Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = lipoplexes optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1559 KB  
Article
Optimization of Lipoplexes Functionalized with a Sialic Acid Mimetic (F9-PEG) to Target the C1858T PTPN22 Variant for Preclinical Assessment of a Novel Immunotherapy in Endocrine Autoimmunity
by Simona Sennato, Giorgia Paldino, Cecilia Bombelli, Irene Mezzani, Stefania Petrini, Domenico Vittorio Delfino, Francesco Fiorentino, Carlotta Marianecci, Alessia Ciogli, Dante Rotili, Francesca Ceccacci and Alessandra Fierabracci
Pharmaceutics 2025, 17(6), 710; https://doi.org/10.3390/pharmaceutics17060710 - 28 May 2025
Viewed by 678
Abstract
Background: The C1858T PTPN22 variant is strongly associated with type 1 diabetes and autoimmune thyroid disease. Current treatment is substitutive hormonal administration, which does not target the disease pathogenetic mechanism. We previously implemented a novel immunotherapy, employing siRNA directed against the C1858T variant [...] Read more.
Background: The C1858T PTPN22 variant is strongly associated with type 1 diabetes and autoimmune thyroid disease. Current treatment is substitutive hormonal administration, which does not target the disease pathogenetic mechanism. We previously implemented a novel immunotherapy, employing siRNA directed against the C1858T variant of PTPN22 delivered via functionalized lipoplexes, in order to halt autoimmune disease progression. Objectives: The objective of this study was to optimize lipoplex formulations functionalized with F9-PEG (a Siglec-10’s ligand) to facilitate targeted delivery by investigating their physical and chemical properties to warrant the best performance in in vivo studies. Methods: The effectiveness of siRNA liposome binding was evaluated by varying the relative lipid/siRNA charge ratio and analyzing the stability of the different formulations with respect to the methods of F9-PEG addition and ATTO740 fluorescent labeling by electrophoresis, dynamic and dielectrophoretic light scattering (DLS and DELS), and high-performance liquid chromatography (HPLC). Results: The optimal charge ratio of +2/−1 (lipid/siRNA) ensured a greater stability of lipoplexes and complete complexation of siRNA. Stability was improved by selecting a protocol of preparation that envisages functionalization with F9-PEG and the addition of ATTO740 lipid in the lipid film preparation step. HPLC confirmed the integrity of siRNA after preparation. Conclusions: The results of this study lead to formulations of F9-PEG lipoplexes with optimal properties that could be used for biodistribution and safety/efficacy studies in mice. Lipoplexes functionalized with F9-PEG could therefore represent a promising personalized nanotherapeutic platform for targeted siRNA delivery in endocrine C1858T patients. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Graphical abstract

17 pages, 3034 KB  
Article
Topical miRNA Delivery via Elastic Liposomal Formulation: A Promising Genetic Therapy for Cutaneous Lupus Erythematosus (CLE)
by Blanca Joseph-Mullol, Maria Royo, Veronique Preat, Teresa Moliné, Berta Ferrer, Gloria Aparicio, Josefina Cortés-Hernández and Cristina Solé
Int. J. Mol. Sci. 2025, 26(6), 2641; https://doi.org/10.3390/ijms26062641 - 14 Mar 2025
Cited by 2 | Viewed by 1281
Abstract
Cutaneous lupus erythematosus (CLE) is a chronic autoimmune skin disorder with limited therapeutic options, particularly for refractory discoid lupus (DLE), which often results in scarring and atrophy. Recent studies have identified miR-31, miR-485-3p, and miR-885-5p as key regulators of inflammation, apoptosis, and fibrosis [...] Read more.
Cutaneous lupus erythematosus (CLE) is a chronic autoimmune skin disorder with limited therapeutic options, particularly for refractory discoid lupus (DLE), which often results in scarring and atrophy. Recent studies have identified miR-31, miR-485-3p, and miR-885-5p as key regulators of inflammation, apoptosis, and fibrosis in CLE skin lesions. This research investigates a novel topical miRNA therapy using DDC642 elastic liposomes to target these pathways in CLE. DDC642 liposomes were complexed with miRNAs (anti-miR-31, anti-miR-485-3p, pre-miR-885-5p) and characterized through dynamic light scattering and Cryo-TEM. Cytotoxicity, cellular penetration, and therapeutic efficacy were evaluated in primary keratinocytes, PBMCs, and immune 3D-skin organoids. miRNA lipoplexes were successfully synthesized with optimized particle size, surface charge, and encapsulation efficiency. These lipoplexes exhibited effective cellular penetration and low cytotoxicity. Anti-miR-31 lipoplexes reduced miR-31 and NF-κB levels while increasing STK40 and PPP6C expression. Pre-miR-885-5p lipoplexes elevated miR-885-5p levels and downregulated PSMB5 and NF-κB in keratinocytes. While anti-miR-485-3p lipoplexes reduced T-cell activation markers. Anti-miR-31 and pre-miR-885-5p lipoplexes successfully modulated inflammatory pathways in 3D-skin CLE models. miRNA lipoplexes represent promising candidates for pioneering topical genetic therapies for CLE. Further studies, including animal models, are necessary to validate and optimize these findings. Full article
(This article belongs to the Special Issue Molecular Perspective in Autoimmune Diseases)
Show Figures

