Crystallinity and Liquid Crystallinity of Polyurethanes: How Tailoring of Order Contributes to Customized Properties and Applications
Abstract
:1. Introduction
- The longer the hard segments, the more likely that they will associate with each other and form ordered structures [18].
- The larger the mass fraction of hard segments, the more complete the phase separation [20].
- The final morphology is extremely sensitive to the thermal history of the material with three distinct temperature regions where intrinsic nucleation competes with extrinsic one [8].
- The kinetics of nucleation and growth depends also on the nature of the soft segment [21].
2. The Use of Polyurethane Crystallinity in Targeted Applications
3. Liquid Crystalline Polyurethanes (LCPU)
3.1. New Generation of Liquid Crystalline Materials and Their Composites
3.2. LCPUs and Their Composites—Rediscovered Materials
3.3. Modifications of Materials by LCPU Addition
3.4. “Smart” Liquid Crystalline Polyurethane Composites
3.5. Liquid Crystalline Polyurethane Fibers and Nanofibers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Prisacariu, C. Polyurethane Elastomers: From Morphology to Mechanical Aspects; Springer: Vienna, Austria, 2011; ISBN 978-3-7091-0513-9. [Google Scholar]
- Szycher, M. Szycher’s Handbook of Polyurethanes; CRC Press: Boca Raton, FL, USA, 2013; ISBN 9781439839584. [Google Scholar]
- Sonnenschein, M.F. Polyurethanes Science, Technology, Markets, and Trends; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Sharmin, E.; Zafar, F.; Sharmin, E.; Zafar, F. Polyurethane: An Introduction. Polyurethane 2012, 1, 3–16. [Google Scholar] [CrossRef]
- Hepburn, C. Polyurethane Elastomers; Springer: Dordrecht, The Netherlands, 1992. [Google Scholar] [CrossRef]
- Koberstein, J.T.; Russell, T.P. Simultaneous SAXS-DSC Study of Multiple Endothermic Behavior in Polyether-Based Polyurethane Block Copolymers. Macromolecules 1986, 19, 714–720. [Google Scholar] [CrossRef]
- Koberstein, J.T.; Galambos, A.F. Multiple Melting in Segmented Polyurethane Block Copolymers. Macromolecules 1992, 25, 5618–5624. [Google Scholar] [CrossRef]
- Leung, L.M.; Koberstein, J.T. DSC Annealing Study of Microphase Separation and Multiple Endothermic Behavior in Polyether-Based Polyurethane Block Copolymers. Macromolecules 1986, 19, 706–713. [Google Scholar] [CrossRef]
- Koberstein, J.T.; Stein, R.S. Small-Angle X-Ray Scattering Studies of Microdomain Structure in Segmented Polyurethane Elastomers. J. Polym. Sci. Polym. Phys. Ed. 1983, 21, 1439–1472. [Google Scholar] [CrossRef]
- Leung, L.M.; Koberstein, J.T. Small-Angle Scattering Analysis of Hard-Microdomain Structure and Microphase Mixing in Polyurethane Elastomers. J. Polym. Sci. Polym. Phys. Ed. 1985, 23, 1883–1913. [Google Scholar] [CrossRef]
- Koberstein, J.T.; Leung, L.M. Compression-Molded Polyurethane Block Copolymers. 2. Evaluation of Microphase Compositions. Macromolecules 1992, 25, 6205–6213. [Google Scholar] [CrossRef]
- Koberstein, J.T.; Gancarz, I.; Clarke, T.C. The Effects of Morphological Transitions on Hydrogen Bonding in Polyurethanes: Preliminary Results of Simultaneous DSC–FTIR Experiments. J. Polym. Sci. Part B Polym. Phys. 1986, 24, 2487–2498. [Google Scholar] [CrossRef]
- Koberstein, J.T.; Galambos, A.F.; Leung, L.M. Compression-Molded Polyurethane Block Copolymers. 1. Microdomain Morphology and Thermomechanical Properties. Macromolecules 1992, 25, 6195–6204. [Google Scholar] [CrossRef]
- Szefer, E.; Stafin, K.; Leszczyńska, A.; Zając, P.; Hebda, E.; Raftopoulos, K.N.; Pielichowski, K. Morphology, Dynamics, and Order Development in a Thermoplastic Polyurethane with Melt Blended POSS. J. Polym. Sci. Part B Polym. Phys. 2019, 57, 1133–1142. [Google Scholar] [CrossRef]
