Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (202)

Search Parameters:
Keywords = liquid chromatography time-of-flight tandem mass spectrometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3713 KB  
Article
Unraveling the Chemical Composition and Biological Activity of Geum aleppicum Jacq.: Insights from Plants Collected in Kazakhstan
by Gulnur N. Kuntubek, Martyna Kasela, Kaldanay K. Kozhanova, Wirginia Kukula-Koch, Łukasz Świątek, Kinga Salwa, Piotr Okińczyc, Aleksandra Józefczyk, Jarosław Widelski, Gulnara M. Kadyrbayeva, Aigerim Z. Mukhamedsadykova, Zuriyadda B. Sakipova and Anna Malm
Molecules 2025, 30(19), 3888; https://doi.org/10.3390/molecules30193888 - 26 Sep 2025
Viewed by 886
Abstract
Geum aleppicum Jacq. (yellow avens), a species traditionally used in folk medicine, remains understudied in the ethnopharmacological aspects. In this study, we comprehensively evaluated the phytochemical composition and biological activity of a hydroethanolic (50:50, v/v) extract from the aerial parts [...] Read more.
Geum aleppicum Jacq. (yellow avens), a species traditionally used in folk medicine, remains understudied in the ethnopharmacological aspects. In this study, we comprehensively evaluated the phytochemical composition and biological activity of a hydroethanolic (50:50, v/v) extract from the aerial parts of G. aleppicum collected in Kazakhstan. Using the high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (HPLC-ESI-QTOF-MS/MS), we identified 24 compounds, predominantly phenolic acids, flavonoids, tannins, and triterpenoids. The major compound was ellagic acid (2.28 mg/g dry extract) as revealed by the reverse phase high-performance liquid chromatography–diode array detector (RP-HPLC-DAD). The extract exhibited a high polyphenol content (131.45 mg GAE/g) and strong antioxidant activity in Ferric Reducing Antioxidant Power (FRAP) assay and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay (3.82 ± 0.07 mmol Fe2+/g and 106.61 ± 0.89 mg GAE/g, respectively). Antimicrobial assay of the extract revealed notable antifungal activity against Candida spp., especially against C. glabrata and C. tropicalis with minimum inhibitory concentration (MIC) of as low as 0.125 mg/mL, showing fungistatic effect. Although the extract inhibited the cytopathic effect induced by Human Herpesvirus 1 (HHV-1) in VERO cells, it did not significantly reduce viral replication. Moreover, among human cancer cell lines studied, the extract exerted moderate and selective cytotoxicity against A549 lung cancer cells (CC50 = 75.51 µg/mL, SI = 9). These findings highlight G. aleppicum as a rich source of bioactive compounds, especially phenolics, supporting its potential for development of pharmaceutical and cosmetic applications. Full article
(This article belongs to the Special Issue Biological Evaluation of Plant Extracts)
Show Figures

Figure 1

25 pages, 5716 KB  
Article
Characterization and Anti-Allergic Mechanisms of Bioactive Compounds in a Traditional Chinese Medicine Prescription Using UHPLC-Q-TOF-MS/MS, Network Pharmacology and Computational Simulations
by Liang Hong, You Qin, Chiwai Ip, Wenfei Xu, Haoxuan Zeng, Xiu Duan, Ji Wang, Jing Zhao, Qi Wang and Shaoping Li
Pharmaceuticals 2025, 18(10), 1444; https://doi.org/10.3390/ph18101444 - 26 Sep 2025
Viewed by 1328
Abstract
Background/Objectives: Allergic diseases (e.g., asthma, chronic urticaria) are increasing globally, but current anti-allergic drugs exhibit limitations in efficacy and safety. Traditional Chinese Medicine (TCM) emphasizes constitutional regulation for allergic diseases management. The allergic constitution prescription (ACP), a TCM formulation, lacks clear mechanistic insights. [...] Read more.
Background/Objectives: Allergic diseases (e.g., asthma, chronic urticaria) are increasing globally, but current anti-allergic drugs exhibit limitations in efficacy and safety. Traditional Chinese Medicine (TCM) emphasizes constitutional regulation for allergic diseases management. The allergic constitution prescription (ACP), a TCM formulation, lacks clear mechanistic insights. Methods: This study employs a novel network pharmacology approach integrating ultra-high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS/MS) to identify ACP’s chemical components and compare its mechanisms with anti-allergic drugs. Chemical components of ACP were analyzed via UHPLC-Q-TOF-MS/MS, and allergic disease-related targets were collected from public databases. Anti-allergic drug targets were intersected with ACP-disease targets to identify unique and common pathways. Molecular docking and dynamics simulations assessed binding affinity between key compounds and core targets. Results: We identified 126 compounds in ACP. Compared to anti-allergic drugs, ACP targeted 10 unique and five common key pathways (e.g., MAPK signaling), 10 unique and nine common core targets (e.g., Tumor Necrosis Factor (TNF), IL-6), and 14 unique and 15 common key compounds. Simulations confirmed high binding affinity of ACP compounds to core targets. Conclusions: These findings highlight ACP’s potential multi-target mechanisms for allergic diseases treatment, identifying unique and shared pathways, targets, and compounds compared to anti-allergic drugs, offering new insights for further mechanistic studies. However, it is crucial to note that these mechanistic predictions and compound-target interactions are primarily derived from computational analyses, and experimental validation (e.g., in vitro or in vivo assays) is essential to confirm these computational findings. Full article
(This article belongs to the Topic Research on Natural Products of Medical Plants)
Show Figures