Figure 1

18 pages, 4965 KB  
Article
T14diLys/DOPE Liposomes: An Innovative Option for siRNA-Based Gene Knockdown?
by Sophie Meinhard, Frank Erdmann, Henrike Lucas, Maria Krabbes, Stephanie Krüger, Christian Wölk and Karsten Mäder
Pharmaceutics 2025, 17(1), 25; https://doi.org/10.3390/pharmaceutics17010025 - 27 Dec 2024
Viewed by 1989
Abstract
Background/Objectives: Bringing small interfering RNA (siRNA) into the cell cytosol to achieve specific gene silencing is an attractive but also very challenging option for improved therapies. The first step for successful siRNA delivery is the complexation with a permanent cationic or ionizable compound. [...] Read more.
Background/Objectives: Bringing small interfering RNA (siRNA) into the cell cytosol to achieve specific gene silencing is an attractive but also very challenging option for improved therapies. The first step for successful siRNA delivery is the complexation with a permanent cationic or ionizable compound. This protects the negatively charged siRNA and enables transfection through the cell membrane. The current study explores the performance of the innovative, ionizable lipid 2-Tetradecylhexadecanoic acid-(2-bis{[2-(2,6-diamino-1-oxohexyl)amino]ethyl}aminoethyl)-amide (T14diLys), in combination with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), for siRNA delivery and the impact of the production method (sonication vs. extrusion) on the particle properties. Methods: Liposomes were produced either with sonication or extrusion and characterized. The extruded liposomes were combined with siRNA at different N/P ratios and investigated in terms of size zeta potential, encapsulation efficiency, lipoplex stability against RNase A, and knockdown efficiency using enhanced green fluorescent protein (eGFP)-marked colon adenocarcinoma cells. Results: The liposomes prepared by extrusion were smaller and had a narrower size distribution than the sonicated ones. The combination of siRNA and liposomes at a nitrogen-to-phosphate (N/P) ratio of 5 had optimal particle properties, high encapsulation efficiency, and lipoplex stability. Gene knockdown tests confirmed this assumption. Conclusions: Liposomes produced with extrusion were more reproducible and provided enhanced particle properties. The physicochemical characterization and in vitro experiments showed that an N/P ratio of 5 was the most promising ratio for siRNA delivery. Full article
(This article belongs to the Special Issue Drug Nanocarriers for Pharmaceutical Applications)
Show Figures

Graphical abstract

27 pages, 5078 KB  
Review
Boosting Lipofection Efficiency Through Enhanced Membrane Fusion Mechanisms
by Rais V. Pavlov, Sergey A. Akimov, Erdem B. Dashinimaev and Pavel V. Bashkirov
Int. J. Mol. Sci. 2024, 25(24), 13540; https://doi.org/10.3390/ijms252413540 - 18 Dec 2024
Cited by 6 | Viewed by 3316
Abstract
Gene transfection is a fundamental technique in the fields of biological research and therapeutic innovation. Due to their biocompatibility and membrane-mimetic properties, lipid vectors serve as essential tools in transfection. The successful delivery of genetic material into the cytoplasm is contingent upon the [...] Read more.
Gene transfection is a fundamental technique in the fields of biological research and therapeutic innovation. Due to their biocompatibility and membrane-mimetic properties, lipid vectors serve as essential tools in transfection. The successful delivery of genetic material into the cytoplasm is contingent upon the fusion of the vector and cellular membranes, which enables hydrophilic polynucleic acids to traverse the hydrophobic barriers of two intervening membranes. This review examines the critical role of membrane fusion in lipofection efficiency, with a particular focus on the molecular mechanisms that govern lipoplex–membrane interactions. This analysis will examine the key challenges inherent to the fusion process, from achieving initial membrane proximity to facilitating final content release through membrane remodeling. In contrast to viral vectors, which utilize specialized fusion proteins, lipid vectors necessitate a strategic formulation and environmental optimization to enhance their fusogenicity. This review discusses recent advances in vector design and fusion-promoting strategies, emphasizing their potential to improve gene delivery yield. It highlights the importance of understanding lipoplex–membrane fusion mechanisms for developing next-generation delivery systems and emphasizes the need for continued fundamental research to advance lipid-mediated transfection technology. Full article
(This article belongs to the Special Issue Molecular Advances in Liposome-Based Drug Delivery Systems)
Show Figures

