by 1935
Abstract
Silicon carbide (SiC) and silicon nanoparticle-decorated carbon (Si/C) materials are electrodes that can potentially be used in various rechargeable batteries, owing to their inimitable merits, including non-flammability, stability, eco-friendly nature, low cost, outstanding theoretical capacity, and earth abundance. However, SiC has inferior electrical [...] Read more.
Silicon carbide (SiC) and silicon nanoparticle-decorated carbon (Si/C) materials are electrodes that can potentially be used in various rechargeable batteries, owing to their inimitable merits, including non-flammability, stability, eco-friendly nature, low cost, outstanding theoretical capacity, and earth abundance. However, SiC has inferior electrical conductivity, volume expansion, a low Li+ diffusion rate during charge–discharge, and inevitable repeated formation of a solid–electrolyte interface layer, which hinders its commercial utilization. To address these issues, extensive research has focused on optimizing preparation methods, engineering morphology, doping, and creating composites with other additives (such as carbon materials, metal oxides, nitrides, chalcogenides, polymers, and alloys). Owing to the upsurge in this research arena, providing timely updates on the use of SiC and Si/C for batteries is of great importance. This review summarizes the controlled design of SiC-based and Si/C composites using various methods for rechargeable metal-ion batteries like lithium-ion (LIBs), sodium-ion (SIBs), zinc-air (ZnBs), and potassium-ion batteries (PIBs). The experimental and predicted theoretical performance of SiC composites that incorporate various carbon materials, nanocrystals, and non-metal dopants are summarized. In addition, a brief synopsis of the current challenges and prospects is provided to highlight potential research directions for SiC composites in batteries. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

43 pages, 6412 KB  
Review
Thermal Stability of Lithium-Ion Batteries: A Review of Materials and Strategies
by Aimei Yu, Jinjie Feng and Jun Pang
Energies 2025, 18(16), 4240; https://doi.org/10.3390/en18164240 - 9 Aug 2025
Viewed by 1357
Abstract
Rising incidents of critical lithium-ion battery (LIB) accidents highlight the pressing demand for safety enhancements that do not degrade the electrochemical performance parameters. This article provides a comprehensive overview of thermal failure mechanisms and thermal stability strategies, including their cathode, anode, separator, and [...] Read more.
Rising incidents of critical lithium-ion battery (LIB) accidents highlight the pressing demand for safety enhancements that do not degrade the electrochemical performance parameters. This article provides a comprehensive overview of thermal failure mechanisms and thermal stability strategies, including their cathode, anode, separator, and electrolyte. The analysis covers the current thermal failure mechanisms of each component, including structural changes and boundary reactions, such as Mn dissolution in the cathode, solid–electrolyte interface decomposition in the anode, the melting–shrinkage–perforation of the separator, as well as decomposition–combustion–gas generation in the electrolyte. Furthermore, the article reviews thermal stability improvement methods for each component, including element doping and surface coating of the electrode, high-temperature resistance, flame retardancy, and porosity strategies of the separator, flame retardant, non-flammable solvent, and solid electrolyte strategies of the electrolyte. The findings highlight that incorporating diverse elements into the crystal lattice enhances the thermal stability and extends the service life of electrode materials, while applying surface coatings effectively suppresses the boundary reactions and structural degradation responsible for thermal failure. Furthermore, by using solid electrolytes such as polymer electrolytes, and combining innovative ceramic-polymer composite separators, it is possible to effectively reduce the flammability of these components and enhance their thermal stability. As a result, the overall thermal safety of LIBs is improved. These strategies collectively contribute to the overall thermal safety performance of LIBs. Full article
Show Figures

