Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (225)

Search Parameters:
Keywords = liquid-crystalline polymer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1817 KiB  
Article
Modified Polyethylene Oxide Solid-State Electrolytes with Poly(vinylidene fluoride-hexafluoropropylene)
by Jinwei Yan, Wen Huang, Tangqi Hu, Hai Huang, Chengwei Zhu, Zhijie Chen, Xiaohong Fan, Qihui Wu and Yi Li
Molecules 2025, 30(11), 2422; https://doi.org/10.3390/molecules30112422 - 31 May 2025
Viewed by 601
Abstract
Lithium-ion batteries are restricted in development due to safety issues such as poor chemical stability and flammability of organic liquid electrolytes. Replacing liquid electrolytes with solid ones is crucial for improving battery safety and performance. This study aims to enhance the performance of [...] Read more.
Lithium-ion batteries are restricted in development due to safety issues such as poor chemical stability and flammability of organic liquid electrolytes. Replacing liquid electrolytes with solid ones is crucial for improving battery safety and performance. This study aims to enhance the performance of polyethylene oxide (PEO)-based polymer via blending with poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)). The experimental results showed that the addition of P(VDF-HFP) disrupted the crystalline regions of PEO by increasing the amorphous domains, thus improving lithium-ion migration capability. The electrolyte membrane with 30 wt% P(VDF-HFP) and 70 wt% PEO exhibited the highest ionic conductivity, widest electrochemical window, and enhanced thermal stability, as well as a high lithium-ion transference number (0.45). The cells assembled with this membrane electrolyte demonstrated an excellent rate of performance and cycling stability, retaining specific capacities of 122.39 mAh g−1 after 200 cycles at 0.5C, and 112.77 mAh g−1 after 200 cycles at 1C and 25 °C. The full cell assembled with LiFePO4 as the positive electrode exhibits excellent rate performance and good cycling stability, indicating that prepared solid electrolytes have great potential applications in lithium batteries. Full article
Show Figures

Figure 1

10 pages, 3132 KiB  
Communication
Interfacial Synthesis of an Electro-Functional 2D Bis(terpyridine)copper(II) Polymer Nanosheet
by Kenji Takada, Joe Komeda, Hiroaki Maeda, Naoya Fukui, Hiroyasu Masunaga, Sono Sasaki and Hiroshi Nishihara
Molecules 2025, 30(9), 2044; https://doi.org/10.3390/molecules30092044 - 4 May 2025
Viewed by 625
Abstract
Coordination polymers are attractive materials for various fields of practical application. The high degree of freedom of choice of metal ions and organic ligands plays a critical role in functional diversification. In the present study, we report the liquid–liquid interfacial synthesis of a [...] Read more.
Coordination polymers are attractive materials for various fields of practical application. The high degree of freedom of choice of metal ions and organic ligands plays a critical role in functional diversification. In the present study, we report the liquid–liquid interfacial synthesis of a 2D bis(terpyridine)copper(II) polymer thin film, Cu-tpy. The synthesized Cu-tpy was characterized by various microscopic observations such as TEM, SEM, and AFM, and spectroscopic measurements such as XPS, Raman spectroscopy, SEM/EDS, and UV–Vis spectroscopy. Synchrotron-radiated X-ray scattering confirmed that Cu-tpy was oriented crystalline films. Moreover, Cu-tpy showed electrochemical micro-supercapacitor behavior in the solid-state owing to its ionic nature. This study expands the potential of bis(terpyridine)metal(II) polymers as electro-functional materials. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Graphical abstract