Figure 1

16 pages, 2554 KB  
Article
In Vitro CRISPR/Cas9 Transfection and Gene-Editing Mediated by Multivalent Cationic Liposome–DNA Complexes
by Diana A. Sousa, Ricardo Gaspar, Celso J. O. Ferreira, Fátima Baltazar, Ligia R. Rodrigues and Bruno F. B. Silva
Pharmaceutics 2022, 14(5), 1087; https://doi.org/10.3390/pharmaceutics14051087 - 19 May 2022
Cited by 21 | Viewed by 5858
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease 9 (Cas9) gene-editing offers exciting new therapeutic possibilities for disease treatment with a genetic etiology such as cancer, cardiovascular, neuronal, and immune disorders. However, its clinical translation is being hampered by the lack [...] Read more.
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease 9 (Cas9) gene-editing offers exciting new therapeutic possibilities for disease treatment with a genetic etiology such as cancer, cardiovascular, neuronal, and immune disorders. However, its clinical translation is being hampered by the lack of safe, versatile, and effective nonviral delivery systems. Herein we report on the preparation and application of two cationic liposome–DNA systems (i.e., lipoplexes) for CRISPR/Cas9 gene delivery. For that purpose, two types of cationic lipids are used (DOTAP, monovalent, and MVL5, multivalent with +5e nominal charge), along with three types of helper lipids (DOPC, DOPE, and monoolein (GMO)). We demonstrated that plasmids encoding Cas9 and single-guide RNA (sgRNA), which are typically hard to transfect due to their large size (>9 kb), can be successfully transfected into HEK 293T cells via MVL5-based lipoplexes. In contrast, DOTAP-based lipoplexes resulted in very low transfection rates. MVL5-based lipoplexes presented the ability to escape from lysosomes, which may explain the superior transfection efficiency. Regarding gene editing, MVL5-based lipoplexes achieved promising GFP knockout levels, reaching rates of knockout superior to 35% for charge ratios (+/−) of 10. Despite the knockout efficiency being comparable to that of Lipofectamine 3000® commercial reagent, the non-specific gene knockout is more pronounced in MVL5-based formulations, probably resulting from the considerable cytotoxicity of these formulations. Altogether, these results show that multivalent lipid-based lipoplexes are promising CRISPR/Cas9 plasmid delivery vehicles, which by further optimization and functionalization may become suitable in vivo delivery systems. Full article
(This article belongs to the Special Issue Lipid-Based Nanocarriers for Non-Viral Gene Delivery)
Show Figures