Graphical abstract

15 pages, 6299 KB  
Article
Qualitative and Quantitative Metabolite Comparison of Grain, Persimmon, and Apple Vinegars with Antioxidant Activities
by Hyun-Ji Tak, Sowon Yang, So-Young Kim, Na-Rae Lee and Choong Hwan Lee
Antioxidants 2025, 14(8), 1029; https://doi.org/10.3390/antiox14081029 - 21 Aug 2025
Viewed by 1545
Abstract
Fermented vinegars have been highlighted globally for their health benefits. The benefits can differ according to the type of vinegar; therefore, we investigated the differences of 15 grain (GV), 10 persimmon (PV), and 14 apple vinegars (AV) using integrated non-targeted and targeted metabolome [...] Read more.
Fermented vinegars have been highlighted globally for their health benefits. The benefits can differ according to the type of vinegar; therefore, we investigated the differences of 15 grain (GV), 10 persimmon (PV), and 14 apple vinegars (AV) using integrated non-targeted and targeted metabolome analyses. We profiled non-volatile and volatile metabolites using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS), ultra-high-performance liquid chromatography–orbitrap–tandem mass spectrometry, and headspace–solid-phase microextraction–GC-TOF-MS. Among the 132 identified metabolites, 73 non-volatile and 40 volatile metabolites showed significant differences across the three vinegar types. Amino acids, hydroxy fatty acids, phenolic compounds, aldehydes, pyrazines, and sulfides were abundant in GV. Some phenolic compounds, alcohols, and esters were abundant in PV, whereas carbohydrates, flavonoids, and terpenoids were abundant in AV, contributing to nutrients, tastes, and flavors. Bioactivity assays revealed that GV showed notable antioxidant activity, whereas PV and AV had the highest total phenolic and flavonoid contents, respectively. Through quantitative analysis, we revealed that acetic acid, propionic acid, butanoic acid, lactic acid, and alanine were major components in the three types of vinegar, although their composition was different in each vinegar. Our comprehensive qualitative and quantitative metabolite comparison provides insights into the differences among the three vinegar types, classified according to their raw materials. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

16 pages, 2255 KB  
Article
Exploring the Functional Potential of the Xyrophytic Greek Carob (Ceratonia siliqua, L.) Cold Aqueous and Hydroethanolic Extracts
by Katerina Pyrovolou, Panagiota-Kyriaki Revelou, Maria Trapali, Irini F. Strati, Spyros J. Konteles, Petros A. Tarantilis and Anthimia Batrinou
Appl. Sci. 2025, 15(16), 8909; https://doi.org/10.3390/app15168909 - 13 Aug 2025
Viewed by 1154
Abstract
The present study investigates the antimicrobial, antioxidant, and in vitro antidiabetic potential of cold infusions prepared from different parts of the Greek carob tree (Ceratonia siliqua L.), which is a xerophytic species. Carob samples, including green and ripe pods and leaves, were [...] Read more.
The present study investigates the antimicrobial, antioxidant, and in vitro antidiabetic potential of cold infusions prepared from different parts of the Greek carob tree (Ceratonia siliqua L.), which is a xerophytic species. Carob samples, including green and ripe pods and leaves, were collected from an urban area of Attica, Greece, and extracted using food-grade solvents (water and a water–ethanol mixture, 90:10, v/v). The extracts were evaluated for antibacterial activity against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 6538 using automated turbidometry. In addition, total phenolic content and antioxidant and antiradical activities were determined via spectrophotometry; the phenolic profile was analyzed using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC-QToF-MS), and α-amylase inhibitory activity was assessed through an in vitro assay. All extracts exhibited statistically significant (p < 0.05) bacteriostatic effects, with green pods and leaves showing the highest activity. Ripe pods demonstrated the most potent α-amylase inhibition (up to 96.43%), especially when extracted with water–ethanol mixture (90:10, v/v). Liquid chromatography coupled with tandem quadrupole/time-of-flight mass spectrometry (LC-QToF-MS) analysis revealed a rich phenolic profile across all samples. While carob leaves showed no α-amylase inhibition, their phenolic profile suggests other potential health-related bioactivities. These findings support the development of carob-based functional food products and highlight the nutritional and pharmaceutical potential of this resilient Mediterranean crop. Full article
Show Figures

