Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (426)

Search Parameters:
Keywords = lipid-based drug delivery systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2060 KiB  
Review
Revitalizing Colchicine: Novel Delivery Platforms and Derivatives to Expand Its Therapeutic Potential
by Natallia V. Dubashynskaya, Anton N. Bokatyi, Mikhail M. Galagudza and Yury A. Skorik
Int. J. Mol. Sci. 2025, 26(15), 7591; https://doi.org/10.3390/ijms26157591 - 6 Aug 2025
Abstract
Colchicine is a potent alkaloid with well-established anti-inflammatory properties. It shows significant promise in treating classic immune-mediated inflammatory diseases, as well as associated cardiovascular diseases, including atherosclerosis. However, its clinical use is limited by a narrow therapeutic window, dose-limiting systemic toxicity, variable bioavailability, [...] Read more.
Colchicine is a potent alkaloid with well-established anti-inflammatory properties. It shows significant promise in treating classic immune-mediated inflammatory diseases, as well as associated cardiovascular diseases, including atherosclerosis. However, its clinical use is limited by a narrow therapeutic window, dose-limiting systemic toxicity, variable bioavailability, and clinically significant drug–drug interactions, partly mediated by modulation of P-glycoprotein and cytochrome P450 3A4 metabolism. This review explores advanced delivery strategies designed to overcome these limitations. We critically evaluate lipid-based systems, such as solid lipid nanoparticles, liposomes, transferosomes, ethosomes, and cubosomes; polymer-based nanoparticles; microneedles; and implants, including drug-eluting stents. These systems ensure targeted delivery, improve pharmacokinetics, and reduce toxicity. Additionally, we discuss chemical derivatization approaches, such as prodrugs, codrugs, and strategic ring modifications (A-, B-, and C-rings), aimed at optimizing both the efficacy and safety profile of colchicine. Combinatorial nanoformulations that enable the co-delivery of colchicine with synergistic agents, such as glucocorticoids and statins, as well as theranostic platforms that integrate therapeutic and diagnostic functions, are also considered. These innovative delivery systems and derivatives have the potential to transform colchicine therapy by broadening its clinical applications while minimizing adverse effects. Future challenges include scalable manufacturing, long-term safety validation, and the translation of research into clinical practice. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

15 pages, 2179 KiB  
Review
From Nutrition to Innovation: Biomedical Applications of Egg Components
by Amin Mohseni Ghalehghazi and Wen Zhong
Molecules 2025, 30(15), 3260; https://doi.org/10.3390/molecules30153260 - 4 Aug 2025
Viewed by 245
Abstract
Valued for their nutritional content, eggs have recently gained attention as a versatile biomaterial owing to their biocompatibility, biodegradability, and unique structural and biochemical composition. This review highlights the biomedical potential of various egg components—eggshell, eggshell membrane, egg white, and egg yolk—and their [...] Read more.
Valued for their nutritional content, eggs have recently gained attention as a versatile biomaterial owing to their biocompatibility, biodegradability, and unique structural and biochemical composition. This review highlights the biomedical potential of various egg components—eggshell, eggshell membrane, egg white, and egg yolk—and their applications in bone grafting, tissue engineering, wound healing, drug delivery, and biosensors. Eggshells serve as a natural, calcium-rich source for bone tissue engineering and regenerative medicine. The eggshell membrane, with its antimicrobial and structural properties, offers promise as a wound healing scaffold. Egg white, known for its gelation and film-forming capabilities, is utilized in hydrogel-based systems for drug delivery and biosensing. Egg yolk, rich in lipids and immunoglobulin Y (IgY) antibodies, is being explored for diagnostic and therapeutic applications. This review critically examines the advantages and limitations of each egg-derived component and outlines current research gaps, offering insights into future directions for the development of egg-based biomaterials in biomedical engineering. Full article
Show Figures