- Fernández-d’Arlas, B.; Eceiza, A. Structure-Property Relationship in High Urethane Density Polyurethanes. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 739–746. [Google Scholar] [CrossRef]
- Cheng, B.X.; Gao, W.C.; Ren, X.M.; Ouyang, X.Y.; Zhao, Y.; Zhao, H.; Wu, W.; Huang, C.; Liu, Y.; Li, H.; et al. A review of microphase separation of polyurethane: Characterization and applications. Polym. Test. 2022, 107, 107489. [Google Scholar] [CrossRef]
- Kojio, K.; Furukawa, M.; Nonaka, Y.; Nakamura, S. Control of Mechanical Properties of Thermoplastic Polyurethane Elastomers by Restriction of Crystallization of Soft Segment. Materials 2010, 3, 5097–5110. [Google Scholar] [CrossRef]
- Tocha, E.; Janik, H.; Debowski, M.; Vancso, G.J. Morphology of polyurethanes revisited by complementary AFM and TEM. J. Macromol. Sci. Part B 2002, 41, 1291–1304. [Google Scholar] [CrossRef]
- Aneja, A.; Wilkes, G.L. A Systematic Series of Model “PTMO” Based Segmented Polyurethanes Reinvestigated Using Atomic Force Microscopy. Polymer 2003, 44, 7221–7228. [Google Scholar] [CrossRef]
- Nakamae, K.; Nishino, T.; Asaoka, S. Microphase separation and surface properties of segmented polyurethane—Effect of hard segment content. Int. J. Adhes. Adhes. 1996, 16, 233–239. [Google Scholar] [CrossRef]
- Gorbunova, M.; Anokhin, D.V.; Abukaev, A.; Ivanov, D. Impact of Soft Segment Composition on Phase Separation and Crystallization of Multi-Block Thermoplastic Polyurethanes Based on Poly(Butylene Adipate) Diol and Polycaprolactone Diol. Crystals 2023, 13, 1447. [Google Scholar] [CrossRef]
- Raftopoulos, K.N.; Koutsoumpis, S.; Jancia, M.; Lewicki, J.P.; Kyriakos, K.; Mason, H.E.; Harley, S.J.; Hebda, E.; Papadakis, C.M.; Pielichowski, K.; et al. Reduced Phase Separation and Slowing of Dynamics in Polyurethanes with Three-Dimensional POSS-Based Cross-Linking Moieties. Macromolecules 2015, 48, 1429–1441. [Google Scholar] [CrossRef]
- Lin, T.L.; Yu, T.L.; Liu, W.J.; Tsai, Y.M. Phase Segregation of Crosslinked Polyurethane by Small Angle X-Ray Scattering. Polym. J. 1999, 31, 120–126. [Google Scholar] [CrossRef]
- Russo, R.; Thomas, E.L. Phase Separation in Linear and Cross-Linked Polyurethanes. J. Macromol. Sci. Part B Phys. 1983, 22, 553–575. [Google Scholar] [CrossRef]
- Koutsoumpis, S.; Ozimek, J.; Raftopoulos, K.N.; Hebda, E.; Klonos, P.; Papadakis, C.M.; Pielichowski, K.; Pissis, P. Polyurethanes with POSS Pendent on Flexible Hard Segments: Morphology and Glass Transition. Polymer 2018, 147, 225–236. [Google Scholar] [CrossRef]
- Wang, X.C.; Jing, X.; Peng, Y.Y.; Ma, Z.K.; Liu, C.T.; Turng, L.S.; Shen, C.Y. The Effect of Nanoclay on the Crystallization Behavior, Microcellular Structure, and Mechanical Properties of Thermoplastic Polyurethane Nanocomposite Foams. Polym. Eng. Sci. 2016, 56, 319–327. [Google Scholar] [CrossRef]
- Jiang, J.; Gao, H.; Wang, M.; Gao, L.; Hu, G. Effect of fillers on the microphase separation in polyurethane composites: A review. Polym. Eng. Sci. 2023, 63, 3938–3962. [Google Scholar] [CrossRef]
- Vallance, M.; Yeung, A.S.; Cooper, S.L. A Dielectric Study of the Glass Transition Region in Segmented Polyether-Urethane Copolymers. Colloid Polym. Sci. Polym. Sci. 1983, 261, 541–554. [Google Scholar] [CrossRef]
- Vallance, M.A.; Castles, J.L.; Cooper, S.L. Microstructure of As-Polymerized Thermoplastic Polyurethane Elastomers. Polymer 1984, 25, 1734–1746. [Google Scholar] [CrossRef]