34 pages, 8692 KiB  
Review
Recent Advances in Polyphenylene Sulfide-Based Separators for Lithium-Ion Batteries
by Lianlu Wan, Haitao Zhou, Haiyun Zhou, Jie Gu, Chen Wang, Quan Liao, Hongquan Gao, Jianchun Wu and Xiangdong Huo
Polymers 2025, 17(9), 1237; https://doi.org/10.3390/polym17091237 - 30 Apr 2025
Viewed by 822
Abstract
Polyphenylene sulfide (PPS)-based separators have garnered significant attention as high-performance components for next-generation lithium-ion batteries (LIBs), driven by their exceptional thermal stability (>260 °C), chemical inertness, and mechanical durability. This review comprehensively examines advances in PPS separator design, focusing on two structurally distinct [...] Read more.
Polyphenylene sulfide (PPS)-based separators have garnered significant attention as high-performance components for next-generation lithium-ion batteries (LIBs), driven by their exceptional thermal stability (>260 °C), chemical inertness, and mechanical durability. This review comprehensively examines advances in PPS separator design, focusing on two structurally distinct categories: porous separators engineered via wet-chemical methods (e.g., melt-blown spinning, electrospinning, thermally induced phase separation) and nonporous solid-state separators fabricated through solvent-free dry-film processes. Porous variants, typified by submicron pore architectures (<1 μm), enable electrolyte-mediated ion transport with ionic conductivities up to >1 mS·cm−1 at >55% porosity, while their nonporous counterparts leverage crystalline sulfur-atom alignment and trace electrolyte infiltration to establish solid–liquid biphasic conduction pathways, achieving ion transference numbers >0.8 and homogenized lithium flux. Dry-processed solid-state PPS separators demonstrate unparalleled thermal dimensional stability (<2% shrinkage at 280 °C) and mitigate dendrite propagation through uniform electric field distribution, as evidenced by COMSOL simulations showing stable Li deposition under Cu particle contamination. Despite these advancements, challenges persist in reconciling thickness constraints (<25 μm) with mechanical robustness, scaling solvent-free manufacturing, and reducing costs. Innovations in ultra-thin formats (<20 μm) with self-healing polymer networks, coupled with compatibility extensions to sodium/zinc-ion systems, are identified as critical pathways for advancing PPS separators. By addressing these challenges, PPS-based architectures hold transformative potential for enabling high-energy-density (>500 Wh·kg−1), intrinsically safe energy storage systems, particularly in applications demanding extreme operational reliability such as electric vehicles and grid-scale storage. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 2806 KiB  
Review
Crystallinity and Liquid Crystallinity of Polyurethanes: How Tailoring of Order Contributes to Customized Properties and Applications
by Artur Bukowczan, Konstantinos N. Raftopoulos and Krzysztof Pielichowski
Polymers 2025, 17(6), 784; https://doi.org/10.3390/polym17060784 - 15 Mar 2025
Viewed by 1057
Abstract
Studies on polyurethane (PU) materials offer advantageous properties utilized in various applications. The complex nature of the PUs structure and morphology gives them unique properties, but at the same time poses a considerable challenge for the characterization and design of structure–property relationships. Polyurethanes [...] Read more.
Studies on polyurethane (PU) materials offer advantageous properties utilized in various applications. The complex nature of the PUs structure and morphology gives them unique properties, but at the same time poses a considerable challenge for the characterization and design of structure–property relationships. Polyurethanes with tailored crystallinity can exhibit peculiar resistance to mechanical and chemical factors, allowing a widening range of application. Liquid crystalline polyurethanes have gained renewed interest thanks to the development of research methodologies and new possibilities for modifying diol and isocyanate monomers. The study shows that liquid crystal phenomena in polyurethanes can be effectively used for polymer compatibilization, in the fiber and nanofibers applications, as well as in ‘smart’ multi-stimuli materials. Full article
Show Figures

Figure 1

21 pages, 4141 KiB  
Article
Ternary PEO/PVDF-HFP-Based Polymer Electrolytes for Li-Ion Batteries
by Hoang Bao Tran Nguyen, Ling Ding, Björn Pohle, Toni Schmeida, Hoang Bao An Nguyen and Daria Mikhailova
Batteries 2025, 11(2), 45; https://doi.org/10.3390/batteries11020045 - 25 Jan 2025
Cited by 3 | Viewed by 2883
Abstract
The impetus to study and develop polymer electrolytes for metal-ion batteries is due to their enhanced safety compared to flammable organic liquid electrolytes, promising ionic conductivity, and broad electrochemical stability window, making them to viable candidates for battery application. In the current work, [...] Read more.
The impetus to study and develop polymer electrolytes for metal-ion batteries is due to their enhanced safety compared to flammable organic liquid electrolytes, promising ionic conductivity, and broad electrochemical stability window, making them to viable candidates for battery application. In the current work, we present a simple fabrication procedure and a comprehensive physico–chemical study of various PVDF-HFP-based electrolyte formulations with a sufficient addition of PEO polymer, LiTFSI conducting salt, and EMIMTFSI ionic liquid. The ionic conductivity, activation energy for ionic movement and thickness of the resulting polymer electrolyte show a non-linear dependency on the PVDF-HFP/PEO ratio. The electrolyte composition with a 0.35PEO-0.65PVDF-HFP/1LiTFSI/1EMIMTFSI mass fraction exhibits the highest ionic conductivity among the compositions, revealing 7.7×105 S cm1 at 30 °C. Electrochemical tests in half full and full Li-ion batteries with a LiFePO4 cathode and Li4Ti5O12 anode also emphasized this composition as the most promising one, providing an initial capacity in full cells of 120 mAh g−1 and a capacity retention of about 75% after 50 charge/discharge cycles at a 0.1 C current rate. In the PEO/PVDF-HFP polymer blend with EMIMTFSI as a plasticizer, the amount of crystalline parts, which are detrimental to a fast ionic diffusion, is significantly reduced. Full article
Show Figures