Figure 1

46 pages, 2561 KiB  
Review
Lipid-Based Nanotechnologies for Delivery of Green Tea Catechins: Advances, Challenges, and Therapeutic Potential
by Stanila Stoeva-Grigorova, Nadezhda Ivanova, Yoana Sotirova, Maya Radeva-Ilieva, Nadezhda Hvarchanova and Kaloyan Georgiev
Pharmaceutics 2025, 17(8), 985; https://doi.org/10.3390/pharmaceutics17080985 - 30 Jul 2025
Viewed by 196
Abstract
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs [...] Read more.
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs and cells that are in need. For decades, green tea catechins (GTCs) have been a case in point. Because of their low redox potential and favorable positioning of hydroxyl groups, these flavonoid representatives (namely, catechin—C, epicatechin—EC, epicatechin gallate—ECG, epigallocatechin—EGC, epigallocatechin gallate—EGCG) are among the most potent plant-derived (and not only) antioxidants. The proven anti-inflammatory, neuroprotective, antimicrobial, and anticarcinogenic properties of these phytochemicals further contribute to their favorable pharmacological profile. Doubtlessly, GTCs hold the potential to “cope” with the majority of today‘s socially significant diseases, yet their mass use in clinical practice is still limited. Several factors related to the compounds’ membrane penetrability, chemical stability, and solubility overall determine their low bioavailability. Moreover, the antioxidant-to-pro-oxidant transitioning behavior of GTCs is highly conditional and, to a certain degree, unpredictable. The nanoparticulate delivery systems represent a logical approach to overcoming one or more of these therapeutic challenges. This review particularly focuses on the lipid-based nanotechnologies known to be a leading choice when it comes to drug permeation enhancement and not drug release modification nor drug stabilization solely. It is our goal to present the privileges of encapsulating green tea catechins in either vesicular or particulate lipid carriers with respect to the increasingly popular trends of advanced phytotherapy and functional nutrition. Full article
Show Figures

Graphical abstract

40 pages, 1380 KiB  
Review
Recent Advances in Donepezil Delivery Systems via the Nose-to-Brain Pathway
by Jiyoon Jon, Jieun Jeong, Joohee Jung, Hyosun Cho, Kyoung Song, Eun-Sook Kim, Sang Hyup Lee, Eunyoung Han, Woo-Hyun Chung, Aree Moon, Kyu-Tae Kang, Min-Soo Kim and Heejun Park
Pharmaceutics 2025, 17(8), 958; https://doi.org/10.3390/pharmaceutics17080958 (registering DOI) - 24 Jul 2025
Viewed by 331
Abstract
Donepezil (DPZ) is an Alzheimer’s disease (AD) drug that promotes cholinergic neurotransmission and exhibits excellent acetylcholinesterase (AChE) selectivity. The current oral formulations of DPZ demonstrate decreased bioavailability, attributed to limited drug permeability across the blood–brain barrier (BBB). In order to overcome these limitations, [...] Read more.
Donepezil (DPZ) is an Alzheimer’s disease (AD) drug that promotes cholinergic neurotransmission and exhibits excellent acetylcholinesterase (AChE) selectivity. The current oral formulations of DPZ demonstrate decreased bioavailability, attributed to limited drug permeability across the blood–brain barrier (BBB). In order to overcome these limitations, various dosage forms aimed at delivering DPZ have been explored. This discussion will focus on the nose-to-brain (N2B) delivery system, which represents the most promising approach for brain drug delivery. Intranasal (IN) drug delivery is a suitable system for directly delivering drugs to the brain, as it bypasses the BBB and avoids the first-pass effect, thereby targeting the central nervous system (CNS). Currently developed formulations include lipid-based, solid particle-based, solution-based, gel-based, and film-based types, and a systematic review of the N2B research related to these formulations has been conducted. According to the in vivo results, the brain drug concentration 15 min after IN administration was more than twice as high those from other routes of administration, and the direct delivery ratio of the N2B system improved to 80.32%. The research findings collectively suggest low toxicity and high therapeutic efficacy for AD. This review examines drug formulations and delivery methods optimized for the N2B delivery of DPZ, focusing on technologies that enhance mucosal residence time and bioavailability while discussing recent advancements in the field. Full article
(This article belongs to the Special Issue Nasal Nanotechnology: What Do We Know and What Is Yet to Come?)
Show Figures