Figure 1

35 pages, 3497 KB  
Review
Recent Advances in Dendrite Suppression Strategies for Solid-State Lithium Batteries: From Interface Engineering to Material Innovations
by Abniel Machín, Francisco Díaz, María C. Cotto, José Ducongé and Francisco Márquez
Batteries 2025, 11(8), 304; https://doi.org/10.3390/batteries11080304 - 8 Aug 2025
Viewed by 4445
Abstract
Solid-state lithium batteries (SSLBs) have emerged as a promising alternative to conventional lithium-ion systems due to their superior safety profile, higher energy density, and potential compatibility with lithium metal anodes. However, a major challenge hindering their widespread deployment is the formation and growth [...] Read more.
Solid-state lithium batteries (SSLBs) have emerged as a promising alternative to conventional lithium-ion systems due to their superior safety profile, higher energy density, and potential compatibility with lithium metal anodes. However, a major challenge hindering their widespread deployment is the formation and growth of lithium dendrites, which compromise both performance and safety. This review provides a comprehensive and structured overview of recent advances in dendrite suppression strategies, with special emphasis on the role played by the nature of the solid electrolyte. In particular, we examine suppression mechanisms and material innovations within the three main classes of solid electrolytes: sulfide-based, oxide-based, and polymer-based systems. Each electrolyte class presents distinct advantages and challenges in relation to dendrite behavior. Sulfide electrolytes, known for their high ionic conductivity and good interfacial wettability, suffer from poor mechanical strength and chemical instability. Oxide electrolytes exhibit excellent electrochemical stability and mechanical rigidity but often face high interfacial resistance. Polymer electrolytes, while mechanically flexible and easy to process, generally have lower ionic conductivity and limited thermal stability. This review discusses how these intrinsic properties influence dendrite nucleation and propagation, including the role of interfacial stress, grain boundaries, void formation, and electrochemical heterogeneity. To mitigate dendrite formation, we explore a variety of strategies including interfacial engineering (e.g., the use of artificial interlayers, surface coatings, and chemical additives), mechanical reinforcement (e.g., incorporation of nanostructured or gradient architectures, pressure modulation, and self-healing materials), and modifications of the solid electrolyte and electrode structure. Additionally, we highlight the critical role of advanced characterization techniques—such as in situ electron microscopy, synchrotron-based X-ray diffraction, vibrational spectroscopy, and nuclear magnetic resonance (NMR)—for elucidating dendrite formation mechanisms and evaluating the effectiveness of suppression strategies in real time. By integrating recent experimental and theoretical insights across multiple disciplines, this review identifies key limitations in current approaches and outlines emerging research directions. These include the design of multifunctional interphases, hybrid electrolytes, and real-time diagnostic tools aimed at enabling the development of reliable, scalable, and dendrite-free SSLBs suitable for practical applications in next-generation energy storage. Full article
(This article belongs to the Special Issue Advances in Solid Electrolytes and Solid-State Batteries)
Show Figures

Graphical abstract

18 pages, 4914 KB  
Article
Preparation and Failure Behavior of Gel Electrolytes for Multilayer Structure Lithium Metal Solid-State Batteries
by Chu Chen, Wendong Qin, Qiankun Hun, Yujiang Wang, Xinghua Liang, Renji Tan, Junming Li and Yifeng Guo
Gels 2025, 11(8), 573; https://doi.org/10.3390/gels11080573 - 23 Jul 2025
Viewed by 589
Abstract
High safety gel polymer electrolyte (GPE) is used in lithium metal solid state batteries, which has the advantages of high energy density, wide temperature range, high safety, and is considered as a subversive new generation battery technology. However, solid-state lithium batteries with multiple [...] Read more.
High safety gel polymer electrolyte (GPE) is used in lithium metal solid state batteries, which has the advantages of high energy density, wide temperature range, high safety, and is considered as a subversive new generation battery technology. However, solid-state lithium batteries with multiple layers and large capacity currently have poor cycle life and a large gap between the actual output cycle capacity retention rate and the theoretical level. In this paper, polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP)/polyacrylonitrile (PAN)—lithium perchlorate (LiClO4)—lithium lanthanum zirconium tantalate (LLZTO) gel polymer electrolytes was prepared by UV curing process using a UV curing machine at a speed of 0.01 m/min for 10 s, with the temperature controlled at 30 °C and wavelength 365 nm. In order to study the performance and failure mechanism of multilayer solid state batteries, single and three layers of solid state batteries with ceramic/polymer composite gel electrolyte were assembled. The results show that the rate and cycle performance of single-layer solid state battery with gel electrolyte are better than those of three-layer solid state battery. As the number of cycles increases, the interface impedance of both single-layer and three-layer electrolyte membrane solid-state batteries shows an increasing trend. Specifically, the three-layer battery impedance increased from 17 Ω to 42 Ω after 100 cycles, while the single-layer battery showed a smaller increase, from 2.2 Ω to 4.8 Ω, indicating better interfacial stability. After 100 cycles, the interface impedance of multi-layer solid-state batteries increases by 9.61 times that of single-layer batteries. After 100 cycles, the corresponding capacity retention rates were 48.9% and 15.6%, respectively. This work provides a new strategy for large capacity solid state batteries with gel electrolyte design. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Graphical abstract