Figure 1

15 pages, 4381 KiB  
Article
Hierarchically Structured Stimuli-Responsive Liquid Crystalline Terpolymer–Rhodamine Dye Conjugates
by Samiksha Vaidya, Meenakshi Sharma, Christian Brückner and Rajeswari M. Kasi
Molecules 2025, 30(2), 401; https://doi.org/10.3390/molecules30020401 - 18 Jan 2025
Viewed by 913
Abstract
Optically responsive materials are applied in sensing, actuators, and optical devices. One such class of material is dye-doped liquid crystal polymers that self-assemble into cholesteric mesophases that reflect visible light. We report here the synthesis and characterization of a family of linear and [...] Read more.
Optically responsive materials are applied in sensing, actuators, and optical devices. One such class of material is dye-doped liquid crystal polymers that self-assemble into cholesteric mesophases that reflect visible light. We report here the synthesis and characterization of a family of linear and mildly crosslinked terpolymers prepared by the ROMP of norbornene-based monomers. The three monomers were composed of (i) rhodamine dye through one or two norbornene end groups utilizing flexible C10-alkane spacers, (ii) a cholesteryl liquid crystal (LC) using C9-alkane spacers, and (iii) PEG side chains. We investigated how these architectural variations in these terpolymers impacted their hierarchically self-assembled mesophase properties. We probed their composition, morphology, thermal, mechanic, photochromic, and mechanochromic properties using, inter alia, 1H NMR spectroscopy, DSC, temperature-dependent SAXS, diffuse reflectance UV-vis spectroscopy, and optical polarization microscopy. The new terpolymers exhibited architecture-dependent thermochromic, mechanochromic, and piezochromic properties arising from LC–rhodamine dye interactions. We found that a compromise between the rigidity and flexibility of the terpolymer architectures needed to be stricken to fully express stimuli-responsive properties. These terpolymers also showed distinctly different properties compared to those of a previously reported structurally related liquid crystalline copolymer made from two monomers. These findings help to define the design principles for optimally stimuli-responsive liquid crystalline polymers. Full article
(This article belongs to the Special Issue Polymeric Liquid Crystals and Applications, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 2624 KiB  
Article
The Properties of Damaged Starch Granules: The Relationship Between Granule Structure and Water–Starch Polymer Interactions
by Andrés Gustavo Teobaldi, Esteban Josué Carrillo Parra, Gabriela Noel Barrera and Pablo Daniel Ribotta
Foods 2025, 14(1), 21; https://doi.org/10.3390/foods14010021 - 25 Dec 2024
Cited by 1 | Viewed by 1743
Abstract
The morphology of wheat starch granules with different damaged starch (DS) content was analyzed using a particle size analyzer and scanning electron microscopy (SEM); the granular structure was studied using FT-IR spectroscopy and X-ray diffraction (XRD); and the granule–water interaction was evaluated by [...] Read more.
The morphology of wheat starch granules with different damaged starch (DS) content was analyzed using a particle size analyzer and scanning electron microscopy (SEM); the granular structure was studied using FT-IR spectroscopy and X-ray diffraction (XRD); and the granule–water interaction was evaluated by thermogravimetric analysis (TGA) and dynamic vapor sorption (DVS). The increase in the level of DS shifted the population of B-type granules towards larger particle diameters and shifted the population of A-type granules towards smaller particle diameters. The appearance of the surface of the starch-damaged granules was rough and flaky (SEM images). Crystallinity reductions were related to higher mechanical damage levels of the granular structure (FT-IR and XRD). Higher DS increased the liquid-water absorption capacity of the granules. Higher DS was associated with increments in less-bound water proportions and reductions in more strongly bound water proportions and related to reductions in the evaporation temperature of these water populations (TGA analyses). Concerning DVS data, the results suggested that the driving force for water–monolayer attachment to the starch granules decreased as DS increased. Therefore, it was suggested that the changes in granule structure led to a weaker water–starch polymer chain interactions due to the increase in DS. The results contribute to a better understanding of the influence of mechanical damage on the starch granular structure, which could be related to the rheological and thermal behavior of starch-based systems with different DS. Full article
Show Figures