Figure 1

25 pages, 4439 KB  
Article
Genetic Diversity and Metabolic Profile of Tibetan Medicinal Plant Saussurea obvallata
by Shengnan Zhang, Sujuan Wang, Shiyan Wang, Hao Su and Ji De
Genes 2025, 16(5), 593; https://doi.org/10.3390/genes16050593 - 17 May 2025
Cited by 3 | Viewed by 1235
Abstract
Background/Objectives: Saussurea obvallata (DC.) Edgew., Asteraceae, is a traditional medicinal herbnative to the Qinghai–Tibet Plateau (QTP). Pharmacological investigationshave validated its pharmacological effects in anti-tumor, anti-inflammatory, heat-clearing, detoxifying, and analgesia. S. obv is presently facing habitat fragmentation and population decline. Therefore, we analyzed its [...] Read more.
Background/Objectives: Saussurea obvallata (DC.) Edgew., Asteraceae, is a traditional medicinal herbnative to the Qinghai–Tibet Plateau (QTP). Pharmacological investigationshave validated its pharmacological effects in anti-tumor, anti-inflammatory, heat-clearing, detoxifying, and analgesia. S. obv is presently facing habitat fragmentation and population decline. Therefore, we analyzed its genetic and chemical diversity to provide a scientific basis for the conservation and sustainable use of S. obv. Methods: Seven populations of S. obv were sampled from Xizang, China. The genetic diversity was analyzed using inter-simple sequence repeat (ISSR) markers, and metabolites were identified by ultra-high-performance liquid chromatography-tandem-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS). Correlation analysis among genetic diversity, differential metabolites, and climatic factors were performed by R. Results: The genetic diversity among and within populations were both lowly and significantly correlated with geographical distance, showing a decreasing trend from east to west of the QTP. A total of 110 compounds were identified, including flavonoids, phenylpropanoids, lipids, fatty acids, terpenoids, alkaloids, etc. The metabolite contents among populations varied greatly and were related to environmental factors, mainly annual mean temperature and temperature fluctuation. The genetic diversity had little effect on the metabolic differences. Conclusions: These findings provided valuable baseline information for the conservation and pharmacological utilization of S. obv. Meanwhile, further research is necessary for the efficacy evaluation of anti-inflammatory, anti-tumor, radiation protection, and scar removal both in vitro and in vivo. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

33 pages, 718 KB  
Review
Proteomics in Diagnostic Evaluation and Treatment of Breast Cancer: A Scoping Review
by Menelaos Zafrakas, Ioannis Gavalas, Panayiota Papasozomenou, Christos Emmanouilides and Maria Chatzidimitriou
J. Pers. Med. 2025, 15(5), 177; https://doi.org/10.3390/jpm15050177 - 27 Apr 2025
Viewed by 2974
Abstract
Objectives: The aim of this scoping review was to delineate the current role and possible applications of proteomics in personalized breast cancer diagnostic evaluation and treatment. Methods: A comprehensive search in PubMed/MEDLINE and Scopus/EMBASE was conducted, according to the PRISMA–ScR guidelines. Inclusion criteria: [...] Read more.
Objectives: The aim of this scoping review was to delineate the current role and possible applications of proteomics in personalized breast cancer diagnostic evaluation and treatment. Methods: A comprehensive search in PubMed/MEDLINE and Scopus/EMBASE was conducted, according to the PRISMA–ScR guidelines. Inclusion criteria: proteomic studies of specimens from breast cancer patients, clinically relevant studies and clinical studies. Exclusion criteria: in silico, in vitro and studies in animal models, review articles, case reports, case series, comments, editorials, and articles in language other than English. The study protocol was registered in the Open Science Framework. Results: In total, 1093 records were identified, 170 papers were retrieved and 140 studies were selected for data extraction. Data analysis and synthesis of evidence showed that most proteomic analyses were conducted in breast tumor specimens (n = 77), followed by blood samples (n = 48), and less frequently in other biologic material taken from breast cancer patients (n = 19). The most commonly used methods were liquid chromatography–tandem mass spectrometry (LC–MS/MS), followed by Matrix-assisted laser desorption/ionization-time of flight (MALDI–TOF), Surface-Enhanced Laser Desorption/Ionization Time-of-Flight (SELDI–TOF) and Reverse Phase Protein Arrays (RPPA). Conclusions: The present review provides a thorough map of the published literature reporting clinically relevant results yielded from proteomic studies in various biological samples from different subgroups of breast cancer patients. This analysis shows that, although proteomic methods are not currently used in everyday practice to guide clinical decision-making, nevertheless numerous proteins identified by proteomics could be used as biomarkers for personalized diagnostic evaluation and treatment of breast cancer patients. Full article
Show Figures