- Raftopoulos, K.N.; Janowski, B.; Apekis, L.; Pielichowski, K.; Pissis, P. Molecular Mobility and Crystallinity in Polytetramethylene Ether Glycol in the Bulk and as Soft Component in Polyurethanes. Eur. Polym. J. 2011, 47, 2120–2133. [Google Scholar] [CrossRef]
- Sonnenschein, M.F.; Lysenko, Z.; Brune, D.A.; Wendt, B.L.; Schrock, A.K. Enhancing polyurethane properties via soft segment crystallization. Polymer 2005, 46, 10158–10166. [Google Scholar] [CrossRef]
- Lee, T.-J.; Lee, D.-J.; Kim, H.-D. Synthesis and Properties of Liquid Crystalline Polyurethane Elastomers. J. Appl. Polym. Sci. 2000, 77, 577–585. [Google Scholar] [CrossRef]
- Padmavathy, T.; Srinivasan, K.S.V. Liquid Crystalline Polyurethanes—A Review. J. Macromol. Sci.-Polym. Rev. 2003, 43, 45–85. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, R.; Ding, N.; Puglia, D.; Gao, D.; Xu, P.; Liu, T.; Ma, P. Simultaneously Enhancing Mechanical Strength, Toughness, and Fire Retardancy of Biobased Polyurethane by Regulating Soft/Hard Segments and Crystallization Behavior. ACS Appl. Polym. Mater. 2024, 6, 1973–1982. [Google Scholar] [CrossRef]
- Shan, J.W.; Zhu, Y.B.; Ni, L.L.; Pan, P.J. Viscoelastic Property Evolution of Thermoplastic Polyurethane during Annealing Treatment and Its Correlation with Segmental Crystallization. Chin. J. Polym. Sci. 2024, 42, 1976–1985. [Google Scholar] [CrossRef]
- Hossieny, N.J.; Barzegari, M.R.; Nofar, M.; Mahmood, S.H.; Park, C.B. Crystallization of Hard Segment Domains with the Presence of Butane for Microcellular Thermoplastic Polyurethane Foams. Polymer 2014, 55, 651–662. [Google Scholar] [CrossRef]
- Prisacariu, C.; Scortanu, E.; Airinei, A.; Agapie, B.; Iurzhenko, M.; Mamunya, Y.P. New Developments in Thermoplastic Polyurethanes of Variable Crystallinity: Sensitivity of Cyclic Stress-Strain Response to Chemical Structure. Procedia Eng. 2011, 10, 446–454. [Google Scholar] [CrossRef]
- Li, G.; Li, D.; Niu, Y.; He, T.; Chen, K.C.; Xu, K. Alternating Block Polyurethanes Based on PCL and PEG as Potential Nerve Regeneration Materials. J. Biomed. Mater. Res. A 2014, 102, 685–697. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Liu, Z.; Fu, X.; Wang, Y.; Yuan, A.; Lei, J. Effect of Crystalline Structure on Water Resistance of Waterborne Polyurethane. Eur. Polym. J. 2021, 157, 110647. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, J.; Li, H.; Gao, H.; Wu, M.; Wang, Z.; Wang, Z. Dual-Hard Phase Structures Make Mechanically Tough and Autonomous Self-Healable Polyurethane Elastomers. Chem. Eng. J. 2023, 454, 140268. [Google Scholar] [CrossRef]
- Candau, N.; Stoclet, G.; Tahon, J.-F.; Demongeot, A.; Yilgor, E.; Yilgor, I.; Menceloglu, Y.Z.; Oguz, O. Mechanical Reinforcement and Memory Effect of Strain-Induced Soft Segment Crystals in Thermoplastic Polyurethane-Urea Elastomers. Polymer 2021, 223, 123708. [Google Scholar] [CrossRef]
- Shirole, A.; Nicharat, A.; Perotto, C.U.; Weder, C. Tailoring the Properties of a Shape-Memory Polyurethane via Nanocomposite Formation and Nucleation. Macromolecules 2018, 51, 1841–1849. [Google Scholar] [CrossRef]
- Qu, Q.; He, J.; Da, Y.; Zhu, M.; Liu, Y.; Li, X.; Tian, X.; Wang, H. High Toughness Polyurethane toward Artificial Muscles, Tuned by Mixing Dynamic Hard Domains. Macromolecules 2021, 54, 8243–8254. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, Y.; Li, Y.; Sun, J.; Pan, X.; Yu, Q.; Zhou, N.; Zhang, Z.; Zhu, X. Shape-Memory and Self-Healing Polyurethanes Based on Cyclic Poly(ε-Caprolactone). Polym. Chem. 2016, 7, 6789–6797. [Google Scholar] [CrossRef]
- Yang, W.; Zhu, Y.; Liu, T.; Puglia, D.; Kenny, J.M.; Xu, P.; Zhang, R.; Ma, P. Multiple Structure Reconstruction by Dual Dynamic Crosslinking Strategy Inducing Self-Reinforcing and Toughening the Polyurethane/Nanocellulose Elastomers. Adv. Funct. Mater. 2023, 33, 2213294. [Google Scholar] [CrossRef]