17 pages, 6759 KB  
Review
Novel Structural Janus Hydrogels for Battery Applications: Structure Design, Properties, and Prospects
by Ping Li and Qiushi Wang
Colloids Interfaces 2025, 9(4), 48; https://doi.org/10.3390/colloids9040048 - 19 Jul 2025
Cited by 2 | Viewed by 899
Abstract
Janus hydrogels, defined by their asymmetric architectures and bifunctional interfaces, have emerged as a transformative class of solid-state electrolytes in electrochemical energy storage. By integrating spatially distinct chemomechanical and ionic functionalities within a single matrix, they overcome the intrinsic limitations of conventional isotropic [...] Read more.
Janus hydrogels, defined by their asymmetric architectures and bifunctional interfaces, have emerged as a transformative class of solid-state electrolytes in electrochemical energy storage. By integrating spatially distinct chemomechanical and ionic functionalities within a single matrix, they overcome the intrinsic limitations of conventional isotropic hydrogels, offering enhanced interfacial stability, directional ion transport, and dendrite suppression in lithium- and zinc-based batteries. This mini-review systematically highlights recent breakthroughs in Janus hydrogel design, including interfacial polymerization and layer-by-layer assembly, which collectively enable precise modulation of crosslinking gradients and ion transport pathways. This review uniquely frames Janus hydrogels from a battery-centric and interface-engineering perspective. It elucidates key structure–function correlations, identifies current limitations in scalable fabrication and electrochemical longevity, and outlines future directions toward intelligent, multifunctional platforms for next-generation flexible and biointegrated energy systems. Full article
(This article belongs to the Special Issue State of the Art of Colloid and Interface Science in Asia)
Show Figures

Graphical abstract

15 pages, 4059 KB  
Article
Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery
by Michael Herraiz, Saida Moumen, Kevin Lemoine, Laurent Jouffret, Katia Guérin, Elodie Petit, Nathalie Gaillard, Laure Bertry, Reka Toth, Thierry Le Mercier, Valérie Buissette and Marc Dubois
Batteries 2025, 11(7), 268; https://doi.org/10.3390/batteries11070268 - 16 Jul 2025
Viewed by 758
Abstract
After reviewing the state of the art of the fluorination of inorganic solid electrolytes, an application of gas/solid fluorination is given and how it can be processed. Garnet-type oxide has been chosen. These oxides with an ideal structure of chemical formula A3 [...] Read more.
After reviewing the state of the art of the fluorination of inorganic solid electrolytes, an application of gas/solid fluorination is given and how it can be processed. Garnet-type oxide has been chosen. These oxides with an ideal structure of chemical formula A3B2(XO4)3 are mainly known for their magnetic and dielectric properties. Certain garnets may have a high enough Li+ ionic conductivity to be used as solid electrolyte of lithium ion battery. The surface of LLZO may be changed in contact with the moisture and CO2 present in the atmosphere that results in a change of the conductivity at the interface of the solid. LiOH and/or lithium carbonate are formed at the surface of the garnet particles. In order to allow for handling and storage under normal conditions of this solid electrolyte, surface fluorination was performed using elemental fluorine. When controlled using mild conditions (temperature lower or equal to 200 °C, either in static or dynamic mode), the addition of fluorine atoms to LLZO with Li6,4Al0,2La3Zr2O12 composition is limited to the surface, forming a covering layer of lithium fluoride LiF. The effect of the fluorination was evidenced by IR, Raman, and NMR spectroscopies. If present in the pristine LLZO powder, then the carbonate groups disappear. More interestingly, contrary to the pristine LLZO, the contents of these groups are drastically reduced even after storage in air up to 45 days when the powder is covered with the LiF layer. Surface fluorination could be applied to other solid electrolytes that are air sensitive. Full article
Show Figures