Figure 1

43 pages, 3721 KiB  
Review
Novel Strategies for the Formulation of Poorly Water-Soluble Drug Substances by Different Physical Modification Strategies with a Focus on Peroral Applications
by Julian Quodbach, Eduard Preis, Frank Karkossa, Judith Winck, Jan Henrik Finke and Denise Steiner
Pharmaceuticals 2025, 18(8), 1089; https://doi.org/10.3390/ph18081089 - 23 Jul 2025
Viewed by 803
Abstract
The number of newly developed substances with poor water solubility continually increases. Therefore, specialized formulation strategies are required to overcome the low bioavailability often associated with this property. This review provides an overview of novel physical modification strategies discussed in the literature over [...] Read more.
The number of newly developed substances with poor water solubility continually increases. Therefore, specialized formulation strategies are required to overcome the low bioavailability often associated with this property. This review provides an overview of novel physical modification strategies discussed in the literature over the past decades and focuses on oral dosage forms. A distinction is made between ‘brick-dust’ molecules, which are characterized by high melting points due to the solid-state properties of the substances, and ‘grease-ball’ molecules with high lipophilicity. In general, the discussed strategies are divided into the following three main categories: drug nanoparticles, solid dispersions, and lipid-based formulations. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Graphical abstract

30 pages, 3084 KiB  
Review
Antioxidants Acteoside and Orientin as Emerging Agents in Synergistic Cancer Therapy: A Focus on Innovative Applications
by Jagoda Szkudlarek, Ludwika Piwowarczyk and Anna Jelińska
Antioxidants 2025, 14(7), 855; https://doi.org/10.3390/antiox14070855 - 12 Jul 2025
Viewed by 419
Abstract
Cancers, particularly those resistant to treatment, stand as one of the most significant challenges in medicine. Frequently, available therapies need to be improved, underscoring the necessity for innovative treatment modalities. Over the years, there has been a resurgence of interest in natural plant [...] Read more.
Cancers, particularly those resistant to treatment, stand as one of the most significant challenges in medicine. Frequently, available therapies need to be improved, underscoring the necessity for innovative treatment modalities. Over the years, there has been a resurgence of interest in natural plant substances, which have been traditionally overlooked as anticancer agents. A prime example of this is natural antioxidants, such as acteoside (ACT) and orientin (ORI), which offer novel approaches to cancer treatment, emphasizing liver cancer compared to other cancer types. They reduce oxidative stress by activating the Nrf2/ARE pathway and exhibit anticancer activity, e.g., decreasing Bcl-2 and Bcl-XL expression and increasing Bax levels. This review explores the individual effects of ACT and ORI and their synergistic interactions with sorafenib, temozolomide, 5-fluorouracil (for ACT), celecoxib, and curcumin (for ORI), highlighting their enhanced anticancer efficacy. In addition, ACT and ORI successfully integrate into various drug delivery systems (DDSs), including metal-containing carriers such as nanoparticles (NPs), nanoshells (NSs), quantum dots (QDs), and liposomes as representative examples of lipid-based drug delivery systems (LBDDSs). Advanced methods, including nanotechnology, offer potential solutions to low bioavailability, paving the way for the use of these substances in anticancer therapy. Full article
(This article belongs to the Special Issue Oxidative Stress in Hepatic Diseases)
Show Figures