- Canales, J.; Muñoz, M.E.; Fernández, M.; Santamaría, A. Rheology, Electrical Conductivity and Crystallinity of a Polyurethane/Graphene Composite: Implications for Its Use as a Hot-Melt Adhesive. Compos. Part A Appl. Sci. Manuf. 2016, 84, 9–16. [Google Scholar] [CrossRef]
- Noormohammadi, F.; Nourany, M.; Sadeghi, G.M.M.; Wang, P.Y.; Shahsavarani, H. The role of cellulose nanowhiskers in controlling phase segregation, crystallization and thermal stimuli responsiveness in PCL-PEGx-PCL block copolymer-based PU for human tissue engineering applications. Carb. Polym. 2021, 252, 117219. [Google Scholar] [CrossRef]
- Shibaev, V.P. Liquid-Crystalline Polymer Systems: From the Past to the Present. Polym. Sci.-Ser. A 2014, 56, 727–762. [Google Scholar] [CrossRef]
- Hussein, M.A.; Abdel-Rahman, M.A.; Asiri, A.M.; Alamry, K.A.; Aly, K.I. Review on: Liquid Crystalline Polyazomethines Polymers. Basics, Syntheses and Characterization. Des. Monomers Polym. 2012, 15, 431–463. [Google Scholar] [CrossRef]
- Guardià, J.; Reina, J.A.; Giamberini, M.; Montané, X. An Up-to-Date Overview of Liquid Crystals and Liquid Crystal Polymers for Different Applications: A Review. Polymers 2024, 16, 2293. [Google Scholar] [CrossRef]
- Lugger, S.J.D.; Houben, S.J.A.; Foelen, Y.; Debije, M.G.; Schenning, A.P.H.J.; Mulder, D.J. Hydrogen-Bonded Supramolecular Liquid Crystal Polymers: Smart Materials with Stimuli-Responsive, Self-Healing, and Recyclable Properties. Chem. Rev. 2022, 122, 4946–4975. [Google Scholar] [CrossRef]
- Yoshizawa, A. Nanostructured Assemblies of Liquid-Crystalline Supermolecules: From Display to Medicine. Liq. Cryst. 2019, 46, 1950–1972. [Google Scholar] [CrossRef]
- Martella, D.; Paoli, P.; Pioner, J.M.; Sacconi, L.; Coppini, R.; Santini, L.; Lulli, M.; Cerbai, E.; Wiersma, D.S.; Poggesi, C.; et al. Liquid Crystalline Networks toward Regenerative Medicine and Tissue Repair. Small 2017, 13, 1702677. [Google Scholar] [CrossRef]
- Liu, X.F.; Luo, X.; Liu, B.W.; Zhong, H.Y.; Guo, D.M.; Yang, R.; Chen, L.; Wang, Y.Z. Toughening Epoxy Resin Using a Liquid Crystalline Elastomer for Versatile Application. ACS Appl. Polym. Mater. 2019, 1, 2291–2301. [Google Scholar] [CrossRef]
- Takasuka, S.; Takahashi, K.; Takahashi, T. Characterization and Mechanical Strength of Wholly Aromatic Liquid Crystalline Polymers with Low Melting Point. Int. J. Polym. Anal. Charact. 2022, 27, 43–51. [Google Scholar] [CrossRef]
- Johann, K.S.; Wolf, A.; Bonten, C. Mechanical Properties of 3D-Printed Liquid Crystalline Polymers with Low and High Melting Temperatures. Materials 2024, 17, 152. [Google Scholar] [CrossRef]
- Battistelli, C.; Seriani, S.; Lughi, V.; Slejko, E.A. Optimizing 3D-Printing Parameters for Enhanced Mechanical Properties in Liquid Crystalline Polymer Components. Polym. Adv. Technol. 2024, 35, e70037. [Google Scholar] [CrossRef]
- Guan, Q.; Lu, X.; Chen, Y.; Zhang, H.; Zheng, Y.; Neisiany, R.E.; You, Z. High-Performance Liquid Crystalline Polymer for Intrinsic Fire-Resistant and Flexible Triboelectric Nanogenerators. Adv. Mater. 2022, 34, 2204543. [Google Scholar] [CrossRef] [PubMed]
- Bukowczan, A.; Hebda, E.; Pielichowski, K. The Influence of Nanoparticles on Phase Formation and Stability of Liquid Crystals and Liquid Crystalline Polymers. J. Mol. Liq. 2021, 321, 114849. [Google Scholar] [CrossRef]
- Prakash, J.; Khan, S.; Chauhan, S.; Biradar, A.M. Metal Oxide-Nanoparticles and Liquid Crystal Composites: A Review of Recent Progress. J. Mol. Liq. 2020, 297, 112052. [Google Scholar] [CrossRef]