Figure 1

15 pages, 9578 KB  
Article
Interface Engineering of NCMA Cathodes with LATP Coatings for High-Performance Solid-State Lithium Batteries
by Shih-Ping Cho, Muhammad Usman Hameed, Chien-Te Hsieh and Wei-Ren Liu
Nanomaterials 2025, 15(14), 1057; https://doi.org/10.3390/nano15141057 - 8 Jul 2025
Viewed by 986
Abstract
The development of high-performance and stable solid-state lithium batteries (SSBs) is critical for advancing next-generation energy storage technologies. This study investigates LATP (Li1.3Al0.3Ti1.7(PO4)3) coatings to enhance the electrochemical performance and interface stability of [...] Read more.
The development of high-performance and stable solid-state lithium batteries (SSBs) is critical for advancing next-generation energy storage technologies. This study investigates LATP (Li1.3Al0.3Ti1.7(PO4)3) coatings to enhance the electrochemical performance and interface stability of NCMA83 (LiNi0.83Co0.06Mn0.06Al0.05O2) cathodes. Compared to conventional combinations with LPSC (Li6PS5Cl) solid electrolytes, LATP coatings significantly reduce interfacial reactivity and improve cycling stability. Structural and morphological analyses reveal that LATP coatings maintain the crystallinity of NCMA83 while fine-tuning its lattice stress. Electrochemical testing demonstrates that LATP-modified samples (83L5) achieve superior capacity retention (65 mAh/g after 50 cycles) and reduced impedance (Rct ~200 Ω), compared to unmodified samples (83L0). These results highlight LATP’s potential as a surface engineering solution to mitigate degradation effects, enhance ionic conductivity, and extend the lifespan of high-capacity SSBs. Full article
(This article belongs to the Topic Surface Science of Materials)
Show Figures

Figure 1

117 pages, 10736 KB  
Review
Design Principles and Engineering Strategies for Stabilizing Ni-Rich Layered Oxides in Lithium-Ion Batteries
by Alain Mauger and Christian M. Julien
Batteries 2025, 11(7), 254; https://doi.org/10.3390/batteries11070254 - 4 Jul 2025
Cited by 1 | Viewed by 3900
Abstract
Nickel-rich layered oxides such as LiNixMnyCozO2 (NMC), LiNixCoyAlzO2 (NCA), and LiNixMnyCozAl(1–xyz)O2 (NMCA), where x [...] Read more.
Nickel-rich layered oxides such as LiNixMnyCozO2 (NMC), LiNixCoyAlzO2 (NCA), and LiNixMnyCozAl(1–xyz)O2 (NMCA), where x ≥ 0.6, have emerged as key cathode materials in lithium-ion batteries due to their high operating voltage and superior energy density. These materials, characterized by low cobalt content, offer a promising path toward sustainable and cost-effective energy storage solutions. However, their electrochemical performance remains below theoretical expectations, primarily due to challenges related to structural instability, limited thermal safety, and suboptimal cycle life. Intensive research efforts have been devoted to addressing these issues, resulting in substantial performance improvements and enabling the development of next-generation lithium-ion batteries with higher nickel content and reduced cobalt dependency. In this review, we present recent advances in material design and engineering strategies to overcome the problems limiting their electrochemical performance (cation mixing, phase stability, oxygen release, microcracks during cycling). These strategies include synthesis methods to optimize the morphology (size of the particles, core–shell and gradient structures), surface modifications of the Ni-rich particles, and doping. A detailed comparison between these strategies and the synergetic effects of their combination is presented. We also highlight the synergistic role of compatible lithium salts and electrolytes in achieving state-of-the-art nickel-rich lithium-ion batteries. Full article
(This article belongs to the Special Issue Batteries: 10th Anniversary)
Show Figures