Figure 1

17 pages, 4543 KB  
Article
A New Protein–Ligand Trapping System to Rapidly Screen and Discover Small-Molecule Inhibitors of PD-L1 from Natural Products
by Yazhuo Huang, Senfeng Sun, Runxin Yin, Zongtao Lin, Daidong Wang, Wanwan Wang, Xiangyu Fu, Jing Wang, Xinyu Lei, Mimi Sun, Shizhong Chen and Hong Wang
Molecules 2025, 30(8), 1754; https://doi.org/10.3390/molecules30081754 - 14 Apr 2025
Viewed by 1246
Abstract
Chinese herbal medicines have played a significant role in the development of new and effective drugs, but how to identify the active ingredients from complex extracts of traditional Chinese herbal medicines was a research difficulty. In recent years, few studies have focused on [...] Read more.
Chinese herbal medicines have played a significant role in the development of new and effective drugs, but how to identify the active ingredients from complex extracts of traditional Chinese herbal medicines was a research difficulty. In recent years, few studies have focused on high-efficiency identification of small-molecule inhibitors of Programmed Death Ligand 1 with lower antigenicity and flexible structure tunability. In order to identify small molecule inhibitors of PD-L1 from complex Chinese herbal extracts, this study established a protein–ligand trapping system based on high-performance liquid chromatography coupled with a photo-diode array detector, ion trap/quadrupole time-of-flight tandem mass spectrometry, and a Programmed Death Ligand 1 affinity chromatography unit (ACPD-L1-HPLC-PDA-IT-TOF (Q-TOF)-MS) to rapidly screen and identify small-molecule inhibitors of Programmed Death Ligand 1 from Toddalia asiatica (L.) Lam. Fourteen components were then identified as PD-L1 binders, and surface plasmon resonance (SPR) validation results showed that six of them—magnoflorine (6), nitidine (22), chelerythrine (24), jatrorrhizine (13), toddaculin (68), and toddanol (45)—displayed PD-L1 binding activity. Laser scanning confocal microscopy results demonstrated that these compounds effectively inhibited the binding of PD-1 to PD-L1 in a dose-dependent manner. Additionally, flow cytometry analysis indicated they could promote human lung cancer cell line (A549) apoptosis when co-cultured with Peripheral Blood Mononuclear Cells (PBMCs). The system’s innovation lies in its first integration of dynamic protein–ligand trapping with multi-dimensional validation, coupled with high-throughput screening capacity for structurally diverse natural products. This workflow overcomes traditional phytochemical screening bottlenecks by preserving native protein conformations during affinity capture while maintaining chromatographic resolution, offering a transformative template for accelerating natural product-derived immunotherapeutics through the PD-1/PD-L1 pathway. Full article
(This article belongs to the Special Issue Anticancer Natural Products)
Show Figures

Figure 1

20 pages, 3930 KB  
Article
Cellular Metabolomics Reveals Differences in the Scope of Liver Protection Between Ammonium-Based Glycyrrhizinate and Magnesium Isoglycyrrhizinate
by Yihua Zhang, Han Hao, Hui Li, Qiong Duan, Xiaoming Zheng, Yan Feng, Kun Yang and Shigang Shen
Metabolites 2025, 15(4), 263; https://doi.org/10.3390/metabo15040263 - 10 Apr 2025
Viewed by 1285
Abstract
Background: Despite the well-established liver-protective efficacy of monoammonium glycyrrhizinate (MONO), diammonium glycyrrhizinate (DIAM), and magnesium isoglycyrrhizinate (MAGN), which has been translated into clinical practice, their clinical differentiation remains elusive owing to their structural similarities and overlapping therapeutic effects. Methods: The present study delves [...] Read more.
Background: Despite the well-established liver-protective efficacy of monoammonium glycyrrhizinate (MONO), diammonium glycyrrhizinate (DIAM), and magnesium isoglycyrrhizinate (MAGN), which has been translated into clinical practice, their clinical differentiation remains elusive owing to their structural similarities and overlapping therapeutic effects. Methods: The present study delves into the pharmacokinetics, cellular-level liver-protective potencies, and underlying mechanisms of action of these three compounds through a comprehensive analysis. Results: The findings reveal that both DIAM and MAGN exhibit superior bioavailability and hepatoprotective profiles compared to MONO. Notably, an investigation of the metabolic pathways mediating liver protection in normal human liver cells (LO2), utilizing an ultra-performance liquid chromatography–time of flight tandem mass spectrometry (UPLC-TOF-MS/MSe) platform, demonstrated that MAGN augments antioxidant components, thereby favoring its application in drug-induced liver injury (DILI). Conversely, DIAM appears to be a more suitable candidate for addressing non-alcoholic fatty liver disease (NAFLD) and viral hepatitis. Conclusion: This study contributes novel perspectives on the mechanisms of action and potential clinical utilities of DIAM and MAGN in liver disease prevention and management. Full article
Show Figures