- Verma, H.; Lal, A.; Singh, P.K.; Pandey, M.B.; Dabrowski, R.; Dhar, R. Silver Nanoparticles Induced Enhanced Stability, Dielectric Anisotropy, and Electro-Optical Parameters of a Nematic Liquid Crystalline Material 4-(Trans-4-n-Hexylcyclohexyl) Isothiocyanatobenzene. J. Mol. Liq. 2024, 400, 124503. [Google Scholar] [CrossRef]
- Xu, J.; Chen, S.; Yang, W.; Qin, B.; Wang, X.; Wang, Y.; Cao, M.; Gao, Y.; Li, C.; Dong, Y. Photo Actuation of Liquid Crystalline Elastomer Nanocomposites Incorporated with Gold Nanoparticles Based on Surface Plasmon Resonance. Soft Matter 2019, 15, 6116–6126. [Google Scholar] [CrossRef]
- Wang, F.; Jiang, Y.; Liu, Y.; Guo, F.; Fang, W.; Xu, Z.; Gao, C. Liquid Crystalline 3D Printing for Superstrong Graphene Microlattices with High Density. Carbon 2020, 159, 166–174. [Google Scholar] [CrossRef]
- Ruan, K.; Gu, J. Ordered Alignment of Liquid Crystalline Graphene Fluoride for Significantly Enhancing Thermal Conductivities of Liquid Crystalline Polyimide Composite Films. Macromolecules 2022, 55, 4134–4145. [Google Scholar] [CrossRef]
- Deng, Y.; Li, S.Q.; Yang, Q.; Luo, Z.W.; Xie, H. Lou High-Efficiency Responsive Smart Windows Fabricated by Carbon Nanotubes Modified by Liquid Crystalline Polymers. Crystals 2021, 11, 440. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, D.; Zhang, B.; Sun, Q.; Zhang, Y.; Liu, S.; Wang, Y.; Liu, C.; Chen, J.; Chen, J.; et al. Intrinsic Carbon Nanotube Liquid Crystalline Elastomer Photoactuators for High-Definition Biomechanics. Mater. Horiz. 2022, 9, 1045–1056. [Google Scholar] [CrossRef] [PubMed]
- Bukowczan, A.; Hebda, E.; Czajkowski, M.; Pielichowski, K. The Synthesis and Properties of Liquid Crystalline Polyurethanes, Chemically Modified by Polyhedral Oligomericsilsesquioxanes. Molecules 2019, 24, 4013. [Google Scholar] [CrossRef] [PubMed]
- Bukowczan, A.; Raftopoulos, K.N.; Nizioł, J.; Pielichowski, K. Molecular Mobility of Liquid Crystalline Polyurethanes Modified by Polyhedral Oligomeric Silsesquioxanes. Polymer 2023, 277, 125981. [Google Scholar] [CrossRef]
- Bukowczan, A.; Raftopoulos, K.N.; Czajkowski, M.; Szefer, E.; Hebda, E.; Pielichowski, K. Liquid Crystalline Polyurethanes Modified by Trisilanolisobutyl-POSS. J. Mol. Liq. 2022, 348, 118069. [Google Scholar] [CrossRef]
- Iimura, K.; Koide, N.; Tanabe, H.; Takeda, M. Syntheses of Thermotropic Liquid Crystalline Polymers, 2. Polyurethanes. Die Makromol. Chem. 1981, 182, 2569–2575. [Google Scholar] [CrossRef]
- Wang, T.L.; Tsai, J.S.; Tseng, C.G. Synthesis and Characterization of Side-Chain Liquid-Crystalline Polyurethane Elastomers. J. Appl. Polym. Sci. 2005, 96, 336–344. [Google Scholar] [CrossRef]
- Bagheri, M.; Pourmoazzen, Z. Synthesis and Properties of New Liquid Crystalline Polyurethanes Containing Mesogenic Side Chain. React. Funct. Polym. 2008, 68, 507–518. [Google Scholar] [CrossRef]
- Jana, R.N.; Cho, J.W. Synthesis and Characterization of Polyurethane-Based Side-Chain Cholesteric Liquid Crystal Polymers. Fibers Polym. 2009, 10, 569–575. [Google Scholar] [CrossRef]
- Balenko, N.V.; Shibaev, V.P.; Bobrovsky, A.Y. Mechano-Optical Response of Novel Polymer Composites Based on Elastic Polyurethane Matrix Filled with Low-Molar-Mass Cholesteric Droplets. Macromol. Mater. Eng. 2021, 306, 2100262. [Google Scholar] [CrossRef]
- Han, W.; Tu, M.; Zeng, R.; Zhao, J.; Zhou, C. Preparation, Characterization and Cytocompatibility of Polyurethane/ Cellulose Based Liquid Crystal Composite Membranes. Carbohydr. Polym. 2012, 90, 1353–1361. [Google Scholar] [CrossRef]