Graphical abstract

12 pages, 2634 KB  
Article
Enhancing the Cycle Life of Silicon Oxide–Based Lithium-Ion Batteries via a Nonflammable Fluorinated Ester–Based Electrolyte
by Kihun An, Yen Hai Thi Tran, Dong Guk Kang and Seung-Wan Song
Batteries 2025, 11(7), 250; https://doi.org/10.3390/batteries11070250 - 30 Jun 2025
Viewed by 1880
Abstract
Silicon oxide–graphite is a promising high-capacity anode material for next-generation lithium-ion batteries (LIBs). However, despite using a small fraction (≤5%) of Si, it suffers from a short cycle life owing to intrinsic swelling and particle pulverization during cycling, making practical application challenging. High-nickel [...] Read more.
Silicon oxide–graphite is a promising high-capacity anode material for next-generation lithium-ion batteries (LIBs). However, despite using a small fraction (≤5%) of Si, it suffers from a short cycle life owing to intrinsic swelling and particle pulverization during cycling, making practical application challenging. High-nickel (Ni ≥ 80%) oxide cathodes for high-energy-density LIBs and their operation beyond 4.2 V have been pursued, which requires the anodic stability of the electrolyte. Herein, we report a nonflammable multi-functional fluorinated ester–based liquid electrolyte that stabilizes the interfaces and suppresses the swelling of highly loaded 5 wt% SiO–graphite anode and LiNi0.88Co0.08Mn0.04O2 cathode simultaneously in a 3.5 mAh cm−2 full cell, and improves cycle life and battery safety. Surface characterization results reveal that the interfacial stabilization of both the anode and cathode by a robust and uniform solid electrolyte interphase (SEI) layer, enriched with fluorinated ester-derived inorganics, enables 80% capacity retention of the full cell after 250 cycles, even under aggressive conditions of 4.35 V, 1 C and 45 °C. This new electrolyte formulation presents a new opportunity to advance SiO-based high-energy density LIBs for their long operation and safety. Full article
(This article belongs to the Collection Feature Papers in Batteries)
Show Figures

Figure 1

15 pages, 2767 KB  
Article
Solid-to-Solid Manufacturing Processes for High-Performance Li-Ion Solid-State Batteries
by David Orisekeh, Byeong-Min Roh and Xinyi Xiao
Polymers 2025, 17(13), 1788; https://doi.org/10.3390/polym17131788 - 27 Jun 2025
Viewed by 991
Abstract
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are [...] Read more.
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are mostly manufactured by either traditional processes or 3D printing technologies. These processes involve making a slurry of plastic, active and conductive material and usually adding a plasticizer when making thin films or filaments for 3D printing. This study investigates the additive manufacturing of solid-state electrolytes (SSEs) by employing fused deposition modeling (FDM) with recyclable, bio-derived polylactic acid (PLA) filaments. Precise control of macro-porosity is achieved by systematically varying key process parameters, including raster orientation, infill percentage, and interlayer adhesion conditions, thereby enabling the formation of tunable, interconnected pore networks within the polymer matrix. Following 3D printing, these engineered porous frameworks are infiltrated with lithium hexafluorophosphate (LiPF6), which functions as the active ionic conductor. A tailored thermal sintering protocol is then applied to promote solid-phase fusion of the embedded salt throughout the macro-porous PLA scaffold, resulting in a mechanically robust and ionically conductive composite separator. The electrochemical ionic conductivity and structural integrity of the sintered SSEs are characterized through electrochemical impedance spectroscopy (EIS) and standardized mechanical testing to assess their suitability for integration into advanced solid-state battery architectures. The solid-state separator achieved an average ionic conductivity of 2.529 × 10−5 S·cm−1. The integrated FDM-sintering process enhances ion exchange at the electrode–electrolyte interface, minimizes material waste, and supports cost-efficient, fully recyclable component fabrication. Full article
Show Figures