Graphical abstract

21 pages, 2506 KB  
Article
Integrated Gel Electrophoresis and Mass Spectrometry Approach for Detecting and Quantifying Extraneous Milk in Protected Designation of Origin Buffalo Mozzarella Cheese
by Sabrina De Pascale, Giuseppina Garro, Silvia Ines Pellicano, Andrea Scaloni, Stefania Carpino, Simonetta Caira and Francesco Addeo
Foods 2025, 14(7), 1193; https://doi.org/10.3390/foods14071193 - 28 Mar 2025
Cited by 2 | Viewed by 1017
Abstract
Ensuring the authenticity of Mozzarella di Bufala Campana (MdBC), a Protected Designation of Origin (PDO) cheese, is essential for regulatory enforcement and consumer protection. This study evaluates a multi-technology analytical platform developed to detect adulteration due to the addition of non-buffalo milk or [...] Read more.
Ensuring the authenticity of Mozzarella di Bufala Campana (MdBC), a Protected Designation of Origin (PDO) cheese, is essential for regulatory enforcement and consumer protection. This study evaluates a multi-technology analytical platform developed to detect adulteration due to the addition of non-buffalo milk or non-PDO buffalo milk in PDO dairy buffalo products. Peripheral laboratories use gel electrophoresis combined with polyclonal antipeptide antibodies for initial screening, enabling the detection of foreign caseins, including those originating outside the PDO-designated regions. For more precise identification, Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) differentiates species by detecting proteotypic peptides. In cases requiring confirmation, nano-liquid chromatography coupled to electrospray tandem mass spectrometry (nano-LC-ESI-MS/MS) is used in central state laboratories for the highly sensitive detection of extraneous milk proteins in PDO buffalo MdBC cheese. On the other hand, analysis of the pH 4.6 soluble fraction from buffalo blue cheese identified 2828 buffalo-derived peptides and several bovine specific peptides, confirming milk adulteration. Despite a lower detection extent in the pH 4.6 insoluble fraction following tryptic hydrolysis, the presence of bovine peptides was still sufficient to verify fraud. This integrated proteomic approach, which combines electrophoresis and mass spectrometry technologies, significantly improves milk adulteration detection, providing a robust tool to face increasingly sophisticated fraudulent practices. Full article
Show Figures

Figure 1

21 pages, 2959 KB  
Article
Analysis of Macroporous Resin Combined Extraction and Purification of Polyphenols from Agrimonia pilosa Ledeb. and Anti-Tumor Effect In Vitro
by Zhanghao Mei, Huifen Li, Tingting Li, Huiping Taoli and Linmei Pan
Molecules 2025, 30(7), 1478; https://doi.org/10.3390/molecules30071478 - 26 Mar 2025
Cited by 2 | Viewed by 1287
Abstract
Agrimonia pilosa Ledeb. (APL), a traditional Chinese herb frequently employed by Professor Zhou Zhongying, a master of traditional Chinese medicine, for colorectal cancer treatment, is rich in polyphenols with potential anti-tumor properties. To elucidate its bioactive components, this study developed a two-step purification [...] Read more.
Agrimonia pilosa Ledeb. (APL), a traditional Chinese herb frequently employed by Professor Zhou Zhongying, a master of traditional Chinese medicine, for colorectal cancer treatment, is rich in polyphenols with potential anti-tumor properties. To elucidate its bioactive components, this study developed a two-step purification process combining macroporous resin adsorption and liquid–liquid extraction to enrich polyphenols from APL (APLs). The adsorption/desorption mechanisms of APLs on macroporous resins were systematically investigated through resin screening, adsorption kinetics, and thermodynamics. The Langmuir isotherm model confirmed the adsorption process as spontaneous and exothermic. Pseudo-second-order kinetics effectively described the adsorption behavior of D101 resin. Optimized adsorption and column elution parameters were established, followed by liquid–liquid extraction for further purification. The components were compared and analyzed by ultra-performance liquid chromatography and quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-Zeno-TOF-MS/MS). It was preliminarily identified that 29 polyphenols were mainly concentrated in water-saturated n-butanol (BEA) and ethyl acetate (ECA) extract fractions. Quantitative analysis using ultra-high performance liquid chromatography–triple quadrupole liquid chromatography–mass spectrometry (UHPLC-C-QTRAP-MS/MS) revealed higher contents of catechin (66.67 ± 1.33 ng·mg−1), hyperoside (382.56 ± 3.65 ng·mg−1), and chlorogenic acid (10.60 ± 0.05 ng·mg−1) in BEA compared to ECA (46.00 ± 2.00, 239.40 ± 2.60, and 3.42 ± 0.01 ng·mg−1, respectively). In vitro experiments demonstrated that BEA exhibited superior antiproliferative activity (IC50: 434.5 μg·mL−1) and significantly inhibited CT26 tumor cell migration compared to ECA (IC50: 672.5 μg·mL−1). The enhanced biological activity of BEA may be due to its higher polyphenol content, suggesting that these compounds mediate their anti-tumor effects through different biochemical pathways. This work lays the foundation for exploring the multi-target mechanism of anti-tumor effects of APLs. Full article
Show Figures