Figure 1

11 pages, 11561 KiB  
Article
Exploring the Possibility of Ionic Liquid as a Dimensional Stabilizer for Well-Preserved Waterlogged Archaeological Wood
by Yihang Zhou, Zhiguo Zhang, Kai Wang, Tao Jin, Yi Feng, Mengruo Wu, Xiangna Han, Liuyang Han and Jiajun Wang
Forests 2024, 15(12), 2160; https://doi.org/10.3390/f15122160 - 6 Dec 2024
Cited by 1 | Viewed by 1003
Abstract
Dehydration is the principal conservation process for waterlogged archaeological wood (WAW), with the aim of preventing shrinkage and cracking. For well-preserved WAW, shrinkage mainly takes place when the moisture content is below the fiber saturation point. Here, we conduct a new trial using [...] Read more.
Dehydration is the principal conservation process for waterlogged archaeological wood (WAW), with the aim of preventing shrinkage and cracking. For well-preserved WAW, shrinkage mainly takes place when the moisture content is below the fiber saturation point. Here, we conduct a new trial using ionic liquid as a dimensional stabilizer to maintain a stable swollen state of WAW. Molecular dynamics simulation (MD), shrinkage measurement, Fourier transform infrared spectroscopy (FTIR), and dynamic vapor sorption (DVS) were adopted to investigate the interactions and effects of 1-Butyl-3-methylimidazolium chloride ([Bmim][Cl]) on WAW (Dipterocarpaceae Dipterocarpus sp. with a maximum moisture content of 80.3%) in comparison with the conventional material polyethylene glycol (PEG). The results show that [Bmim][Cl] and its water mixtures have a comparable or slightly greater ability to swell amorphous cellulose than does water at room temperature, while crystalline cellulose is left intact. The samples treated with [Bmim][Cl] show less shrinkage than the PEG 300- and PEG 2000-treated samples at all tested concentrations after air-drying. The best dimension control was achieved by 40 wt% [Bmim][Cl], with volumetric shrinkage reduced from 5.03% to 0.47%. DVS analysis reveals that [Bmim][Cl] reduces moisture contents at moderate and low relative humidity (<80%) when the concentration is at or below 20 wt%, which suggests that good dimensional stability was not achieved by simply preserving the moisture content but possibly through the interaction of the ionic liquid with the wood polymers. Full article
(This article belongs to the Special Issue Wood as Cultural Heritage Material: 2nd Edition)
Show Figures