Figure 1

13 pages, 2301 KB  
Article
Increasing Transfection Efficiency of Lipoplexes by Modulating Complexation Solution for Transient Gene Expression
by Jaemun Kim, Ji Yul Kim, Hyeonkyeong Kim, Eunsil Kim, Soonyong Park, Kyoung-Hwa Ryu and Eun Gyo Lee
Int. J. Mol. Sci. 2021, 22(22), 12344; https://doi.org/10.3390/ijms222212344 - 16 Nov 2021
Cited by 8 | Viewed by 3978
Abstract
Transient gene expression is a suitable tool for the production of biopharmaceutical candidates in the early stage of development and provides a simple and rapid alternative to the generation of stable cell line. In this study, an efficient transient gene expression methodology using [...] Read more.
Transient gene expression is a suitable tool for the production of biopharmaceutical candidates in the early stage of development and provides a simple and rapid alternative to the generation of stable cell line. In this study, an efficient transient gene expression methodology using DC-Chol/DOPE cationic liposomes and pDNA in Chinese hamster ovary suspension cells was established through screening of diverse lipoplex formation conditions. We modulated properties of both the liposome formation and pDNA solution, together called complexation solutions. Protein expression and cellular cytotoxicity were evaluated following transfection over the cell cultivation period to select the optimal complexation solution. Changes in hydrodynamic size, polydispersity index, and ζ potential of the liposomes and lipoplexes were analyzed depending on the various pH ranges of the complexation solutions using dynamic light scattering. The transfer of lipoplexes to the cytosol and their conformation were traced using fluorescence analysis until the early period of transfection. As a result, up to 1785 mg/L and 191 mg/L of human Fc protein and immunoglobulin G (bevacizumab), respectively, were successfully produced using acidic liposome formation and alkaline pDNA solutions. We expect that this lipoplex formation in acidic and alkaline complexation solutions could be an effective methodology for a promising gene delivery strategy. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

12 pages, 3498 KB  
Article
Controlled pDNA Release in Gemini Cationic Lipoplexes by Femtosecond Laser Irradiation of Gold Nanostars
by Natalia Sánchez-Arribas, Pablo Díaz-Núñez, José Osío Barcina, Emilio Aicart, Elena Junquera and Andrés Guerrero-Martínez
Nanomaterials 2021, 11(6), 1498; https://doi.org/10.3390/nano11061498 - 5 Jun 2021
Cited by 2 | Viewed by 2711
Abstract
The design of nanovectors able to overcome biological barriers is one of the main challenges in biomedicine. Gemini cationic lipids are considered potential candidates for gene therapy due to their high biocompatibility and capacity to condense nucleic acids safely in the form of [...] Read more.
The design of nanovectors able to overcome biological barriers is one of the main challenges in biomedicine. Gemini cationic lipids are considered potential candidates for gene therapy due to their high biocompatibility and capacity to condense nucleic acids safely in the form of lipoplexes. However, this approach presents difficulties regarding genetic unpacking and, therefore, control over this process becomes crucial to ensure successful transfection. In this work, gemini cationic lipoplexes were prepared in the presence of plasmonic gold nanostars (AuNSs) to afford a nanovector that efficiently releases plasmid DNA (pDNA) upon irradiation with near-infrared femtosecond laser pulses. A critical AuNSs concentration of 50 pM and optimized laser power density of 400 mW led to successful pDNA release, whose efficiency could be further improved by increasing the irradiation time. Agarose gel electrophoresis was used to confirm pDNA release. UV-Vis-NIR spectroscopy and transmission electron microscopy studies were performed to monitor changes in the morphology of the AuNSs and lipoplexes after irradiation. From a physicochemical point of view, this study demonstrates that the use of AuNSs combined with gemini cationic lipoplexes allows control over pDNA release under ultrafast laser irradiation. Full article
(This article belongs to the Special Issue Design, Development, and Production of Nanocarriers and Nanovehicles)
Show Figures

Figure 1

23 pages, 1521 KB  
Review
Targeting Cancer Associated Fibroblasts in Liver Fibrosis and Liver Cancer Using Nanocarriers
by Leonard Kaps and Detlef Schuppan
Cells 2020, 9(9), 2027; https://doi.org/10.3390/cells9092027 - 3 Sep 2020
Cited by 117 | Viewed by 17565
Abstract
Cancer associated fibroblasts (CAF) and the extracellular matrix (ECM) produced by them have been recognized as key players in cancer biology and emerged as important targets for cancer treatment and drug discovery. Apart from their presence in stroma rich tumors, such as biliary, [...] Read more.
Cancer associated fibroblasts (CAF) and the extracellular matrix (ECM) produced by them have been recognized as key players in cancer biology and emerged as important targets for cancer treatment and drug discovery. Apart from their presence in stroma rich tumors, such as biliary, pancreatic and subtypes of hepatocellular cancer (HCC), both CAF and certain ECM components are also present in cancers without an overt intra-tumoral desmoplastic reaction. They support cancer development, growth, metastasis and resistance to chemo- or checkpoint inhibitor therapy by a multitude of mechanisms, including angiogenesis, ECM remodeling and active immunosuppression by secretion of tumor promoting and immune suppressive cytokines, chemokines and growth factors. CAF resemble activated hepatic stellate cells (HSC)/myofibroblasts, expressing α-smooth muscle actin and especially fibroblast activation protein (FAP). Apart from FAP, CAF also upregulate other functional cell surface proteins like platelet-derived growth factor receptor β (PDGFRβ) or the insulin-like growth factor receptor II (IGFRII). Notably, if formulated with adequate size and zeta potential, injected nanoparticles home preferentially to the liver. Several nanoparticular formulations were tested successfully to deliver dugs to activated HSC/myofibroblasts. Thus, surface modified nanocarriers with a cyclic peptide binding to the PDGFRβ or with mannose-6-phosphate binding to the IGFRII, effectively directed drug delivery to activated HSC/CAF in vivo. Even unguided nanohydrogel particles and lipoplexes loaded with siRNA demonstrated a high in vivo uptake and functional siRNA delivery in activated HSC, indicating that liver CAF/HSC are also addressed specifically by well-devised nanocarriers with optimized physicochemical properties. Therefore, CAF have become an attractive target for the development of stroma-based cancer therapies, especially in the liver. Full article
(This article belongs to the Special Issue Nanoparticles in Cancer Immunotherapy)
Show Figures