Figure 1

26 pages, 808 KiB  
Review
A Review of Formulation Strategies for Cyclodextrin-Enhanced Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs)
by Tarek Alloush and Burcu Demiralp
Int. J. Mol. Sci. 2025, 26(13), 6509; https://doi.org/10.3390/ijms26136509 - 6 Jul 2025
Viewed by 962
Abstract
The advancement of efficient drug delivery systems continues to pose a significant problem in pharmaceutical sciences, especially for compounds with limited water solubility. Lipid-based systems, including solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), have emerged as viable options owing to their [...] Read more.
The advancement of efficient drug delivery systems continues to pose a significant problem in pharmaceutical sciences, especially for compounds with limited water solubility. Lipid-based systems, including solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), have emerged as viable options owing to their biocompatibility, capability to safeguard labile chemicals, and potential for prolonged release. Nonetheless, the encapsulation efficiency (EE) and release dynamics of these carriers can be enhanced by including cyclodextrins (CDs)—cyclic oligosaccharides recognized for their ability to form inclusion complexes with hydrophobic compounds. This article offers an extensive analysis of CD-modified SLNs and NLCs as multifunctional drug delivery systems. The article analyses the fundamental principles of these systems, highlighting the pre-complexation of the drug with cyclodextrins before lipid incorporation, co-encapsulation techniques, and surface adsorption after formulation. Attention is concentrated on the physicochemical interactions between cyclodextrins and lipid matrices, which influence essential factors such as particle size, encapsulation efficiency, and colloidal stability. The review includes characterization techniques, such as particle size analysis, zeta potential measurement, drug release studies, and Fourier-transform infrared spectroscopy (FT-IR)/Nuclear Magnetic Resonance (NMR) analyses. The study highlights the application of these systems across many routes of administration, including oral, topical, and mucosal, illustrating their adaptability and potential for targeted delivery. The review outlines current formulation challenges, including stability issues, drug leakage, and scalability concerns, and proposes solutions through advanced approaches, such as stimuli-responsive release mechanisms and computer modeling for system optimization. The study emphasizes the importance of regulatory aspects and outlines future directions in the development of CD-lipid hybrid nanocarriers, showcasing its potential to revolutionize the delivery of poorly soluble drugs. Full article
(This article belongs to the Special Issue Research on Cyclodextrin)
Show Figures

Graphical abstract

18 pages, 1061 KiB  
Article
Design of Clofazimine-Loaded Lipid Nanoparticles Using Smart Pharmaceutical Technology Approaches
by Helena Rouco, Nicola Filippo Virzì, Carolina Menéndez-Rodríguez, Carmen Potel, Patricia Diaz-Rodriguez and Mariana Landin
Pharmaceutics 2025, 17(7), 873; https://doi.org/10.3390/pharmaceutics17070873 - 2 Jul 2025
Viewed by 458
Abstract
Background/Objectives: Clofazimine (CFZ) is a versatile antimicrobial active against several bacterial species, although its reduced aqueous solubility and the occurrence of side effects limit its use. Nanostructured lipid carriers (NLCs) constitute an interesting approach to increase drug bioavailability and safety. However, the [...] Read more.
Background/Objectives: Clofazimine (CFZ) is a versatile antimicrobial active against several bacterial species, although its reduced aqueous solubility and the occurrence of side effects limit its use. Nanostructured lipid carriers (NLCs) constitute an interesting approach to increase drug bioavailability and safety. However, the development of nanoparticle-based formulations is challenging. In the present work, a combination of smart pharmaceutical technology approaches was proposed to develop CFZ-loaded NLCs, taking advantage of previous knowledge on NLCs screening. Methods: A design space previously established using Artificial Intelligence (AI) tools was applied to develop CFZ-loaded NLC formulations. After formulation characterization, Neurofuzzy Logic (NFL) and in silico docking simulations were employed to enhance the understanding of lipid nanocarriers. Then, the performance of formulations designed following NFL guidelines was characterized in terms of biocompatibility, using murine fibroblasts, and antimicrobial activity against several strains of Staphylococcus aureus. Results: The followed approach enabled CFZ-loaded NLC formulations with optimal properties, including small size and high antimicrobial payload. NFL was useful to investigate the existing interactions between NLC components and homogenization conditions, that influence CFZ-loaded NLCs’ final properties. Also, in silico docking simulations were successfully applied to examine interactions and affinity between the drug and the lipid matrix components. Finally, the designed CFZ-loaded formulations demonstrated suitable biocompatibility, together with antimicrobial activity. Conclusions: The implementation of smart strategies during nanoparticle-based therapeutics development, such as those described in this manuscript, would enable the more efficient design of new systems for suitable antimicrobial delivery. Full article
Show Figures