Figure 1

12 pages, 1269 KB  
Article
In Vitro Anti-Glioblastoma Activity of Echinocereus engelmannii- and Echinocereus pectinatus-Associated Bacterial Endophyte Extracts
by Ana L. Delgado-Miranda, Ricardo Gomez-Flores, Nancy E. Rodríguez-Garza, Orquídea Pérez-González, Patricia Tamez-Guerra, Diana Caballero-Hernández, Diana L. Clark-Pérez, Ramiro Quintanilla-Licea, Andrés García and César I. Romo-Sáenz
Life 2025, 15(4), 519; https://doi.org/10.3390/life15040519 - 21 Mar 2025
Cited by 1 | Viewed by 1021
Abstract
Glioblastoma is the most common and aggressive brain tumor in adults. However, due to the limitations of conventional treatments, as well as their side effects, there is a need to develop more effective and less harmful therapy strategies. There is evidence that plants [...] Read more.
Glioblastoma is the most common and aggressive brain tumor in adults. However, due to the limitations of conventional treatments, as well as their side effects, there is a need to develop more effective and less harmful therapy strategies. There is evidence that plants endemic to northern Mexico possess biological activities that positively impact human health, particularly against cancer. Echinocereus engelmannii and Echinocereus pectinatus are cacti from the north of Mexico that produce bioactive compounds with antitumor activity. We obtained methanol extracts from previously isolated and fermented microorganisms associated with these cacti. Cell lines of extracts with cytotoxicity against glioblastoma cells U87, neuroblastoma cells SH-S5Y5, and Schwann neuronal cells (healthy control) were evaluated, using a colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazole bromide (MTT) reduction technique. The selective cytotoxicity extracts were analyzed using liquid chromatography tandem mass spectrometry (LC/MS2). We isolated 19 endophytic and soil-associated microorganisms from both cacti. Two of them were selected for their high percentages of tumor growth inhibition. The microorganism ES4 possessed the best activity with an IC50 of 17.31 ± 1.70 µg/mL and a selectivity index of 3.11. We identified the bacterium Stenotrophomonas maltophilia by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) from the most active microorganisms against tumor growth. LC/MS2 characterized the HS4 extract, and the most abundant group (50.0%) identified included carboxylic acids and derivatives, particularly bisgerayafolin A, Cyclo (Pro-Leu), maculosin, and tryptophan. In conclusion S. maltophilia extract inhibit the growth of glioma cells, showing greater sensitivity in the U87 cell line. Full article
(This article belongs to the Special Issue Implications of Bioactive Compounds in Lifelong Disorders)
Show Figures