Graphical abstract

17 pages, 3477 KB  
Article
In Vitro Evaluation of Lipopolyplexes for Gene Transfection: Comparing 2D, 3D and Microdroplet-Enabled Cell Culture
by Juan L. Paris, Filipe Coelho, Alexandra Teixeira, Lorena Diéguez, Bruno F. B. Silva and Sara Abalde-Cela
Molecules 2020, 25(14), 3277; https://doi.org/10.3390/molecules25143277 - 18 Jul 2020
Cited by 10 | Viewed by 5232
Abstract
Complexes combining nucleic acids with lipids and polymers (lipopolyplexes) show great promise for gene therapy since they enable compositional, physical and functional versatility to be optimized for therapeutic efficiency. When developing lipopolyplexes for gene delivery, one of the first evaluations performed is an [...] Read more.
Complexes combining nucleic acids with lipids and polymers (lipopolyplexes) show great promise for gene therapy since they enable compositional, physical and functional versatility to be optimized for therapeutic efficiency. When developing lipopolyplexes for gene delivery, one of the first evaluations performed is an in vitro transfection efficiency experiment. Many different in vitro models can be used, and the effect of the model on the experiment outcome has not been thoroughly studied. The objective of this work was to compare the insights obtained from three different in vitro models, as well as the potential limitations associated with each of them. We have prepared a series of lipopolyplex formulations with three different cationic polymers (poly-l-lysine, bioreducible poly-l-lysine and polyethyleneimine), and assessed their in vitro biological performance in 2D monolayer cell culture, 3D spheroid culture and microdroplet-based single-cell culture. Lipopolyplexes from different polymers presented varying degrees of transfection efficiency in all models. The best-performing formulation in 2D culture was the polyethyleneimine lipopolyplex, while lipoplexes prepared with bioreducible poly-l-lysine were the only ones achieving any transfection in microdroplet-enabled cell culture. None of the prepared formulations achieved significant gene transfection in 3D culture. All of the prepared formulations were well tolerated by cells in 2D culture, while at least one formulation (poly-l-lysine polyplex) delayed 3D spheroid growth. These results highlight the need for selecting the appropriate in vitro model depending on the intended application. Full article
(This article belongs to the Special Issue Nanomaterials for Cancer Diagnosis and Therapy)
Show Figures