Figure 1

29 pages, 3448 KiB  
Review
New Gel Approaches for the Transdermal Delivery of Meloxicam
by Ioana-Alexandra Plugariu, Maria Bercea and Luiza Madalina Gradinaru
Gels 2025, 11(7), 500; https://doi.org/10.3390/gels11070500 - 26 Jun 2025
Cited by 1 | Viewed by 562
Abstract
Meloxicam is a promising non-steroidal anti-inflammatory drug (NSAID) for acute and chronic pain prevention and treatment. Due to its poor water solubility, the clinical use of meloxicam is limited. In addition, for transdermal applications, the impermeability of the skin makes it difficult to [...] Read more.
Meloxicam is a promising non-steroidal anti-inflammatory drug (NSAID) for acute and chronic pain prevention and treatment. Due to its poor water solubility, the clinical use of meloxicam is limited. In addition, for transdermal applications, the impermeability of the skin makes it difficult to conceive an appropriate NSAID-based delivery system that can penetrate through the skin barrier. Hydrophilic/hydrophobic gels, designed as transdermal drug delivery systems, can considerably improve other drug administration types (such as oral or intravenous), avoiding or limiting the side effects. The main purpose of this paper is to present some physicochemical and pharmaceutical considerations about meloxicam and to review the most important research concerning the gels used for the transdermal delivery of meloxicam. Thus, smart polymeric networks, semi-solid systems (lipogels, emulgels), β-cyclodextrin-based gels, liposomes (ethosomes, niosomes, flexosomes, transferosomes, menthosomes, invasomes), and nanostructured lipid carriers, with analgesic and anti-inflammatory activity, are discussed. The key objective of this study was to highlight various gel formulations with enhanced properties, which could be used in a minimally invasive manner for the sustained administration of meloxicam. Full article
Show Figures

Figure 1

28 pages, 5368 KiB  
Review
Endo/Lysosomal-Escapable Lipid Nanoparticle Platforms for Enhancing mRNA Delivery in Cancer Therapy
by Jiapeng Wang, Renjie Chen, Yongyi Xie, Xuanting Qin, You Zhou and Chuanshan Xu
Pharmaceutics 2025, 17(7), 803; https://doi.org/10.3390/pharmaceutics17070803 - 20 Jun 2025
Viewed by 1254
Abstract
mRNA-based drug development is revolutionizing tumor therapies by enabling precise cancer immunotherapy, tumor suppressor gene restoration, and genome editing. However, the success of mRNA therapies hinges on efficient delivery systems that can protect mRNA from degradation and facilitate its release into the cytoplasm [...] Read more.
mRNA-based drug development is revolutionizing tumor therapies by enabling precise cancer immunotherapy, tumor suppressor gene restoration, and genome editing. However, the success of mRNA therapies hinges on efficient delivery systems that can protect mRNA from degradation and facilitate its release into the cytoplasm for translation. Despite the emergence of lipid nanoparticles (LNPs) as a clinically advanced platform for mRNA delivery, the efficiency of endo/lysosomal escape still represents a substantial bottleneck. Here, we summarize the intracellular fate of mRNA-loaded LNPs, focusing on their internalization pathways and processing within the endo-lysosomal system. We also discuss the impact of endo-lysosomal processes on mRNA delivery and explore potential strategies to improve mRNA escape from endo-lysosomal compartments. This review focuses on molecular engineering strategies to enhance LNP-mediated endo/lysosomal escape by optimizing lipid composition, including ionizable lipids, helper lipids, cholesterol, and PEGylated lipids. Additionally, ancillary enhancement strategies such as surface coating and shape management are discussed. By comprehensively integrating mechanistic insights into the journey of LNPs within the endo-lysosome system and recent advances in lipid chemistry, this review offers valuable inspiration for advancing mRNA-based cancer therapies by enabling robust protein expression. Full article
(This article belongs to the Special Issue Cancer Gene Therapy with Non-Viral Nanocarriers, 2nd Edition)
Show Figures