Figure 1

15 pages, 2979 KiB  
Article
Assessing the Degradation of Levofloxacin in Aqueous Media by Metal-Free g-C3N4 Photocatalyst Under Simulated Solar Light Irradiation
by Truong Nguyen Xuan, Dien Nguyen Thi, Cong Le Thanh, Thu Mai Thi, Thu Le Dieu, Trung Nguyen Duc and Ottó Horváth
Catalysts 2024, 14(11), 837; https://doi.org/10.3390/catal14110837 - 20 Nov 2024
Cited by 1 | Viewed by 1378
Abstract
Graphitic carbon nitride (g-C3N4) as a fascinating conjugated polymer has attracted considerable attention due to its outstanding electronic properties, high physicochemical stability, and unique structure. In this work, we reported the characterization of g-C3N4, which [...] Read more.
Graphitic carbon nitride (g-C3N4) as a fascinating conjugated polymer has attracted considerable attention due to its outstanding electronic properties, high physicochemical stability, and unique structure. In this work, we reported the characterization of g-C3N4, which was simply synthesized by thermal polymerization of thiourea, the photocatalytic degradation kinetics, and the pathway of levofloxacin (LEV) using the prepared g-C3N4. The XRD and SEM results confirmed a crystalline graphite structure with a tri-s-triazine unit and stacked sheet-like layers of g-C3N4. The efficacy factor (EF) was compared to different photocatalytic processes to assess the LEV removal performance. g-C3N4 exhibits good stability as a photocatalyst during LEV photodegradation. Radical scavenger experiments revealed that in the oxidative degradation of LEV, O2 and h+ played the determining roles. Moreover, based on the identification of intermediates using liquid chromatography with tandem mass spectrometry (LC-MS/MS), the degradation pathway of LEV was proposed. Full article
(This article belongs to the Special Issue Environmental Catalysis in Advanced Oxidation Processes, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 2752 KiB  
Article
Synthesis of Side-Chain Liquid Crystalline Polyacrylates with Bridged Stilbene Mesogens
by Gen-ichi Konishi, Yuki Sawatari, Riki Iwai, Takuya Tanaka, Yoshimichi Shimomura and Masatoshi Tokita
Molecules 2024, 29(21), 5220; https://doi.org/10.3390/molecules29215220 - 4 Nov 2024
Cited by 5 | Viewed by 2118
Abstract
In recent years, π-conjugated liquid crystalline molecules with optoelectronic functionalities have garnered considerable attention, and integrating these molecules into side-chain liquid crystalline polymers (SCLCPs) holds potential for developing devices that are operational near room temperature. However, it is difficult to design SCLCPs with [...] Read more.
In recent years, π-conjugated liquid crystalline molecules with optoelectronic functionalities have garnered considerable attention, and integrating these molecules into side-chain liquid crystalline polymers (SCLCPs) holds potential for developing devices that are operational near room temperature. However, it is difficult to design SCLCPs with excellent processability because liquid crystalline mesogens are rigid rods, have low solubility in organic solvents, and have a high isotropization temperature. Recently, we developed near-room-temperature π-conjugated nematic liquid crystals based on “bridged stilbene”. In this work, we synthesized a polyacrylate SCLCP incorporating a bridged stilbene that exhibited a nematic phase near room temperature and could maintain liquid crystallinity for more than three months. We conducted a thorough phase structure analysis and evaluated the optical properties. The birefringence values of the resulting polymers were higher than those of the corresponding monomers because of the enhanced order parameters due to the polymer effect. In addition, the synthesized polymers inherited mesogen-derived AIE properties, with high quantum yields (Φfl = 0.14–0.35) in the solid state. It is noteworthy that the maximum fluorescence wavelength exhibited a redshift of greater than 27 nm as a consequence of film formation. Thus, several unique characteristics of the SCLCPs are unattainable with small molecular systems. Full article
(This article belongs to the Special Issue Polymeric Liquid Crystals and Applications)
Show Figures

Graphical abstract

33 pages, 4731 KiB  
Review
Soft Matter Electrolytes: Mechanism of Ionic Conduction Compared to Liquid or Solid Electrolytes
by Kyuichi Yasui and Koichi Hamamoto
Materials 2024, 17(20), 5134; https://doi.org/10.3390/ma17205134 - 21 Oct 2024
Cited by 4 | Viewed by 1690
Abstract
Soft matter electrolytes could solve the safety problem of widely used liquid electrolytes in Li-ion batteries which are burnable upon heating. Simultaneously, they could solve the problem of poor contact between electrodes and solid electrolytes. However, the ionic conductivity of soft matter electrolytes [...] Read more.
Soft matter electrolytes could solve the safety problem of widely used liquid electrolytes in Li-ion batteries which are burnable upon heating. Simultaneously, they could solve the problem of poor contact between electrodes and solid electrolytes. However, the ionic conductivity of soft matter electrolytes is relatively low when mechanical properties are relatively good. In the present review, mechanisms of ionic conduction in soft matter electrolytes are discussed in order to achieve higher ionic conductivity with sufficient mechanical properties where soft matter electrolytes are defined as polymer electrolytes and polymeric or inorganic gel electrolytes. They could also be defined by Young’s modulus from about 105 Pa to 109 Pa. Many soft matter electrolytes exhibit VFT (Vogel–Fulcher–Tammann) type temperature dependence of ionic conductivity. VFT behavior is explained by the free volume model or the configurational entropy model, which is discussed in detail. Mostly, the amorphous phase of polymer is a better ionic conductor compared to the crystalline phase. There are, however, some experimental and theoretical reports that the crystalline phase is a better ionic conductor. Some methods to increase the ionic conductivity of polymer electrolytes are discussed, such as cavitation under tensile deformation and the microporous structure of polymer electrolytes, which could be explained by the conduction mechanism of soft matter electrolytes. Full article
(This article belongs to the Special Issue Advances in Functional Soft Materials—2nd Volume)
Show Figures