- Saed, M.O.; Gablier, A.; Terentjev, E.M. Extrudable Covalently Cross-Linked Thio-Urethane Liquid Crystalline Elastomers. Adv. Funct. Mater. 2024, 34, 2307202. [Google Scholar] [CrossRef]
- Tan, S.T.; Wei, C.; Wang, X.Y.; Zhang, M.Q.; Zeng, H.M. Blends of Liquid Crystalline Polyester-Polyurethane and Epoxy: Preparation and Properties. J. Appl. Polym. Sci. 2003, 88, 783–787. [Google Scholar] [CrossRef]
- Lin, C.K.; Kuo, J.F.; Chen, C.Y.; Fang, J.J. Investigation of Bifurcated Hydrogen Bonds within the Thermotropic Liquid Crystalline Polyurethanes. Polymer 2012, 53, 254–258. [Google Scholar] [CrossRef]
- Murakami, M.; Ishida, H.; Miyazaki, M.; Kaji, H.; Horii, F. Studies of the Phase Transitions, Structure, and Dynamics for Main-Chain Thermotropic Liquid Crystalline Polyethers and Polyurethanes with the Same Mesogen and Spacer Units. Macromolecules 2003, 36, 4160–4167. [Google Scholar] [CrossRef]
- Lee, M.; Hong, S.C.; Lee, S.W. Effect of Diisocyanate Structures on the Properties of Liquid Crystalline Polyurethanes. Polym. Eng. Sci. 2007, 47, 439–446. [Google Scholar] [CrossRef]
- Du, J.; Cao, X. Synthesis and Characterization of Biodegradable Segmented Liquid Crystalline Poly(Ester-Urethane)s. Adv. Mater. Res. 2011, 287, 2106–2109. [Google Scholar] [CrossRef]
- Gui, D.; Gao, X.; Hao, J.; Liu, J. Preparation and Characterization of Liquid Crystalline Polyurethane-Imide Modified Epoxy Resin Composites. Polym. Eng. Sci. 2014, 54, 1704–1711. [Google Scholar] [CrossRef]
- Zeng, C.; Lu, S.; Xiao, X.; Gao, J.; Pan, L.; He, Z.; Yu, J. Enhanced Thermal and Mechanical Properties of Epoxy Composites by Mixing Noncovalently Functionalized Graphene Sheets. Polym. Bull. 2015, 72, 453–472. [Google Scholar] [CrossRef]
- Qi, B.; Lu, S.R.; Xiao, X.E.; Pan, L.L.; Tan, F.Z.; Yu, J.H. Enhanced Thermal and Mechanical Properties of Epoxy Composites by Mixing Thermotropic Liquid Crystalline Epoxy Grafted Graphene Oxide. Express Polym. Lett. 2014, 8, 467–479. [Google Scholar] [CrossRef]
- Li, Y.; Gao, J.; Li, X.; Xu, X.; Lu, S. High Mechanical and Thermal Properties of Epoxy Composites with Liquid Crystalline Polyurethane Modified Graphene. Polymers 2018, 10, 485. [Google Scholar] [CrossRef]
- Lu, S.; Ban, J.; Liu, K. Preparation and Characterization of Liquid Crystalline Polyurethane/Al 2O3/Epoxy Resin Composites for Electronic Packaging. Int. J. Polym. Sci. 2012, 2012, 728235. [Google Scholar] [CrossRef]
- Topnani, N.; Hamplová, V.; Kašpar, M.; Novotná, V.; Gorecka, E. Synthesis, Characterisation and Functionalisation of ZnO and TiO2 Nanostructures: Used as Dopants in Liquid Crystal Polymers. Liq. Cryst. 2014, 41, 91–100. [Google Scholar] [CrossRef]
- Bukowczan, A.; Zając, P.; Pielichowski, K. Liquid Crystalline Polyurethane/POSS Hybrid Nanocomposites Pyrolysis Studies by Py-GC/MS and TG/FTIR Techniques. Thermochim. Acta 2024, 738, 179803. [Google Scholar] [CrossRef]
- Yu, L.; Peng, R.; Wang, Y.; Liu, Y.E.; Yang, Y. Liquid Crystalline Polyurethane Elastomers Containing Mesogenic Azobenzene Pendant Groups for Photomechanical Actuators. Adv. Mater. Res. 2012, 531, 580–583. [Google Scholar] [CrossRef]
- Wen, Z.B.; Liu, D.; Li, X.Y.; Zhu, C.H.; Shao, R.F.; Visvanathan, R.; Clark, N.A.; Yang, K.K.; Wang, Y.Z. Fabrication of Liquid Crystalline Polyurethane Networks with a Pendant Azobenzene Group to Access Thermal/Photoresponsive Shape-Memory Effects. ACS Appl. Mater. Interfaces 2017, 9, 24947–24954. [Google Scholar] [CrossRef]