Figure 1

30 pages, 3428 KiB  
Review
Lipid-Polymer Hybrid Nanoparticles as a Smart Drug Delivery System for Peptide/Protein Delivery
by Alharith A. A. Hassan, Eslam Ramadan, Katalin Kristó, Géza Regdon and Tamás Sovány
Pharmaceutics 2025, 17(6), 797; https://doi.org/10.3390/pharmaceutics17060797 - 19 Jun 2025
Viewed by 1505
Abstract
The efficient oral delivery of therapeutic proteins and peptides poses a tremendous challenge due to their inherent instability, large molecular size, and susceptibility to enzymatic degradation. Several nanocarrier systems, such as liposomes, solid lipid nanoparticles, and polymeric nanoparticles, have been explored to overcome [...] Read more.
The efficient oral delivery of therapeutic proteins and peptides poses a tremendous challenge due to their inherent instability, large molecular size, and susceptibility to enzymatic degradation. Several nanocarrier systems, such as liposomes, solid lipid nanoparticles, and polymeric nanoparticles, have been explored to overcome these problems. Liposomes and other lipid-based nanocarriers show excellent biocompatibility and the ability to encapsulate hydrophobic and hydrophilic drugs; however, they often suffer from poor structural stability, premature leakage of the loaded drugs, and poor encapsulation efficiency for macromolecular peptides and proteins. On the other hand, polymeric nanoparticles are more stable and allow better control over drug release; nevertheless, they usually lack the necessary biocompatibility and cellular uptake efficiency. Recently, lipid-polymer hybrid nanoparticles (LPHNs) have emerged as an advanced solution combining the structural stability of polymers and the biocompatibility and surface functionalities of lipids to enhance the controlled release, stability, and bioavailability of protein and peptide drugs. In this review, an attempt was made to set a clear definition of the LPHNs and extend the concept and area, so to our knowledge, this is the first review that highlights six categories of the LPHNs based on their anatomy. Moreover, this review offers a detailed analysis of LPHN preparation methods, including conventional and nonconventional one-step and two-step processes, nanoprecipitation, microfluidic mixing, and emulsification methods. Moreover, the material attributes and critical process parameters affecting the output of the preparation methods were illustrated with supporting examples to enable researchers to select the suitable preparation method, excipients, and parameters to be manipulated to get the LPHNs with the predetermined quality. The number of reviews focusing on the formulation of peptide/protein pharmaceutics usually focus on a specific drug like insulin. To our knowledge, this is the first review that generally discusses LPHN-based delivery of biopharmaceuticals. by discussing representative examples of previous reports comparing them to a variety of nanocarrier systems to show the potentiality of the LPHNs to deliver peptides and proteins. Moreover, some ideas and suggestions were proposed by the authors to tackle some of the shortcomings highlighted in these studies. By presenting this comprehensive overview of LPHN preparation strategies and critically analyzing literature studies on this topic and pointing out their strong and weak points, this review has shown the gaps and enlightened avenues for future research. Full article
Show Figures

Graphical abstract

23 pages, 4651 KiB  
Article
High-Expansion Natural Composite Films for Controlled Delivery of Hydroxycitric Acid in Obesity Therapy
by Kantiya Fungfoung, Ousanee Issarachot, Rachanida Praparatana and Ruedeekorn Wiwattanapatapee
Polymers 2025, 17(12), 1697; https://doi.org/10.3390/polym17121697 - 18 Jun 2025
Viewed by 643
Abstract
Expandable films represent a promising gastroretentive drug delivery system, offering prolonged gastric retention and sustained drug release features particularly advantageous for obesity treatment. This study developed high-expansion films using konjac and various low glycemic index starches, including purple potato, brown rice, resistant, and [...] Read more.
Expandable films represent a promising gastroretentive drug delivery system, offering prolonged gastric retention and sustained drug release features particularly advantageous for obesity treatment. This study developed high-expansion films using konjac and various low glycemic index starches, including purple potato, brown rice, resistant, and red jasmine rice starches, in combination with chitosan and hydroxypropyl methylcellulose (HPMC) E15. Garcinia extract was incorporated into the films using the solvent casting technique. Among 27 formulations, all demonstrated rapid unfolding (within 15 min) and significant expansion (2-4 folds). Hydroxycitric acid (HCA), the active component, was encapsulated at efficiencies exceeding 80% w/w. The konjac-based films exhibited favorable mechanical properties, expansion capacity, and drug content uniformity. Notably, the CK3-H1 formulation (2% w/v chitosan, 3% w/v konjac, 1% w/v HPMC E15) provided sustained HCA release over 8 h via diffusion. Cytotoxicity tests showed no toxic effects on RAW 264.7 macrophages at concentrations up to 400 μg/mL. Furthermore, CK3-H1 achieved notable nitric oxide inhibition (35.80 ± 1.21%) and the highest reduction in lipid accumulation (31.09 ± 3.15%) in 3T3-L1 adipocytes, outperforming pure HCA and garcinia extract. These results suggest that expandable konjac-based films are a viable and effective delivery system for herbal anti-obesity agents. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials for Medical Applications)
Show Figures