Figure 1

13 pages, 874 KiB  
Article
Electro-Optic Kerr Response in Optically Isotropic Liquid Crystal Phases
by Tetiana Yevchenko, Dorota Dardas, Natalia Bielejewska and Arkadiusz C. Brańka
Materials 2024, 17(19), 4926; https://doi.org/10.3390/ma17194926 - 9 Oct 2024
Viewed by 1076
Abstract
The results of an experimental investigation of the temperature and wavelength dependence of the Kerr constant (K) of mixtures with an increasing amount of chiral dopant in an isotropic liquid crystal phase are reported. The material was composed of a nematic [...] Read more.
The results of an experimental investigation of the temperature and wavelength dependence of the Kerr constant (K) of mixtures with an increasing amount of chiral dopant in an isotropic liquid crystal phase are reported. The material was composed of a nematic liquid crystal (5CB) and a chiral dopant (CE2), which formed non-polymer-stabilized liquid crystalline blue phases with an exceptionally large value of K∼2 × 10−9 mV−2. The measurements were performed on liquid and blue phases at several concentrations covering a range of temperatures and using three wavelengths: 532 nm, 589 nm and 633 nm. The work focused on changes caused by concentration and their impact on the increase in the value of K, and it was found that in the case of the 5CB/CE2 mixture these changes were significant and quite systematic with temperature and wavelength. It is shown that the dispersion relation based on the single-band birefringence model described K well in isotropic liquid crystal phases at all of the measured concentrations. In an isotropic fluid, both temperature-dependent parameters in the dispersion relation had a simple linear form and, therefore, the K-surface could be described by only four constants. In the blue phase, the expression reproducing the temperature variation of K depended on concentration, which could vary from being almost linear to quasi-linear and could be represented well by an inverse exponential analytic expression. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

14 pages, 2818 KiB  
Article
The Impact of a Non-Pathogenic Strain of Fusarium Oxysporum on Structural and Biochemical Properties of Flax Suspension Cultures
by Magdalena Wróbel-Kwiatkowska, Aleksandra Osika, Justyna Liszka, Mateusz Lipiński, Lucyna Dymińska, Michał Piegza and Waldemar Rymowicz
Int. J. Mol. Sci. 2024, 25(17), 9616; https://doi.org/10.3390/ijms25179616 - 5 Sep 2024
Cited by 2 | Viewed by 1273
Abstract
Flax (Linum usitatissimum L.) is an important crop plant with pharmaceutical significance. It is described in pharmacopoeias (the United States Pharmacopeia and the European Pharmacopoeia), which confirms that it (especially the seeds) is a valuable medicinal product. Similar to flax seeds, which [...] Read more.
Flax (Linum usitatissimum L.) is an important crop plant with pharmaceutical significance. It is described in pharmacopoeias (the United States Pharmacopeia and the European Pharmacopoeia), which confirms that it (especially the seeds) is a valuable medicinal product. Similar to flax seeds, which accumulate bioactive compounds, flax in vitro cultures are also a rich source of flavonoids, phenolics, lignans and neolignans. In the present study, flax suspension cultures after treatment of the non-pathogenic Fusarium oxysporum strain Fo47 were established and analyzed. The study examined the suitability of Fo47 as an elicitor in flax suspension cultures and provided interesting data on the impact of these endophytic fungi on plant metabolism and physiology. Two flax cultivars (Bukoz and Nike) and two compositions of media for flax callus liquid cultures were tested. Biochemical analysis revealed enhanced levels of secondary metabolites (total flavonoid and total phenolic content) and photosynthetically active pigments in the flax callus cultures after treatment with the non-pathogenic fungal strain F. oxysporum Fo47 when compared to control, untreated cultures. In cultures with the selected, optimized conditions, FTIR analysis was performed and revealed changes in the structural properties of cell wall polymers after elicitation of cultures with F. oxysporum Fo47. The plant cell wall polymers were more strongly bound, and the crystallinity index (Icr) of cellulose was higher than in control, untreated samples. However, lignin and pectin levels were lower in the flax callus liquid cultures treated with the non-pathogenic strain of Fusarium when compared to the untreated control. The potential application of the non-pathogenic strain of F. oxysporum for enhancing the synthesis of desired secondary metabolites in plant tissue cultures is discussed. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