- Shen, W.; Du, B.; Liu, J.; Zhuo, H.; Yang, C.; Chen, S. A Facile Approach for the Preparation of Liquid Crystalline Polyurethane for Light-Responsive Actuator Films with Self-Healing Performance. Mater. Chem. Front. 2021, 5, 3192–3200. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Y.; Ma, S.; Zhang, H. Reprocessable and Healable Room Temperature Photoactuators Based on a Main-Chain Azobenzene Liquid Crystalline Poly(Ester-Urea). J. Mater. Chem. C 2021, 9, 13255–13265. [Google Scholar] [CrossRef]
- Shen, W.; Liu, J.; Du, B.; Zhuo, H.; Chen, S. Thermal- and Light-Responsive Programmable Shape-Memory Behavior of Liquid Crystalline Polyurethanes with Pendant Photosensitive Groups. J. Mater. Chem. C 2021, 9, 15087–15094. [Google Scholar] [CrossRef]
- Wu, X.; Yuan, Y.; Zhao, S.; Lei, Y.; Fu, X.; Lei, J.; Jiang, L. The Synergistic Effects between Liquid Crystal and Crystalline Phase on Photo-Responsive Elastomers toward Quick Photo-Responsive Performance. Macromol. Rapid Commun. 2023, 44, 2300354. [Google Scholar] [CrossRef]
- Zheng, X.; Jia, Y.; Chen, A. Azobenzene-Containing Liquid Crystalline Composites for Robust Ultraviolet Detectors Based on Conversion of Illuminance-Mechanical Stress-Electric Signals. Nat. Commun. 2021, 12, 4875. [Google Scholar] [CrossRef]
- Wen, Z.; Zhang, T.; Hui, Y.; Wang, W.; Yang, K.; Zhou, Q.; Wang, Y. Elaborate Fabrication of Well-Defined Side-Chain Liquid Crystalline Polyurethane Networks with Triple-Shape Memory Capacity. J. Mater. Chem. C 2015, 3, 13435–13444. [Google Scholar] [CrossRef]
- Chen, S.; Chen, S.; Yuan, H.; Ge, Z.; Zhuo, H.; Liu, J. Insights into Liquid-Crystalline Shape-Memory Polyurethane Composites Based on an Amorphous Reversible Phase and Hexadecyloxybenzoic Acid. J. Mater. Chem. C 2014, 2, 1041–1049. [Google Scholar] [CrossRef]
- Chen, S.; Mo, F.; Chen, S.; Ge, Z.; Yang, H.; Zuo, J.; Liu, X.; Zhuo, H. New Insights into Multi-Shape Memory Behaviours and Liquid Crystalline Properties of Supramolecular Polyurethane Complexes Based on Pyridine-Containing Polyurethane and 4-Octyldecyloxybenzoic Acid. J. Mater. Chem. C 2015, 3, 19525–19538. [Google Scholar] [CrossRef]
- Mo, F.; Ban, J.; Pan, L.; Shi, B.; Lu, S. Liquid Crystalline Polyurethane Composites Based on Supramolecular Structure with Reversible Bidirectional Shape Memory and Multi-Shape Memory Effects. New J. Chem. 2019, 43, 103–110. [Google Scholar] [CrossRef]
- Ban, J.; Zhu, L.; Chen, S.; Wang, Y. The Impact of Liquid Crystal Fillers on Structure and Properties of Liquid-Crystalline Shape-Memory Polyurethane Composites I: 4-Dodecyloxybenzoic Acid. J. Mater. Sci. 2016, 51, 10229–10244. [Google Scholar] [CrossRef]
- Chen, S.; Yuan, H.; Chen, S.; Yang, H.; Ge, Z.; Zhuo, H.; Liu, J. Development of Supramolecular Liquid-Crystalline Polyurethane Complexes Exhibiting Triple-Shape Functionality Using a One-Step Programming Process. J. Mater. Chem. C 2014, 2, 10169–10181. [Google Scholar] [CrossRef]
- Ban, J.; Zhu, L.; Chen, S.; Wang, Y. The Effect of Liquid Crystal Fillers on Structure and Properties of Liquid Crystalline Shape Memory Polyurethane Composites II: 4-Hexadecyloxybenzoic Acid. J. Mater. Sci. 2017, 52, 2628–2641. [Google Scholar] [CrossRef]
- Hu, J.; Lu, J.; Zhu, Y. New Developments in Elastic Fibers. Polym. Rev. 2008, 48, 275–301. [Google Scholar] [CrossRef]
- Tan, C.J.; Lee, J.J.L.; Ang, B.C.; Andriyana, A.; Chagnon, G.; Sukiman, M.S. Design of Polyurethane Fibers: Relation between the Spinning Technique and the Resulting Fiber Topology. J. Appl. Polym. Sci. 2019, 136, 47706. [Google Scholar] [CrossRef]
- Liu, Q.; Gu, Y.; Xu, W.; Lu, T.; Li, W.; Fan, H. Compressive Properties of Polyurethane Fiber Mattress Filling Material. Appl. Sci. 2022, 12, 6139. [Google Scholar] [CrossRef]