Graphical abstract

17 pages, 1412 KiB  
Article
Effect of Acoustic Pressure on Temozolomide-Loaded Oleic Acid-Based Liposomes and Its Safety to Brain Tissue
by Vasilisa D. Dalinina, Vera S. Shashkovskaya, Iman M. Khaskhanova, Daria Yu. Travnikova, Nelly S. Chmelyuk, Dmitry A. Korzhenevskiy, Vsevolod V. Belousov and Tatiana O. Abakumova
Pharmaceuticals 2025, 18(6), 910; https://doi.org/10.3390/ph18060910 - 18 Jun 2025
Viewed by 532
Abstract
Background: Glioblastoma (GBM) is a highly aggressive primary brain tumor with limited therapeutic options, particularly due to the limited blood–brain barrier (BBB) permeability. Nanoparticle-based drug delivery systems, such as liposomes, can prolong drugs’ circulation time and enhance their accumulation within brain tumors, thereby [...] Read more.
Background: Glioblastoma (GBM) is a highly aggressive primary brain tumor with limited therapeutic options, particularly due to the limited blood–brain barrier (BBB) permeability. Nanoparticle-based drug delivery systems, such as liposomes, can prolong drugs’ circulation time and enhance their accumulation within brain tumors, thereby improving therapeutic outcomes. Controlled drug release further contributes to high local drug concentrations while minimizing systemic toxicity. Oleic acid (OA), a monounsaturated fatty acid, is commonly used to enhance drug loading and increase lipid membrane fluidity. In this study, we developed liposomal formulations with optimized temozolomide (TMZ)’s loading and analyze its response to focused ultrasound (FUS). Methods: We synthetized OA-based liposomes with different lipid composition, performed physicochemical characterization (DLS, TEM) and analyzed the TMZ loading efficiency. Different FUS parameters were tested for effective OA-based liposomes destruction. Safety of selected parameters was evaluated in vivo by MRI, histological staining and RT-PCR of pro-inflammatory cytokines. Results: All the formulations exhibited comparable hydrodynamic diameters; however, OA-containing liposomes demonstrated a significantly higher TMZ encapsulation efficiency and enhanced cytotoxicity in U87 glioma cells. Moreover, it was shown that OA-liposomes were disrupted at lower acoustic pressures (5 MPa), while conventional liposomes required higher thresholds (>8 MPa). A safety analysis of FUS parameters indicated that pressures exceeding 11 MPa induced brain edema, necrotic lesions and elevated cytokine levels within 72 h post-treatment. Conclusions: These results suggest that OA-based liposomes possess favorable characteristics, with an increased sonosensitivity for the site-specific delivery of TMZ, offering a promising strategy for glioma treatment. Full article
Show Figures