Figure 1

22 pages, 6705 KB  
Article
Effect of Cationic Lipid Type in Folate-PEG-Modified Cationic Liposomes on Folate Receptor-Mediated siRNA Transfection in Tumor Cells
by Yoshiyuki Hattori, Satono Shimizu, Kei-ichi Ozaki and Hiraku Onishi
Pharmaceutics 2019, 11(4), 181; https://doi.org/10.3390/pharmaceutics11040181 - 15 Apr 2019
Cited by 33 | Viewed by 6416
Abstract
In this study, we examined the effect of cationic lipid type in folate (FA)-polyethylene glycol (PEG)-modified cationic liposomes on gene-silencing effects in tumor cells using cationic liposomes/siRNA complexes (siRNA lipoplexes). We used three types of cationic cholesterol derivatives, cholesteryl (3-((2-hydroxyethyl)amino)propyl)carbamate hydroiodide (HAPC-Chol), N [...] Read more.
In this study, we examined the effect of cationic lipid type in folate (FA)-polyethylene glycol (PEG)-modified cationic liposomes on gene-silencing effects in tumor cells using cationic liposomes/siRNA complexes (siRNA lipoplexes). We used three types of cationic cholesterol derivatives, cholesteryl (3-((2-hydroxyethyl)amino)propyl)carbamate hydroiodide (HAPC-Chol), N-(2-(2-hydroxyethylamino)ethyl)cholesteryl-3-carboxamide (OH-Chol), and cholesteryl (2-((2-hydroxyethyl)amino)ethyl)carbamate (OH-C-Chol), and we prepared three types of FA-PEG-modified siRNA lipoplexes. The modification of cationic liposomes with 1–2 mol % PEG-lipid abolished the gene-silencing effect in human nasopharyngeal tumor KB cells, which overexpress the FA receptor (FR). In contrast, FA-PEG-modification of cationic liposomes restored gene-silencing activity regardless of the cationic lipid type in cationic liposomes. However, the optimal amount of PEG-lipid and FA-PEG-lipid in cationic liposomes for selective gene silencing and cellular uptake were different among the three types of cationic liposomes. Furthermore, in vitro transfection of polo-like kinase 1 (PLK1) siRNA by FA-PEG-modified liposomes exhibited strong cytotoxicity in KB cells, compared with PEG-modified liposomes; however, in in vivo therapy, intratumoral injection of PEG-modified PLK1 siRNA lipoplexes inhibited tumor growth of KB xenografts, as well as that of FA-PEG-modified PLK1 siRNA lipoplexes. From these results, the optimal formulation of PEG- and FA-PEG-modified liposomes for FR-selective gene silencing might be different between in vitro and in vivo transfection. Full article
(This article belongs to the Special Issue Drug Delivery of siRNA Therapeutics)
Show Figures

Graphical abstract

13 pages, 3961 KB  
Technical Note
Innovative Strategy for 3D Transfection of Primary Human Stem Cells with BMP-2 Expressing Plasmid DNA: A Clinically Translatable Strategy for Ex Vivo Gene Therapy
by Maruthibabu Paidikondala, Sandeep Kadekar and Oommen P. Varghese
Int. J. Mol. Sci. 2019, 20(1), 56; https://doi.org/10.3390/ijms20010056 - 23 Dec 2018
Cited by 13 | Viewed by 11402
Abstract
Ex vivo gene therapy offers enormous potential for cell-based therapies, however, cumbersome in vitro cell culture conditions have limited its use in clinical practice. We have optimized an innovative strategy for the transient transfection of bone morphogenetic protein-2 (BMP-2) expressing plasmids in suspended [...] Read more.
Ex vivo gene therapy offers enormous potential for cell-based therapies, however, cumbersome in vitro cell culture conditions have limited its use in clinical practice. We have optimized an innovative strategy for the transient transfection of bone morphogenetic protein-2 (BMP-2) expressing plasmids in suspended human stem cells within 5-min that enables efficient loading of the transfected cells into a 3D hydrogel system. Such a short incubation time for lipid-based DNA nanoparticles (lipoplexes) reduces cytotoxicity and at the same time reduces the processing time for cells to be transplanted. The encapsulated human mesenchymal stromal/stem cells (hMSCs) transfected with BMP-2 plasmid demonstrated high expression of an osteogenic transcription factor, namely RUNX2, but not the chondrogenic factor (SOX9), within the first three days. This activation was also reflected in the 7-day and 21-day experiment, which clearly indicated the induction of osteogenesis but not chondrogenesis. We believe our transient transfection method demonstrated in primary MSCs can be adapted for other therapeutic genes for different cell-based therapeutic applications. Full article
(This article belongs to the Special Issue Biomaterials for Musculoskeletal System)
Show Figures