- Zhou, W.; Gong, X.; Li, Y.; Si, Y.; Zhang, S.; Yu, J.; Ding, B. Environmentally Friendly Waterborne Polyurethane Nanofibrous Membranes by Emulsion Electrospinning for Waterproof and Breathable Textiles. Chem. Eng. J. 2022, 427, 130925. [Google Scholar] [CrossRef]
- Sáenz-Pérez, M.; Bashir, T.; Laza, J.M.; García-Barrasa, J.; Vilas, J.L.; Skrifvars, M.; León, L.M. Novel Shape-Memory Polyurethane Fibers for Textile Applications. Text. Res. J. 2018, 89, 1027–1037. [Google Scholar] [CrossRef]
- Sultan, M. Polyurethane for Removal of Organic Dyes from Textile Wastewater. Environ. Chem. Lett. 2017, 15, 347–366. [Google Scholar] [CrossRef]
- Sikdar, P.; Dip, T.M.; Dhar, A.K.; Bhattacharjee, M.; Hoque, M.S.; Ali, S. Bin Polyurethane (PU) Based Multifunctional Materials: Emerging Paradigm for Functional Textiles, Smart, and Biomedical Applications. J. Appl. Polym. Sci. 2022, 139, e52832. [Google Scholar] [CrossRef]
- Liu, Z.; Li, C.; Zhang, X.; Zhou, B.; Wen, S.; Zhou, Y.; Chen, S.; Jiang, L.; Jerrams, S.; Zhou, F. Biodegradable Polyurethane Fiber-Based Strain Sensor with a Broad Sensing Range and High Sensitivity for Human Motion Monitoring. ACS Sustain. Chem. Eng. 2022, 10, 8788–8798. [Google Scholar] [CrossRef]
- Bertocchi, M.J.; Simbana, R.A.; Wynne, J.H.; Lundin, J.G.; Bertocchi, M.J.; Simbana, R.A.; Wynne, J.H.; Lundin, J.G. Electrospinning of Tough and Elastic Liquid Crystalline Polymer–Polyurethane Composite Fibers: Mechanical Properties and Fiber Alignment. Macromol. Mater. Eng. 2019, 304, 1900186. [Google Scholar] [CrossRef]
- Bukowczan, A.; Raftopoulos, K.N.; Pielichowski, K. Fabrication of Liquid Crystalline Polyurethane/Polyhedral Oligomeric Silsesquioxane Nanofibers via Electrospinning. Materials 2023, 16, 7476. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, Z.; Gao, L.; Yang, H.; Fang, S. Preparation and Properties of Multi-Responsive Liquid Crystalline Poly(Urethane-Acrylate)s and Its Composite Membranes. Polymers 2024, 16, 1854. [Google Scholar] [CrossRef]
- Coneski, P.N.; Fulmer, P.A.; Giles, S.L.; Wynne, J.H. Lyotropic Self-Assembly in Electrospun Biocidal Polyurethane Nanofibers Regulates Antimicrobial Efficacy. Polymer 2014, 55, 495–504. [Google Scholar] [CrossRef]
- Zou, W.; Huang, X.; Li, Q.; Guo, L.; Li, C.; Jiang, H. Photo-Thermo-Mechanically Actuated Liquid Crystalline Elastomer Nanocomposite Reinforced by Polyurethane Fiber-Network. Mol. Cryst. Liq. Cryst. 2016, 631, 9–20. [Google Scholar] [CrossRef]
- Morooka, T.; Ohsedo, Y.; Kato, R.; Miyamoto, N. Structure-Regulated Tough Elastomers of Liquid Crystalline Inorganic Nanosheet/Polyurethane Nanocomposites. Mater. Adv. 2021, 2, 1035–1042. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukowczan, A.; Raftopoulos, K.N.; Pielichowski, K. Crystallinity and Liquid Crystallinity of Polyurethanes: How Tailoring of Order Contributes to Customized Properties and Applications. Polymers 2025, 17, 784. https://doi.org/10.3390/polym17060784
Bukowczan A, Raftopoulos KN, Pielichowski K. Crystallinity and Liquid Crystallinity of Polyurethanes: How Tailoring of Order Contributes to Customized Properties and Applications. Polymers. 2025; 17(6):784. https://doi.org/10.3390/polym17060784
Chicago/Turabian StyleBukowczan, Artur, Konstantinos N. Raftopoulos, and Krzysztof Pielichowski. 2025. "Crystallinity and Liquid Crystallinity of Polyurethanes: How Tailoring of Order Contributes to Customized Properties and Applications" Polymers 17, no. 6: 784. https://doi.org/10.3390/polym17060784
APA StyleBukowczan, A., Raftopoulos, K. N., & Pielichowski, K. (2025). Crystallinity and Liquid Crystallinity of Polyurethanes: How Tailoring of Order Contributes to Customized Properties and Applications. Polymers, 17(6), 784. https://doi.org/10.3390/polym17060784