Figure 1

15 pages, 1787 KB  
Article
Probing Solid-State Interface Kinetics via Alternating Current Electrophoretic Deposition: LiFePO4 Li-Metal Batteries
by Su Jeong Lee and Byoungnam Park
Appl. Sci. 2025, 15(13), 7120; https://doi.org/10.3390/app15137120 - 24 Jun 2025
Viewed by 589
Abstract
This work presents a comprehensive investigation into the interfacial charge storage mechanisms and lithium-ion transport behavior of Li-metal all-solid-state batteries (ASSBs) employing LiFePO4 (LFP) cathodes fabricated via alternating current electrophoretic deposition (AC-EPD) and Li1.3Al0.3Ti1.7(PO4) [...] Read more.
This work presents a comprehensive investigation into the interfacial charge storage mechanisms and lithium-ion transport behavior of Li-metal all-solid-state batteries (ASSBs) employing LiFePO4 (LFP) cathodes fabricated via alternating current electrophoretic deposition (AC-EPD) and Li1.3Al0.3Ti1.7(PO4)3 (LATP) as the solid-state electrolyte. We demonstrate that optimal sintering improves the LATP–LFP interfacial contact, leading to higher lithium diffusivity (~10−9 cm2∙s−1) and diffusion-controlled kinetics (b ≈ 0.5), which directly translate to better rate capability. Structural and electrochemical analyses—including X-ray diffraction, scanning electron microscopy, cyclic voltammetry, and rate capability tests—demonstrate that the cell with LATP sintered at 900 °C delivers the highest Li-ion diffusivity (~10−9 cm2∙s−1), near-ideal diffusion-controlled behavior (b-values ~0.5), and superior rate capability. In contrast, excessive sintering at 1000 °C led to reduced diffusivity (~10−10 cm2∙s−1). The liquid electrolyte system showed higher b-values (~0.58), indicating the inclusion of surface capacitive behavior. The correlation between b-values, diffusivity, and morphology underscores the critical role of interface engineering and electrolyte processing in determining the performance of solid-state batteries. This study establishes AC-EPD as a viable and scalable method for fabricating additive-free LFP cathodes and offers new insights into the structure–property relationships governing the interfacial transport in ASSBs. Full article
Show Figures

Figure 1

18 pages, 2275 KB  
Article
In Situ Phase Separation Strategy to Construct Zinc Oxide Dots-Modified Vanadium Nitride Flower-like Heterojunctions as an Efficient Sulfur Nanoreactor for Lithium-Sulfur Batteries
by Ningning Chen, Wei Zhou, Minzhe Chen, Ke Yuan, Haofeng Zuo, Aocheng Wang, Dengke Zhao, Nan Wang and Ligui Li
Materials 2025, 18(11), 2639; https://doi.org/10.3390/ma18112639 - 4 Jun 2025
Viewed by 570
Abstract
Exploring advanced sulfur cathode materials is important for the development of lithium-sulfur batteries (LSBs), but they still present challenges. Herein, zinc oxide dots-modified vanadium nitride flower-like heterojunctions (Zn-QDs-VN) as sulfur hosts are prepared by a phase separation strategy. Characterizations confirm that the flower [...] Read more.
Exploring advanced sulfur cathode materials is important for the development of lithium-sulfur batteries (LSBs), but they still present challenges. Herein, zinc oxide dots-modified vanadium nitride flower-like heterojunctions (Zn-QDs-VN) as sulfur hosts are prepared by a phase separation strategy. Characterizations confirm that the flower structure with high specific surface area and pores improves active site exposure and electron/mass transfer. In situ phase separation enriches the Zn-QDs-VN interface, addressing the issues of uneven distribution and interface reduction of Zn-QDs-VN. Further theoretical computations reveal that ZnO-QDs-VN with optimized intermediate spin states can constitute a stable LiS* bond sequence, which can conspicuously facilitate the adsorption and conversion of LiPSs and reduce the battery reaction energy barrier. Therefore, the ZnO-QDs-VN@S cathode shows a high initial specific capacity of 1109.6 mAh g−1 at 1.0 C and long cycle stability (maintaining 984.2 mAh g−1 after 500 cycles). Under high S loading (8.5 mg cm−2) and lean electrolyte conditions (E/S = 6.5 μL mg−1), it also exhibits a high initial area capacity (10.26 mAh cm−2) at 0.2 C. The interfacial synergistic effect accelerates the adsorption and conversion of LiPSs and reduces the energy barriers in cell reactions. The study provides a new method for designing heterojunctions to achieve high-performance LSBs. Full article
(This article belongs to the Special Issue Advanced Electrode Materials for Batteries: Design and Performance)
Show Figures

Graphical abstract

Back to TopTop