Figure 1

18 pages, 6843 KB  
Article
Synthesis and Comparative Evaluation of Novel Cationic Amphiphile C12-Man-Q as an Efficient DNA Delivery Agent In Vitro
by Gunita Apsite, Irena Timofejeva, Aleksandra Vezane, Brigita Vigante, Martins Rucins, Arkadij Sobolev, Mara Plotniece, Karlis Pajuste, Tatjana Kozlovska and Aiva Plotniece
Molecules 2018, 23(7), 1540; https://doi.org/10.3390/molecules23071540 - 26 Jun 2018
Cited by 10 | Viewed by 4643
Abstract
New amphiphilic 1,4-DHP derivative C12-Man-Q with remoted cationic moieties at positions 2 and 6 was synthesised to study DNA delivery activity. The results were compared with data obtained for cationic 1,4-DHP derivative D19, which is known to be the most efficient one [...] Read more.
New amphiphilic 1,4-DHP derivative C12-Man-Q with remoted cationic moieties at positions 2 and 6 was synthesised to study DNA delivery activity. The results were compared with data obtained for cationic 1,4-DHP derivative D19, which is known to be the most efficient one among the previously tested 1,4-DHP amphiphiles. We analysed the effects of C12-Man-Q concentration, complexation media, and complex/cell contact time on the gene delivery effectiveness and cell viability. Transmission electron microscopy data confirms that lipoplexes formed by the compound C12-Man-Q were quite uniform, vesicular-like structures with sizes of about 50 nm, and lipoplexes produced by compound D19 were of irregular shapes, varied in size in the range of 25–80 nm. Additionally, confocal microscopy results revealed that both amphiphiles effectively delivered green fluorescent protein expression plasmid into BHK-21 cells and produced a fluorescent signal with satisfactory efficiency, although compound C12-Man-Q was more cytotoxic to the BHK-21 cells with an increase of concentration. It can be concluded that optimal conditions for C12-Man-Q lipoplexes delivery in BHK-21 cells were the serum free media without 0.15 M NaCl, at an N/P ratio of 0.9. Compound D19 showed higher transfection efficiency to transfect BHK-21 and Cos-7 cell lines, when transfecting active proliferating cells. Although D19 was not able to transfect all studied cell lines we propose that it could be cell type specific. The compound C12-Man-Q showed modest delivery activity in all used cell lines, and higher activity was obtained in the case of H2-35 and B16 cells. The transfection efficiency in cell lines MCF-7, HeLa, and Huh-7 appears to be comparable to the reference compound D19 and minimal in the HepG2 cell line. Full article
(This article belongs to the Special Issue Gene Delivery)
Show Figures

Graphical abstract

25 pages, 1914 KB  
Article
Folate-Equipped Nanolipoplexes Mediated Efficient Gene Transfer into Human Epithelial Cells
by Emmanuel Mornet, Nathalie Carmoy, Céline Lainé, Loïc Lemiègre, Tony Le Gall, Isabelle Laurent, Remi Marianowski, Claude Férec, Pierre Lehn, Thierry Benvegnu and Tristan Montier
Int. J. Mol. Sci. 2013, 14(1), 1477-1501; https://doi.org/10.3390/ijms14011477 - 14 Jan 2013
Cited by 22 | Viewed by 8762
Abstract
Since recombinant viral vectors have been associated with serious side effects, such as immunogenicity and oncogenicity, synthetic delivery systems represent a realistic alternative for achieving efficacy in gene therapy. A major challenge for non-viral nanocarriers is the optimization of transgene expression in the [...] Read more.
Since recombinant viral vectors have been associated with serious side effects, such as immunogenicity and oncogenicity, synthetic delivery systems represent a realistic alternative for achieving efficacy in gene therapy. A major challenge for non-viral nanocarriers is the optimization of transgene expression in the targeted cells. This goal can be achieved by fine-tuning the chemical carriers and the adding specific motifs to promote cellular penetration. Our study focuses on the development of novel folate-based complexes that contain varying quantities of folate motifs. After controlling for their physical properties, neutral folate-modified lipid formulations were compared in vitro to lipoplexes leading to comparable expression levels. In addition, no cytotoxicity was detected, unlike what was observed in the cationic controls. Mechanistically, the delivery of the transgene appeared to be, in part, due to endocytosis mediated by folate receptor targeting. This mechanism was further validated by the observation that adding free folate into the medium decreased luciferase expression by 50%. In vivo transfection with the folate-modified MM18 lipid, containing the highest amount of FA-PEG570-diether co-lipid (w:w; 90:10), at a neutral charge ratio, gave luciferase transgene expression. These studies indicate that modification of lipids with folate residues could enhance non-toxic, cell-specific gene delivery. Full article
(This article belongs to the Special Issue Bioactive Nanoparticles 2012)
Show Figures

Back to TopTop