11 pages, 5047 KiB  
Article
Study on the Polymer Morphology and Electro-Optical Performance of Acrylate/Epoxy Resin-Based Polymer-Stabilized Liquid Crystals Based on Stepwise Photopolymerization
by Yishuo Wu, Guangyang Shang, Cong Ma, Yingjie Shi, Zhexu Song, Peixiang Wang, Yanzi Gao, Qian Wang, Meina Yu, Jiumei Xiao and Cheng Zou
Polymers 2024, 16(17), 2446; https://doi.org/10.3390/polym16172446 - 29 Aug 2024
Cited by 1 | Viewed by 1268
Abstract
Stepwise photopolymerization is a miraculous strategy modulating the polymer skeleton and electro-optical properties of light modulators based on liquid crystal/polymer composites. However, owing to the indistinct polymerization mechanism and curing condition discrepancy, the required polymer structures and electro-optical properties are hard to be [...] Read more.
Stepwise photopolymerization is a miraculous strategy modulating the polymer skeleton and electro-optical properties of light modulators based on liquid crystal/polymer composites. However, owing to the indistinct polymerization mechanism and curing condition discrepancy, the required polymer structures and electro-optical properties are hard to be controlled precisely. Herein, a novel polymer-stabilized liquid crystal film based on acrylate/epoxy resin is proposed, fabricated and the relationships between preparation process, polymer content, polymer morphology and electro-optical properties are studied. The in-situ photopolymerization of acrylate/epoxy resin liquid crystalline polymer is fulfilled using cation photo-initiator UV 6976. The distinct photopolymerization speed between acrylate and epoxy resin benefits the polymer morphology control, and with accurate containment of the polymerization process and polymer composition, the superior electro-optical properties at a higher polymer content are acquired. The polymer morphology and electro-optical properties are influenced by the polymer content and mass ratio between acrylate and epoxy resin. The best electro-optical properties among samples are attained by controlling the mass ratio between acrylate and epoxy resin to 1:1, integrating higher densities of scattering centers and lower anchoring effect. With higher polymer content, the strategy of increasing the mass ratio of E6M benefits the improvement of E-O properties for alleviating polymer density. This work provides insights to stepwise polymerization of liquid crystalline monomers and offers a fancy strategy for the preparation of novel liquid crystal dimming films. Full article
(This article belongs to the Special Issue Advanced Polymer Nanocomposites III)
Show Figures

Graphical abstract

10 pages, 3051 KiB  
Article
A Novel Biomineralized Collagen Liquid Crystal Hydrogel Possessing Bone-like Nanostructures by Complete In Vitro Fabrication
by Xiaoting Li, Qiaoying Wang and Qingrong Wei
Gels 2024, 10(9), 550; https://doi.org/10.3390/gels10090550 - 25 Aug 2024
Viewed by 1758
Abstract
The microstructure of bone consists of nano-hydroxyapatite (nano-HA) crystals aligned within the interspaces of collagen fibrils. To emulate this unique microstructure of bone, this work applied two biomimetic techniques to obtain bone-like microstructures in vitro, that is, combining the construction of collagen liquid [...] Read more.
The microstructure of bone consists of nano-hydroxyapatite (nano-HA) crystals aligned within the interspaces of collagen fibrils. To emulate this unique microstructure of bone, this work applied two biomimetic techniques to obtain bone-like microstructures in vitro, that is, combining the construction of collagen liquid crystal hydrogel (CLCH) with the application of a polymer-induced liquid precursor (PILP) mineralization process. Upon the elevation of pH, the collagen macromolecules within the collagen liquid crystal (CLC) were activated to self-assemble into CLCH, whose fibrils packed into a long and dense fiber bundle in high orientation, emulating the dense-packed matrix of bone. We demonstrated that the fibrillar mineralization of CLCH, leading to a bone-like nanostructured inorganic material part, can be achieved using the PILP crystallization process to pre-mineralize the dense collagen substrates of CLCH with CaCO3, immediately followed by the in situ mineral phase transformation of CaCO3 into weak-crystalline nano-HA. The combination of CLCH with the biomineralization process of PILP, together with the mineral phase transformation, achieved the in vitro simulation of the nanostructures of both the organic extracellular matrix (ECM) and inorganic ECM of bone. This design would constitute a novel idea for the design of three-dimension biomimetic bone-like material blocks for clinical needs. Full article
(This article belongs to the Special Issue Novel Polymer Gels: Synthesis, Properties, and Applications)
Show Figures

Figure 1

Back to TopTop