Figure 1

19 pages, 7381 KB  
Article
Lipidomics Combined with Network Pharmacology to Explore Differences in the Mechanisms of Grey Hair Development Between Type 2 Diabetes Mellitus and Normal Populations (Female)
by Liwen Wu, Shiqi Li and Congfen He
Int. J. Mol. Sci. 2025, 26(5), 2034; https://doi.org/10.3390/ijms26052034 - 26 Feb 2025
Cited by 1 | Viewed by 1411
Abstract
Type 2 diabetes is usually accompanied by premature grey hair. In this study, we analysed differences in the lipid composition of black and white hair follicles between women with type 2 diabetes and healthy populations, using lipidomic methods. We examined the correlation between [...] Read more.
Type 2 diabetes is usually accompanied by premature grey hair. In this study, we analysed differences in the lipid composition of black and white hair follicles between women with type 2 diabetes and healthy populations, using lipidomic methods. We examined the correlation between the lipid composition of female grey hair follicles and type 2 diabetes mellitus, and we screened for potential grey-hair-delaying ingredients using network pharmacology. Forty-one female volunteers with type 2 diabetes (diabetes, D) and thirty-five healthy volunteers (healthy, H) aged 55–65 years were recruited. Hair roots, including the follicular portion, were collected from grey hair (D-W for diabetic volunteers and H-W for healthy volunteers) and black hair (D-B for diabetic volunteers and H-B for healthy volunteer). Lipids were extracted separately and analysed using UPLC-QTOF-MS (Ultra-Performance Liquid Chromatography–Tandem Time-of-Flight Mass Spectrometry), combined with an OPLS-DA (Orthogonal Partial Least Squares Discriminant Analysis) model to identify different lipids among different groups under VIP conditions (VIP > 1, p < 0.05, and fold change ≥ 2). Further screening was performed using the ROC (receiver operating characteristic) curve method, selecting lipids with an AUC (area under the curve) value greater than 0.8 and specificity plus sensitivity greater than 1.6. Finally, bioinformatics and reverse network pharmacology were used to screen relevant targets, ingredients, and herbs to find suitable raw materials with anti-grey-hair effects. We found the following: (1) Ten significant differential lipids were identified under VIP conditions in the D-W and D-B groups, and five potential differential lipids (1-O-alpha-D-glucopyranosyl-1,2-eicosandiol, emmotin A, odyssic acid, PI-Cer(t18:0/26:0(2OH)), and NAPE(18:1(9Z)/16:1(9Z)/18:0)) were further screened using ROC analysis. The levels of all five lipids were significantly higher in D-W than in D-B, and these elevated levels may have been related to the production of grey hair in diabetic patients. (2) Thirteen significantly different lipids were screened under VIP conditions in the H-W and H-B groups, and five potential differential lipids were screened via ROC analysis (PS(O-16:0/13:0), PA(12:0/16:1(9Z)), PS(13:0/20:3(8Z,11Z,14Z)), GlcCer(d18:1/24:1(15Z)), and PS(O-20:0/17:2(9Z,12Z))). The levels of all five lipids were significantly higher in H-B than in H-W, and we hypothesised that their reduced levels were associated with the production of grey hair in the healthy population. (3) Twelve significantly different lipids were screened under VIP conditions in the D-W and H-W groups, and two potential differential lipids were screened via ROC analysis (fucoxanthinol 3-heptadecanoate 3′-myristate and 2-(3-hydroxyphytanyl)-3-phytanyl-sn-glycerol). The contents of both lipids were significantly higher in H-W than in D-W, and there were differences in the lipid composition of grey hair in the D and H populations. (4) Important ingredients with possible therapeutic effects were obtained through lipid-matched target screening: resveratrol, calycosin, epigallocatechin 3-gallate, and herbs such as the fruit of the glossy privet, etc. In summary, the production of grey hair in the D and H populations may be affected by different lipids. The lipid components emmotin A and fucoxanthinol 3-heptadecanoate 3′-myristate were significantly higher in the D and H populations than in the same groups (D-B, H-B), and these are pregnenolone lipids (PRs). We hypothesised that PRs can influence the production of grey hair in both populations. The screening of important differential lipids may serve to provide diagnostic loci or therapeutic targets, while matching ingredients and herbs may provide a basis and direction for the subsequent development of anti-grey-hair ingredients. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

28 pages, 3543 KB  
Article
Pairing Red Wine and Closure: New Achievements from Short-to-Medium Storage Time Assays
by João Mota, André Viana, Cátia Martins, Adriana C. S. Pais, Sónia A. O. Santos, Armando J. D. Silvestre, José Pedro Machado and Sílvia M. Rocha
Foods 2025, 14(5), 783; https://doi.org/10.3390/foods14050783 - 25 Feb 2025
Cited by 1 | Viewed by 2866
Abstract
The physicochemical and sensory properties of wines are influenced by several factors, starting in the vineyard and evolving during the winemaking stages. After bottling, variables such as bottle position, closure type, storage temperature, and storage time shape wine characteristics. In this study, red [...] Read more.
The physicochemical and sensory properties of wines are influenced by several factors, starting in the vineyard and evolving during the winemaking stages. After bottling, variables such as bottle position, closure type, storage temperature, and storage time shape wine characteristics. In this study, red wines stored for approximately 0.5 and 3 years with natural cork, micro-agglomerated cork stoppers, and screw cap closures were analyzed. Various techniques were employed to investigate changes during bottle storage, including the determination of volatile components by comprehensive gas chromatography-mass spectrometry with time-of-flight analyzer (GC × GC-ToFMS), phenolic profile by ultra-high-performance liquid chromatography, coupled with tandem mass spectrometry (UHPLC-DAD-MSn), general physicochemical parameters, the oxygen transfer rate of cork stoppers, and sensorial analysis performed by a trained panel. The results revealed that the type of closure created distinct environments within the bottles, slightly influencing both sensory attributes and chemical evolution of the red wines. These findings highlight the value of combining diverse analytical techniques to reveal closure-driven differences, with volatile compound profiling emerging as the most sensitive methodology. Additionally, this study emphasizes that differences modulated by the wine–closure pairing, which become more pronounced during storage, can serve as an oenological tool in the construction of a wine’s identity. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Graphical abstract

15 pages, 2812 KB  
Article
Liquid Chromatography Quadrupole Time-of-Flight Tandem Mass Spectrometry Characterization of Ethyl Acetate Fraction from Sargassum pallidum and Its Anti-Melanogenesis Effect in B16F10 Melanoma Cells and Zebrafish Model
by Wook-Chul Kim, Hyeon Kang and Seung-Hong Lee
Int. J. Mol. Sci. 2025, 26(4), 1522; https://doi.org/10.3390/ijms26041522 - 11 Feb 2025
Viewed by 1384
Abstract
Melanin overproduction causes various skin diseases, such as spots, freckles, and wrinkles, resulting in the requirement of melanin synthesis inhibitors like 1-phenyl-2-thiourea (PTU) and kojic acid, which have been commonly used in the pharmaceutical industry. However, these inhibitors can cause side effects such [...] Read more.
Melanin overproduction causes various skin diseases, such as spots, freckles, and wrinkles, resulting in the requirement of melanin synthesis inhibitors like 1-phenyl-2-thiourea (PTU) and kojic acid, which have been commonly used in the pharmaceutical industry. However, these inhibitors can cause side effects such as skin irritation and allergies. Therefore, it is necessary to develop safe and effective melanin inhibitors from natural resources. The purpose of this study was to investigate a whitening agent from natural substances using B16F10 melanoma cells and zebrafish model. We investigated the melanogenesis-inhibiting activities of the fractions from Sargassum pallidum extract. The ethyl acetate fraction from S. pallidum extract (SPEF) significantly decreased tyrosinase activity. SPEF also significantly reduced α-melanocyte stimulating hormone (MSH)-induced intracellular tyrosinase activity and melanin content in B16F10 cells. Moreover, SPEF inhibited the expression levels of key melanogenic proteins such as tyrosinase, TRP-1, TRP-2, and MITF by downregulating the phosphorylation levels of CREB and PKA in α-MSH-stimulated melanoma cells. Furthermore, SPEF significantly suppressed melanin synthesis in the zebrafish model with no developmental toxicity. LC-Q-TOF-MS/MS analysis identified that SPEF was composed of 12 phytochemical compounds, including diterpenes, which were the dominant metabolites. These results altogether show that SPEF effectively suppresses melanogenesis in B16F10 melanoma cells and in a zebrafish model, with potential for usage in pharmaceuticals and cosmeceuticals. Full article
(This article belongs to the Special Issue Functions and Applications of Natural Products)
Show Figures

Figure 1

26 pages, 5057 KB  
Article
Identification of Pseudomonas protegens and Bacillus subtilis Antimicrobials for Mitigation of Fuel Biocontamination
by Amanda L. Barry Schroeder, Adam M. Reed, Osman Radwan, Loryn L. Bowen, Oscar N. Ruiz, Thusitha S. Gunasekera and Andrea Hoffmann
Biomolecules 2025, 15(2), 227; https://doi.org/10.3390/biom15020227 - 4 Feb 2025
Cited by 5 | Viewed by 2094
Abstract
Hydrocarbon fuel biofouling and biocorrosion require expensive cleanup of aviation infrastructures unless appropriate sustainment measures are applied. The identification of novel biological control agents offers promising alternatives to the current chemical biocides used in fuel sustainment. In this study, 496 microbial fuel isolates [...] Read more.
Hydrocarbon fuel biofouling and biocorrosion require expensive cleanup of aviation infrastructures unless appropriate sustainment measures are applied. The identification of novel biological control agents offers promising alternatives to the current chemical biocides used in fuel sustainment. In this study, 496 microbial fuel isolates from our in-house repository were screened to identify new endogenously produced antimicrobial compounds. Using agar plug screening, liquid culture growth testing, and Jet A fuel culture assays, the two fuel-isolate strains Pseudomonas protegens #133, and Bacillus subtilis #232 demonstrated promising biocontrol activity against bacteria, yeast, and filamentous fungi. Liquid chromatography-quadrupole time of flight tandem mass spectrometry (LC-QTOF-MS/MS) of #232 culture filtrate identified several common lipopeptide antimicrobials including gageostatin C, gageopeptin B, and miscellaneous macrolactins. In contrast, LC-QTOF-MS/MS identified the siderophore pyochelin as one of the predominant compounds in #133 culture filtrate with previously demonstrated antimicrobial effect. Jet fuel microbial consortium culture testing of #133 culture filtrate including flow-cytometry live/dead cell mechanism determination demonstrated antimicrobial action against Gram-positive bacteria. The study concludes that antimicrobial compounds secreted by #133 have bactericidal effects against Gordonia sp. and cause cell death through bacterial lysis and membrane damage with potential applications in the biocidal treatment of hydrocarbon-based aviation fuels. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Graphical abstract

Back to TopTop