Figure 1

23 pages, 1742 KiB  
Review
Terpenes and Essential Oils in Pharmaceutics: Applications as Therapeutic Agents and Penetration Enhancers with Advanced Delivery Systems for Improved Stability and Bioavailability
by Greta Kaspute, Tatjana Ivaskiene, Arunas Ramanavicius, Simonas Ramanavicius and Urte Prentice
Pharmaceutics 2025, 17(6), 793; https://doi.org/10.3390/pharmaceutics17060793 - 18 Jun 2025
Cited by 1 | Viewed by 863
Abstract
This review examines the pharmaceutical applications of essential oils (EOs) and terpenes, highlighting their dual role as therapeutic agents and natural penetration enhancers. These volatile, hydrophobic compounds have well-documented antimicrobial, antioxidant, and anti-inflammatory properties. However, their clinical potential is limited by poor water [...] Read more.
This review examines the pharmaceutical applications of essential oils (EOs) and terpenes, highlighting their dual role as therapeutic agents and natural penetration enhancers. These volatile, hydrophobic compounds have well-documented antimicrobial, antioxidant, and anti-inflammatory properties. However, their clinical potential is limited by poor water solubility, high volatility, and sensitivity to environmental factors, including light, heat, and oxygen. To address these challenges, various advanced delivery systems have been developed to enhance stability, bioavailability, and controlled release. These systems not only protect chemical integrity but also exploit these compounds’ abilities to interact with lipid membranes, facilitating the transport of active compounds across biological barriers. Additionally, their inherent antimicrobial properties can contribute to the overall stability of formulations. The review critically examines the incorporation of terpenes and major essential oil (EO) components, such as limonene, linalool, eugenol, α-pinene, and menthol, into delivery systems, assessing their performance in enhancing drug permeability and targeting specific tissues. Current challenges and future directions in terpenes and EO-based delivery strategies are discussed, highlighting their promising role in developing multifunctional and efficient pharmaceutical formulations. Full article
Show Figures

Figure 1

57 pages, 5820 KiB  
Review
Surfactant-Enabled Nanocarriers in Breast Cancer Therapy: Targeted Delivery and Multidrug Resistance Reversal
by Ashirwad Jadhav and Karuppiah Nagaraj
Pharmaceutics 2025, 17(6), 779; https://doi.org/10.3390/pharmaceutics17060779 - 13 Jun 2025
Cited by 1 | Viewed by 772
Abstract
Breast cancer remains a leading cause of cancer-related morbidity and mortality among women worldwide. Its treatment is complicated by molecular heterogeneity and the frequent development of multidrug resistance (MDR). Conventional drug delivery approaches are often limited by poor aqueous solubility, rapid systemic clearance, [...] Read more.
Breast cancer remains a leading cause of cancer-related morbidity and mortality among women worldwide. Its treatment is complicated by molecular heterogeneity and the frequent development of multidrug resistance (MDR). Conventional drug delivery approaches are often limited by poor aqueous solubility, rapid systemic clearance, non-specific biodistribution, and off-target toxicity. This review will critically explore the possibility of surfactant-based drug delivery systems (DDSs) in addressing the constraints of standard breast cancer treatments. It focuses on the mechanisms by which surfactants promote solubility, facilitate cellular uptake, and overcome drug resistance, while also analyzing current therapeutic success and future directions. A thorough review of preclinical and clinical investigations was undertaken, focusing on important surfactant-based DDSs such as polymeric micelles, nanoemulsions, liposomes, and self-emulsifying systems (SEDDSs). Mechanistic insights into surfactant functions, such as membrane permeabilization and efflux pump inhibition, were studied alongside delivery systems incorporating ligands and co-loaded medicines. Pluronic® micelles, TPGS-based systems, biosurfactant-stabilized nanoparticles, and lipid-based carrier surfactant platforms improve medication solubility, stability, and delivery. Genexol® are examples of formulations demonstrating effective use and FDA translational potential. These systems now incorporate stimuli-responsive release mechanisms—such as pH, temperature, redox, immuno- and photodynamic treatment—artificial intelligence treatment design, and tailored treatment advancement, and responsive tailoring. Surfactant-enabled DDSs can improve breast cancer care. Innovative approaches for personalized oncology treatment are countered by the enduring challenges of toxicity, regulatory hurdles, and diminished scalability. Full article
(This article belongs to the Special Issue Natural Nanoparticle for Cancer Diagnosis and Treatment, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop