New Gel Approaches for the Transdermal Delivery of Meloxicam
Abstract
1. Introduction
2. Physicochemical Properties and Pharmaceutical Profile of Meloxicam
2.1. Chemical Structure
2.2. Solubility
2.3. Therapeutic Indications and Contraindications
2.4. Pharmacokinetic Profile of Meloxicam
2.5. Pharmacodynamics of Meloxicam
2.6. Pharmacography
2.7. Synergistic Effects of Meloxicam and Other Active Substances
2.8. Meloxicam’s Protective Role in Cardiovascular Health
3. Gel Formulations Featuring Meloxicam as Active Compounds
3.1. Smart Polymer Networks
3.2. Lipogels
3.3. Emulgels
3.4. β-Cyclodextrin-Based Gel Formulations
3.5. Modern Vesicular Delivery Systems
3.5.1. Liposomes
3.5.2. Ethosome Gel Formulations
3.5.3. Niosome Gel Formulations
3.5.4. Flexosome Gel Formulations
3.5.5. Transferosome Gel Formulations
3.5.6. Menthosome Gel Formulations
3.5.7. Invasome Gel Formulations
3.6. Nanostructured Lipid Carriers
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CMC | carboxymethyl cellulose |
COX | cyclooxygenase enzyme |
EC | ethyl cellulose |
HEC | hydroxyethyl cellulose |
HPC | hydroxypropyl cellulose |
HPMC | hydroxypropyl methyl cellulose |
HP-β-CD | hydroxypropyl-β-cyclodextrin |
MX | meloxicam |
NSAID | non-steroidal anti-inflammatory drug |
PEG | poly(ethylene glycol) |
PG | propylene glycol |
PU | polyurethane |
PVP | poly(vinyl pyrrolidone) |
TEA | triethanolamine |
β-CD | β-cyclodextrin |
References
- Drosopoulou, K.; Kosheleva, R.I.; Ofrydopoulou, A.; Tsoupras, A.; Mitropoulos, A. Topical and transdermal delivery of nonsteroidal anti-inflammatory drugs (NSAIDs) for inflammation and pain: Current trends and future directions in delivery systems. Processes 2025, 13, 907. [Google Scholar] [CrossRef]
- Shah, A.W.A.; Li, X.; Yuan, H.; Shen, H.; Quan, S.; Pan, G.; Ishfaq, M.; Shah, A.U.; Xie, H.; Shao, J. Innovative transdermal drug delivery systems: Benefits, challenges, and emerging application. BMEMat 2025, e70001. [Google Scholar] [CrossRef]
- Zheng, P.; Wei, Y.; Cao, K.; Xu, C.; Yu, S.; Liu, Y.; Li, M.; Zhang, C.; Wang, T. Sustained-release microspheric gel of meloxicam: Preparation, evaluation in vitro and in vivo. Biomed. Microdevices 2025, 27, 23. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Q.; Lu, B.; Lv, Y.; Jiang, W.; Chen, X.; Zhang, S.; Zhao, W.; Jiang, L.; Zhang, J. Injectable thermosensitive hydrogel based on hyaluronic acid and poloxamer for sustained bupivacaine release and prolonged analgesia. Int. J. Biol. Macromol. 2025, 309, 142845. [Google Scholar] [CrossRef]
- Li, X.Y.; Cai, J.; Duan, X.M.; Zhang, Y.M.; Cui, M.; Wang, S.G.; An, X.; Wang, H.F. Injectable polyamide-amine dendrimer-crosslinked meloxicam-containing poly-γ-glutamic acid hydrogel for prevention of postoperative tissue adhesion through inhibiting inflammatory responses and balancing the fibrinolytic system. J. Colloid Interface Sci. 2024, 670, 486–498. [Google Scholar] [CrossRef]
- El-Badry, M.; Fetih, G.; Fathalla, D.; Shakeel, F. Transdermal delivery of meloxicam using niosomal hydrogels: In vitro and pharmacodynamic evaluation. Pharm. Dev. Technol. 2015, 20, 820–826. [Google Scholar] [CrossRef]
- Fetih, G. Meloxicam formulations for transdermal delivery: Hydrogels versus organogels. J. Drug Deliv. Sci. Technol. 2010, 20, 451–456. [Google Scholar] [CrossRef]
- Beetge, E.; du Plessis, J.; Muller, D.G.; Goosen, C.; van Rensburg, F.J. The influence of the physicochemical characteristics and pharmacokinetic properties of selected NSAIDs on their transdermal absorption. Int. J. Pharm. 2000, 193, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Luger, P.; Daneck, K.; Engel, W.; Trummlitz, G.; Wagner, K. Structure and physicochemical properties of meloxicam, a new NSAID. Eur. J. Pharm. Sci. 1996, 4, 175–187. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, L.; Sheng, L.; Wang, H.; Li, C.; Lin, X.; Yang, P. Design of an injectable sustained release in-situ forming depot of meloxicam for pain relief. J. Drug Deliv. Technol. 2024, 93, 105460. [Google Scholar] [CrossRef]
- Maheshwari, R.; Sharma, M.; Chidrawar, V.R. Development of engineered transferosomal gel containing meloxicam for the treatment of osteoarthritis. Ann. Pharm. Fr. 2024, 82, 830–839. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Gao, Y. Strategies for meloxicam delivery to and across the skin: A review. Drug Deliv. 2016, 23, 3146–3156. [Google Scholar] [CrossRef] [PubMed]
- Rehman, K.; Zulfakar, M.H. Recent advances in gel technologies for topical and transdermal drug delivery. Drug Dev. Ind. Pharm. 2013, 40, 433–440. [Google Scholar] [CrossRef]
- Karateev, A.E.; Uspensky, Y.P.; Pakhomova, I.G.; Nasonov, E.L. Brief history of NSAIDs. Sci. Pract. Rheumatol. 2012, 50, 101–116. [Google Scholar] [CrossRef]
- Slei, P.; Püschner, H. Intramuscular tolerance of meloxicam compared to piroxicam and diclofenac in rabbits. Scand. J. Rheumatol. 1994, 98, 109. [Google Scholar]
- Ghozlan, P.R.; Bernhardt, M.; Velicitat, P.; Bluhmki, E. Tolerability of multiple administration of intramuscular meloxicam: A comparison with intramuscular piroxicam in patients with rheumatoid arthritis or osteoarthritis. Br. J. Rheumatol. 1996, 35 (Suppl. S1), 51–55. [Google Scholar] [CrossRef]
- Plugariu, I.A.; Gradinaru, L.M.; Avadanei, M.; Rosca, I.; Nita, L.E.; Maxim, C.; Bercea, M. Thermosensitive polyurethane-based hydrogels as potential vehicles for meloxicam delivery. Pharmaceuticals 2023, 16, 1510. [Google Scholar] [CrossRef]
- Gao, D.; Zhao, Y.; Liu, J.; Chu, R.; Wang, J.; Bian, W.; Liu, X.; Lu, W.; He, J. Bupivacaine multivesicular liposomes/meloxicam nanocrystals in a thermosensitive gel adapted to the “microenvironment” for long-term analgesia. Eur. J. Pharm. Biopharm. 2025, 207, 114630. [Google Scholar] [CrossRef]
- Shehata, T.M.; Elnahas, H.M.; Elsewedy, H.S. Development, characterization and optimization of the anti-inflammatory influence of meloxicam loaded into a eucalyptus oil-based nanoemulgel. Gels 2022, 8, 262. [Google Scholar] [CrossRef]
- Usama, A.; Fetih, G.; El-Faham, T. Performance of meloxicam niosomal gel formulations for transdermal drug delivery. Br. J. Pharm. Res. 2016, 12, 1–14. [Google Scholar] [CrossRef]
- Kovacevic, Z.; Mugoša, S.; Lalic-Popovic, M.; Tešin, N.; Marić, D.; Todorović, N.; Božić, F. Veterinary compounding: The impact of different gelling agents on the rheological characteristics and release kinetics from meloxicam oral gels in the treatment of cats. Vet. Arch. 2024, 93, 695–708. [Google Scholar]
- De la Puente, R.; Diez, R.; Diez, M.J.; Fernandez, N.; Sahagun, A.M.; Rodriguez, J.M.; Garcia, J.J.; Lopez, C. Pharmacokinetics of meloxicam in different animal species: A comprehensive review. Vet. Sci. 2024, 11, 519. [Google Scholar] [CrossRef] [PubMed]
- Tsai, R.-S.; Carrupl, P.-A.; Tayar, N.-E.; Giroud, Y.; Andrade, P.; Testa, B.; Breé, F.; Tillement, J.-P. Physicochemical and structural properties of non-steroidal anti-inflammatory oxicams. Helv. Chim. Acta 1993, 76, 842–854. [Google Scholar] [CrossRef]
- Mwangi, A.N.; Njogu, P.M.; Maru, S.M.; Njuguna, N.M.; Njaria, P.M.; Kiriiri, G.K.; Mathenge, A.W. Meloxicam emulgels for topical management of rheumatism: Formulation development, in vitro and in vivo characterization. Saudi Pharm. J. 2021, 29, 351–360. [Google Scholar] [CrossRef]
- Price, A.H.; Fletcher, M. Mechanism of NSAID induced gastroenteropathy. Drugs 1990, 40 (Suppl. S5), 1–11. [Google Scholar] [CrossRef]
- Del Tacca, M.; Colucci, R.; Fornai, M.; Blandizzi, C. Efficacy and tolerability of meloxicam, a COX-2 preferential nonsteroidal anti-inflammatory drug. Clin. Drug Investig. 2002, 22, 799–818. [Google Scholar] [CrossRef]
- Zaychenko, G.; Liapunov, O.M.; Bezugla, O.P. The place of meloxicam in the series of modern non-steroidal anti-inflammatory drugs. News Pharm. 2016, 2, 69–76. [Google Scholar] [CrossRef]
- Dreiser, R.L.; Le Parc, J.M.; Vélicitat, P.; Lleu, P.L. Oral meloxicam is effective in acute sciatica: Two randomised, double-blind trials versus placebo or diclofenac. Inflamm. Res. 2001, 50 (Suppl. S1), S17–S23. [Google Scholar] [CrossRef]
- Lipscomb, G.R.; Wallis, N.; Armstrong, G.; Rees, W.D. Gastrointestinal tolerability of meloxicam and piroxicam: A double-blind placebo-controlled study. Br. J. Clin. Pharmacol. 1998, 46, 133–137. [Google Scholar] [CrossRef]
- Reginster, J.Y.; Distel, M.; Bluhmki, E. A double-blind, three-week study to compare the efficacy and safety of meloxicam 7.5 mg and meloxicam 15 mg in patients with rheumatoid arthritis. Br. J. Rheumatol. 1996, 35 (Suppl. S1), 17–21. [Google Scholar] [CrossRef]
- Bjarnason, I.; Scarpignato, C.; Holmgren, E.; Olszewski, M.; Rainsford, K.D.; Lanas, A. Mechanisms of damage to the gastrointestinal tract from non-steroidal anti-inflammatory drugs. Gastroenterology 2018, 154, 500–514. [Google Scholar]
- Hawkey, C.; Kahan, A.; Steinbruck, K.; Alegre, C.; Baumelou, E.; Bégaud, B.; Dequeker, J.; Isomäki, H.; Littlejohn, G.; Mau, J.; et al. Gastrointestinal tolerability of meloxicam compared to diclofenac in osteoarthritis patients. Br. J. Rheumatol. 1998, 37, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Dequeker, J.; Hawkey, C.; Kahan, A.; Steinbrück, K.; Alegre, C.; Baumelou, E.; Bégaud, B.; Isomäki, H.; Littlejohn, G.; Mau, J.; et al. Improvement in gastrointestinal tolerability of the selective cyclooxygenase (COX)-2 inhibitor, meloxicam, compared with piroxicam: Results of the safety and efficacy large-scale evaluation of COX-inhibiting therapies (SELECT) trial in osteoarthritis. Br. J. Rheumatol. 1998, 37, 946–951. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Lanes, S.; Triadafilopoulos, G. Risk of serious upper gastrointestinal and cardiovascular thromboembolic complications with meloxicam. Am. J. Med. 2004, 117, 100–106. [Google Scholar] [CrossRef]
- Huskisson, E.C.; Ghozlan, R.; Kurthen, R.; Degner, F.L.; Bluhmki, E. A long-term study to evaluate the safety and efficacy of meloxicam therapy in patients with rheumatoid arthritis. Br. J. Rheumatol. 1996, 35 (Suppl. S1), 29–34. [Google Scholar] [CrossRef]
- Wojtulewski, J.A.; Schattenkirchner, M.; Barcelo, P.; Le Loët, X.; Bevis, P.J.; Bluhmki, E.; Distel, M. A six month double-blind trial to compare the efficacy and safety of meloxicam 7.5 mg daily and naproxen 750 mg daily in patients with rheumatoid arthritis. Br. J. Rheumatol. 1996, 35 (Suppl. S1), 22–28. [Google Scholar] [CrossRef]
- Degner, F.; Sigmund, R.; Zeidler, H. Efficacy and tolerability of meloxicam in an observational, controlled cohort study in patients with rheumatic disease. Clin. Ther. 2000, 22, 400–410. [Google Scholar] [CrossRef]
- Martin, R.M.; Biswas, P.; Mann, R.D. The incidence of adverse events and risk factors for upper gastrointestinal disorders associated with meloxicam use amongst 19087 patients in general practice in England: Cohort study. Br. J. Clin. Pharmacol. 2000, 50, 35–42. [Google Scholar] [CrossRef]
- Schlondorff, D. Renal complications of non-steroidal anti-inflammatory drugs. Kidney Int. 1993, 44, 643–653. [Google Scholar] [CrossRef]
- Davies, N.M.; Skjodt, N.M. Clinical pharmacokinetics of meloxicam: A cyclo-oxygenase-2 preferential non-steroidal anti-inflammatory drug. Clin. Pharmacokinet. 1999, 36, 115–126. [Google Scholar] [CrossRef]
- Knijff-Durtmer, E.A.J.; Kalsbeek-Batenburg, E.M.; Koerts, J.; Van de Laar, M.A.F.J. Platelet function is inhibited by non-selective non-steroidal anti-inflammatory drugs but not by cyclo-oxygenase-2-selective inhibitors in patients with rheumatoid arthritis. Rheumatology 2002, 41, 458–461. [Google Scholar] [CrossRef] [PubMed]
- Molter, C.M.; Court, M.H.; Cole, G.A.; Gagnon, D.J.; Suwagmani Hazarika, S.; Paul-Murphy, J.R. Pharmacokinetics of meloxicam after intravenous, intramuscular, and oral administration of a single dose to Hispaniolan Amazon parrots (Amazona ventralis). Am. J. Vet. Res. 2013, 74, 375–380. [Google Scholar] [CrossRef]
- Pablos, A.B.; Ramalho, S.A.; König, B., Jr.; Furuse, C.; de Araújo, V.C.; Cury, P.R. Effect of meloxicam and diclofenac sodium on peri-implant bone healing in rats. J. Periodontol. 2008, 79, 300–306. [Google Scholar] [CrossRef]
- Lapicque, F.; Vergne, P.; Jouzeau, J.I.; Loeuille, D.; Gillet, P.; Vignon, E.; Thomas, P.; Velicitat, P.; Türck, D.; Guillaume, C.; et al. Articular diffusion of meloxicam after a single oral dose: Relationship to cyclo-oxygenase inhibition in synovial cells. Clin. Pharmacokinet. 2000, 39, 369–382. [Google Scholar] [CrossRef]
- Vidal, L.; Kneer, W.; Baturone, M.; Sigmund, R. Meloxicam in acute episodes of soft-tissue rheumatism of the shoulder. Inflamm. Res. 2001, 50 (Suppl. S1), S24–S29. [Google Scholar] [CrossRef]
- Castineiras, D.; Armitage, L.; Lamas, L.P.; De Baere, S.; Croubels, S.; Pelligand, L. Perioperative pharmacokinetics and pharmacodynamics of meloxicam in emus (Dromaius novaehollandiae) of different age groups using nonlinear mixed effect modeling. J. Vet. Pharmacol. Ther. 2021, 44, 603–618. [Google Scholar] [CrossRef]
- Lees, P.; Toutain, P.L.; Elliott, J.; Giraudel, J.M.; Pelligand, L.; King, J.N. Pharmacology, safety, efficacy and clinical uses of the COX-2 inhibitor robenacoxib. J. Vet. Pharmacol. Ther. 2022, 45, 325–351. [Google Scholar] [CrossRef]
- Van Hecken, A.; Schwartz, J.I.; Depré, M.; De Lepeleire, I.; Dallob, A.; Tanaka, W.; Wynants, K.; Buntinx, A.; Arnout, J.; Wong, P.H.; et al. Comparative inhibitory activity of rofecoxib, meloxicam, diclofenac, ibuprofen, and naproxen on COX-2 versus COX-1 in healthy volunteers. J. Clin. Pharmacol. 2000, 40, 1109–1120. [Google Scholar] [CrossRef] [PubMed]
- Tavares, I.A. The effects of meloxicam, indomethacin or NS-398 on eicosanoid synthesis by fresh human gastric mucosa. Aliment. Pharmacol. Ther. 2000, 14, 795–799. [Google Scholar] [CrossRef]
- Cheng, L.; Hu, Z.; Gu, J.; Li, Q.; Liu, J.; Liu, M.; Li, J.; Bi, X. Exploring COX-independent pathways: A novel approach for meloxicam and other NSAIDs in cancer and cardiovascular disease treatment. Pharmaceuticals 2024, 17, 1488. [Google Scholar] [CrossRef]
- Welin-Berger, K.; Neelissen, J.A.M.; Borgenstahl, B. The effect of rheological behaviour of a topical anaesthetic formulation on the release and permeation rates of the active compound. Eur. J. Pharm. Sci. 2001, 13, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.; Abebe, W.; Sousa, S.; Duarte, V.; Machado, M.; Matos, F. Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. J. Ethnopharmacol. 2003, 89, 277–283. [Google Scholar] [CrossRef]
- Juergens, U.R.; Engelen, T.; Racké, K.; Stöber, M.; Gillissen, A.; Vetter, H. Inhibitory activity of 1,8-cineol (eucalyptol) on cytokine production in cultured human lymphocytes and monocytes. Pulm. Pharmacol. Ther. 2004, 17, 281–287. [Google Scholar] [CrossRef]
- Blair, H.A. Bupivacaine/meloxicam prolonged release: A review in postoperative pain. Drugs 2021, 81, 1203–1211. [Google Scholar] [CrossRef]
- Ottoboni, T.; Quart, B.; Pawasauskas, J.; Dasta, J.F.; Pollak, R.A.; Viscusi, E.R. Mechanism of action of HTX-011: A novel, extended-release, dual-acting local anesthetic formulation for postoperative pain. Reg. Anesth. Pain Med. 2019, 45, 117–123. [Google Scholar] [CrossRef]
- Jorge, L.L.; Feres, C.C.; Teles, V.E. Topical preparations for pain relief: Efficacy and patient adherence. J. Pain Res. 2010, 4, 11–24. [Google Scholar] [CrossRef]
- Sersemova, D.E.; Arev, M.; Apostolova, P.; Karpicarov, D.; Maksimova, V.; Miceva, D.; Cvetkovski, A.; Samardziska, M. Preparation and characterization of amphiphilic cream formulations with meloxicam. Pharmacia 2024, 71, 1–7. [Google Scholar] [CrossRef]
- Pitt, B.; Pepine, C.; Willerson, J.T. Cyclooxygenase-2 inhibition and cardiovascular events. Circulation 2002, 106, 167–169. [Google Scholar] [CrossRef]
- Parfitt, K. Martindale: The Complete Drug Reference, 32nd ed; Pharmaceutical Press: New York, NY, USA, 1999; p. 52. [Google Scholar]
- Rafiee-Tehrani, M.; Mehramizi, A. In vitro release studies of piroxicam from oil-in-water creams and hydroalcoholic gel topical formulations. Drug Dev. Ind. Pharm. 2000, 26, 409–414. [Google Scholar] [CrossRef]
- Inal, O.; Yapar, E.A. Effect of mechanical properties on the release of meloxicam from poloxamer gel bases. Indian J. Pharm. Sci. 2013, 75, 700–706. [Google Scholar]
- McKenzie, M.; Betts, D.; Suh, A.; Bui, K.; Kim, L.D.; Cho, H. Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules 2015, 20, 20397–20408. [Google Scholar] [CrossRef] [PubMed]
- Kolawole, O.M.; Cook, M.T. In situ gelling drug delivery systems for topical drug delivery. Eur. J. Pharm. Biopharm. 2023, 184, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Lupu, A.; Rosca, I.; Gradinaru, R.; Bercea, M. Temperature induced gelation and antimicrobial properties of Pluronic F127 based systems. Polymers 2023, 15, 355. [Google Scholar] [CrossRef] [PubMed]
- Lupu, A.; Bercea, M.; Avadanei, M.; Gradinaru, L.M.; Nita, L.E.; Gradinaru, V.R. Temperature sensitive Pluronic F127-based gels incorporating natural therapeutic agents. Macromol. Mater. Eng. 2025, 310, 2400341. [Google Scholar] [CrossRef]
- Nie, S.; Hsiao, W.L.; Pan, W.; Yang, Z. Thermoreversible Pluronic F127-based hydrogel containing liposomes for the controlled delivery of paclitaxel: In vitro drug release, cell cytotoxicity, and uptake studies. Int. J. Nanomed. 2011, 6, 151–166. [Google Scholar]
- Kushan, E.; Senses, E. Thermoresponsive and injectable composite hydrogels of cellulose nanocrystals and Pluronic F127. ACS Appl. Bio. Mater. 2021, 4, 3507. [Google Scholar] [CrossRef]
- Kjoniksen, A.L.; Calejo, M.T.; Zhu, K.Z.; Nystrom, B.; Sande, S.A. Stabilization of Pluronic gels in the presence of different polysaccharides. J. Appl. Polym. Sci. 2014, 131, 40465. [Google Scholar] [CrossRef]
- Shriky, B.; Vigato, A.A.; Sepulveda, A.F.; Pompermayer Machado, I.; de Araujo, D.R. Poloxamer-based nanogels as delivery systems: How structural requirements can drive their biological performance? Biophys. Rev. 2023, 15, 475–496. [Google Scholar] [CrossRef]
- Lupu, A.; Gradinaru, L.M.; Rusu, D.; Bercea, M. Self-healing of Pluronic® F127 hydrogels in the presence of various polysaccharides. Gels 2023, 9, 719. [Google Scholar] [CrossRef]
- Khattak, S.F.; Bhatia, S.R.; Roberts, S.C. Pluronic F127 as a cell encapsulation material: Utilization of membrane-stabilizing agents. Tissue Eng. 2005, 11, 974–983. [Google Scholar] [CrossRef]
- Mariee, N. Factors affecting the in vitro diffusion of diclofenac sodium from ointments. Iraqi J. Pharm. 2001, 1, 62–71. [Google Scholar]
- El-Badry, M. Preparation, in-vitro release and antiinflammatory activity of meloxicam in different gel formulations. Bull. Pharm. Sci. Assiut Univ. 2009, 32 Pt 1, 213–224. [Google Scholar] [CrossRef]
- Babar, A.; Solanki, U.D.; Cutie, A.J.; Plakogiannis, F. Piroxicam release from dermatological bases: In vitro studies using cellulose membrane and hairless mouse skin. Drug Dev. Ind. Pharm. 1990, 16, 523–540. [Google Scholar] [CrossRef]
- Roderick, B.; Eric, W. The role of percutaneous penetration enhancers. Adv. Drug Deliv. Rev. 1996, 18, 295–301. [Google Scholar]
- Chang, J.S.; Huang, Y.B.; Hou, S.S.; Wang, R.J.; Wu, P.C.; Tsai, Y.H. Formulation optimization of meloxicam sodium gel using response surface methodology. Int. J. Pharm. 2007, 338, 48–54. [Google Scholar] [CrossRef]
- Zielińska, A.; Eder, P.; Rannier, L.; Cardoso, J.C.; Severino, P.; Silva, A.M.; Souto, E.B. Hydrogels for modified-release drug delivery systems. Curr. Pharm. Des. 2022, 28, 609–618. [Google Scholar] [CrossRef]
- Sawant, D.; Dandagi, P.M.; Gadad, A.P. Formulation and evaluation of sparfloxacin emulsomes-loaded thermosensitive in situ gel for ophthalmic delivery. J. Sol-Gel Sci. Technol. 2016, 77, 654–665. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, K.; Yang, X.; Chen, W.; Wang, T.; Kang, Y.; Gong, D.; Qian, Z.; Zhang, W. Sustained release of levobupivacaine from temperature-sensitive injectable hydrogel for long-term local anesthesia in postoperative pain management. Biomaterials 2023, 299, 122129. [Google Scholar] [CrossRef]
- Albrecht, E.; Chin, K.J. Advances in regional anaesthesia and acute pain management: A narrative review. Anaesthesia 2020, 75, 101–110. [Google Scholar] [CrossRef]
- Rahmanian-Devin, P.; Rahimi, V.B.; Askari, V.R. Thermosensitive chitosan-β-GP hydrogels as targeted drug delivery systems: An overview on preparation and their applications. Adv. Pharmacol. Pharm. Sci. 2021, 2021, 6640893. [Google Scholar]
- Wendels, S.; Aveous, L. Biobased polyurethanes for biomedical applications. Bioact. Mater. 2021, 6, 1083–1106. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Mahanwar, P. A brief discussion on advances in polyurethane applications. Adv. Ind. Eng. Polym. Res. 2020, 3, 93–101. [Google Scholar] [CrossRef]
- Gradinaru, L.M.; Ciobanu, C.; Vlad, S.; Bercea, M.; Popa, M. Thermoreversible poly(isopropyl lactate diol)-based polyurethane hydrogels: Effect of isocyanate on some physical properties. Ind. Eng. Chem. Res. 2012, 51, 12344–12354. [Google Scholar] [CrossRef]
- Gradinaru, L.M.; Ciobanu, C.; Vlad, S.; Bercea, M.; Popa, M. Synthesis and rheology of thermoreversible polyurethane hydrogels. Cent. Eur. J. Chem. 2012, 10, 1859–1866. [Google Scholar] [CrossRef]
- Laurano, R.; Boffito, M.; Cassino, C.; Liberti, F.; Ciardelli, G.; Chiono, V. Design of injectable bioartificial hydrogels by green chemistry for mini-invasive applications in the biomedical or aesthetic medicine fields. Gels 2023, 9, 59. [Google Scholar] [CrossRef]
- Boffito, M.; Pontremoli, C.; Fiorilli, S.; Laurano, R.; Ciardelli, G.; Vitale-Brovarone, C. Injectable thermosensitive formulation based on polyurethane hydrogel/mesoporous glasses for sustained co-delivery of functional ions and drugs. Pharmaceutics 2019, 11, 501. [Google Scholar] [CrossRef]
- Huynh, C.T.; Nguyen, M.K.; Jeong, I.K.; Kim, S.W.; Lee, D.S. Synthesis, characteristics and potential application of poly(β-amino ester urethane)-based multiblock copolymers as an injectable, biodegradable and pH/temperature-sensitive hydrogel system. Biomater. Sci. Polym. Ed. 2012, 23, 1091–1106. [Google Scholar] [CrossRef]
- Yu, Y.; Cheng, Y.; Tong, J.; Zhang, L.; Wei, Y.; Tian, M. Recent advances in thermo-sensitive hydrogels for drug delivery. J. Mater. Chem. B 2021, 9, 2979–2992. [Google Scholar] [CrossRef]
- Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: Progress and challenges. Polymer 2008, 49, 1993–2007. [Google Scholar] [CrossRef]
- El-Badry, M.; Fathy, M. Enhancement of the dissolution and permeation rates of meloxicam by formation of its freeze-dried solid dispersions in polyvinylpyrrolidone K-30. Drug Dev. Ind. Pharm. 2006, 32, 141–150. [Google Scholar] [CrossRef]
- Mártha, C.; Kürti, L.; Farkas, G.; Jójárt-Laczkovich, O.; Szalontai, B.; Glässer, E.; Deli, M.A.; Szabó-Révész, P. Effects of polymers on the crystallinity of nanonized meloxicam during a co-grinding process. Eur. Polym. J. 2013, 49, 2426–2432. [Google Scholar] [CrossRef]
- Ochi, M.; Takaki Kawachi, T.; Toita, E.; Hashimoto, I.; Yuminoki, K.; Onoue, S.; Hashimoto, N. Development of nanocrystal formulation of meloxicam with improved dissolution and pharmacokinetic behaviors. Int. J. Pharm. 2014, 474, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; Abrini, J.; Dakka, N.; Bakri, Y. Essential oils of Origanum Compactum increase membrane permeability, disturb cell membrane integrity, and suppress quorumsensing phenotype in bacteria. J. Pharm. Anal. 2019, 9, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Ruiz Martinez, M.A.; López-Viota Gallardo, J.; de Benavides, M.M.; de Dios García López-Duran, J.; Gallardo Lara, V. Rheological behavior of gels and meloxicam release. Int. J. Pharm. 2007, 333, 17–23. [Google Scholar] [CrossRef]
- Zhang, J.; Froelich, A.; Michniak-Kohn, B. Topical delivery of meloxicam using liposome and microemulsion formulation approaches. Pharmaceutics 2020, 12, 282. [Google Scholar] [CrossRef]
- Badawi, N.M.; Elkafrawy, M.A.; Yehia, R.M.; Attia, D.A. Clinical comparative study of optimized metronidazole loaded lipid nanocarrier vaginal emulgel for management of bacterial vaginosis and its recurrence. Drug Deliv. 2021, 28, 814–825. [Google Scholar] [CrossRef]
- Sghier, K.; Mur, M.; Veiga, F.; Paiva-Santos, A.C.; Pires, P.C. Novel therapeutic hybrid systems using hydrogels and nanotechnology: A focus on nanoemulgels for the treatment of skin diseases. Gels 2024, 10, 45. [Google Scholar] [CrossRef]
- Wei, Q.-Y.; Xu, Y.-M.; Lau, A.T.Y. Recent progress of nanocarrier-based therapy for solid malignancies. Cancers 2020, 12, 2783. [Google Scholar] [CrossRef]
- Ojha, B.; Jain, V.K.; Gupta, S.; Talegaonkar, S.; Jain, K. Nanoemulgel: A promising novel formulation for treatment of skin ailments. Polym. Bull. 2022, 79, 4441–4465. [Google Scholar] [CrossRef]
- Sipos, B.; Csóka, I.; Szivacski, N.; Budai-Szűcs, M.; Schelcz, Z.; Zupkó, I.; Szabó-Révész, P.; Volk, B.; Katona, G. Mucoadhesive meloxicam-loaded nanoemulsions: Development, characterization and nasal applicability studies. Eur. J. Pharm. Sci. 2022, 175, 106229. [Google Scholar] [CrossRef]
- Khurana, S.; Jain, N.K.; Bedi, P.M.S. Nanoemulsion based gel for transdermal delivery of meloxicam: Physico-chemical, mechanistic investigation. Life Sci. 2013, 92, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, X.; Zhang, Y.; Tian, J.; Ling, G. Construction of a thermosensitive gel based on hydroxypropyl-β-cyclodextrin/meloxicam inclusion complexes for improving meloxicam solubility and prolonging drug retention time in the cornea. Drug Deliv. Transl. Res. 2025. [Google Scholar] [CrossRef] [PubMed]
- Omidian, H.; Akhzarmehr, A.; Gill, E.J. Cyclodextrin–hydrogel hybrids in advanced drug delivery. Gels 2025, 11, 177. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.P.; Tiwary, A.K.; Jain, S. Preparation and in vitro, in vivo characterization of elastic liposomes encapsulating cyclodextrin colchicine complexes for topical delivery of colchicine. Yakugaku Zasshi 2010, 130, 397–407. [Google Scholar] [CrossRef]
- Vieira, W.T.; Silva Nicollini, M.V.; da Silva, M.G.C.; de Oliveira Nascimento, L.; Vieira, M.G.A. Natural polysaccharides and proteins applied to the development of gastroresistant multiparticulate systems for anti-inflammatory drug delivery—A systematic review. Eur. Polym. J. 2022, 172, 111205. [Google Scholar] [CrossRef]
- Sahu, K.M.; Patra, S.; Swain, S.K. Host-guest drug delivery by β-cyclodextrin assisted polysaccharide vehicles: A review. Int. J. Biol. Macromol. 2023, 240, 124338. [Google Scholar] [CrossRef]
- Kaplun, Y.; Touitou, E. Testosterone skin permeation enhancement by menthol through formation of eutectic with drug and interaction with skin lipids. J. Pharm. Sci. 1997, 86, 1394–1399. [Google Scholar] [CrossRef]
- Kunta, J.R.; Goskonda, V.R.; Brotherton, H.O.; Khan, M.A.; Reddy, I.K. Effect of menthol and related terpenes on the percutaneous absorption of propranolol across excised hairless mouse skin. J. Pharm. Sci. 1997, 86, 1369–1373. [Google Scholar]
- Shen, G.; Jagdish, S. Mechanism of transdermal transport of 5-fluorouracil by terpenes: Carvone, 1,8-cineole and thymol. Int. J. Pharm. 1997, 154, 67–77. [Google Scholar]
- Barry, B.; Bennett, L. Effect of penetration enhancers on the permeation of mannitol, hydrocortisone and progesterone. J. Pharm. Pharmacol. 1987, 39, 535–548. [Google Scholar] [CrossRef]
- Zerrouk, N.; Corti, G.; Ancillotti, S.; Maestrelli, F.; Cirri, M.; Mura, P. Influence of cyclodextrins and chitosan, separately or in combination, on glyburide solubility and permeability. Eur. J. Pharm. Biopharm. 2006, 62, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Faucci, M.T.; Mura, P. Effect of water-soluble polymers on naproxen complexation with natural and chemically modified beta-cyclodextrins. Drug Dev. Ind. Pharm. 2001, 27, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Rasool, B.K.A.; Gareeb, R.H.; Fahmy, S.A.; Rasool, A.A.A. Meloxicam β-cyclodextrin transdermal gel: Physicochemical characterization and in vitro dissolution and diffusion studies. Curr. Drug Deliv. 2011, 8, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Masson, M.; Loftsson, T.; Masson, G.; Stefansson, E. Cyclodextrins as permeation enhancers: Some theoretical evaluations and in vitro testing. J. Control. Release 1999, 59, 107–108. [Google Scholar] [CrossRef]
- Saleem, M.A.; Bala, S.; Liyakat; Aeajaz, A. Effect of different carriers on in vitro permeation o meloxicam through rat skin. Indian J. Pharm. Sci. 2010, 72, 710–718. [Google Scholar]
- Lei, X.; Zhang, G.; Yang, T.; Wu, Y.; Peng, Y.; Wang, T.; Li, D.; Liu, Q.; Wang, C.; Zhang, G. Preparation and in vitro and in vivo evaluation of rectal in situ gel of meloxicam hydroxypropyl-β-cyclodextrin inclusion complex. Molecules 2023, 28, 4099. [Google Scholar] [CrossRef]
- Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M. Ethosomes—Novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release 2000, 65, 403–418. [Google Scholar] [CrossRef]
- Mahrous, G.M. Proniosomes as a drug carrier for transdermal delivery of meloxicam. Bull. Pharm. Sci. Assiut Univ. 2010, 33 Pt 2, 131–140. [Google Scholar] [CrossRef]
- Niven, R.W.; Carvajal, M.A.; Schreier, H. Nebulization of liposomes. III. The effects of operating conditions and local environment. Pharm. Res. 1992, 9, 515–520. [Google Scholar] [CrossRef]
- Wong, M.; Thompson, T. Aggregation of palmitoylphosphatidylcholine vesicles. Biochemistry 1982, 21, 4133–4139. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 110. [Google Scholar] [CrossRef] [PubMed]
- Gabizon, A.; Goren, D.; Cohen, R.; Barenholz, Y. Development of liposomal anthracyclines: From basics to clinical applications. J. Control. Release 1998, 53, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.K.; Labhasetwar, V. Nanotech approaches to drug delivery and imaging. Drug Discov. Today 2003, 8, 1112–1120. [Google Scholar] [CrossRef] [PubMed]
- Allen, T.M. Liposomes. Opportunities in drug delivery. Drugs 1997, 54, 8–14. [Google Scholar] [CrossRef]
- Jain, S.; Tripathi, S.; Tripathi, P.K. Invasomes: Potential vesicular systems for transdermal delivery of drug molecules. J. Drug Deliv. Technol. 2021, 61, 102166. [Google Scholar] [CrossRef]
- Li, H.; Liu, J.; Wang, H.; Xu, C.; Shi, G.; Zhao, J.; Zhang, L.; Zeng, M.; Jiang, L. Biomimetic exosome harnessing exosomal lipidomics and functional proteins for PEDF-pDNA delivery in high altitude pulmonary edema intervention. J. Control. Release 2025, 379, 652–677. [Google Scholar] [CrossRef]
- Duangjit, S.; Obata, Y.; Sano, H.; Kikuchi, S.; Onuki, Y.; Opanasopit, P.; Ngawhirunpat, T.; Maitani, Y.; Takayamaa, K. Menthosomes, novel ultradeformable vesicles for transdermal drug delivery: Optimization and characterization. Biol. Pharm. Bull. 2012, 35, 1720–1728. [Google Scholar] [CrossRef]
- Chacko, I.A.; Ghate, V.M.; Dsouza, L.; Lewis, S.A. Lipid vesicles: A versatile drug delivery platform for dermal and transdermal applications. Colloids Surf. B Biointerfaces 2020, 195, 111262. [Google Scholar] [CrossRef]
- Ahad, A.; Aqil, M.; Kohli, K.; Sultana, Y.; Mujeeb, M. Enhanced transdermal delivery of an anti-hypertensive agent via nanoethosomes: Statistical optimization, characterization and pharmacokinetic assessment. Int. J. Pharm. 2013, 443, 26–38. [Google Scholar] [CrossRef]
- Nsairat, H.; Khater, D.; Sayed, U.; Odeh, F.; Al Bawab, A.; Alshaer, W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022, 8, e09394. [Google Scholar] [CrossRef]
- Alsarra, I.A. Evaluation of proniosomes as an alternative strategy to optimize piroxicam transdermal delivery. J. Microencapsul. 2008, 26, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Muller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 2002, 54, 131–155. [Google Scholar] [CrossRef]
- Jones, D.S.; Moss, G.P. Themed issue: Recent advances in transdermal drug delivery. J. Pharm. Pharmacol. 2010, 62, 669–670. [Google Scholar] [CrossRef]
- Al-Ameri, A.A.F.; Al-Gawhari, F.J. Formulation development of meloxicam binary ethosomal hydrogel for topical delivery: In vitro and in vivo assessment. Pharmaceutics 2024, 16, 898. [Google Scholar] [CrossRef]
- Godin, B.; Touitou, E. Ethosomes: New prospects in transdermal delivery. Crit. Rev. Ther. Drug Carr. Syst. 2003, 20, 63–102. [Google Scholar] [CrossRef]
- Singh, D.; Madhulika, P.; Nag, M.; Singh, M.R. Vesicular system: Versatile carrier for transdermal delivery of bioactives. Artif. Cells Nanomed. Biotechnol. 2015, 43, 282–290. [Google Scholar] [CrossRef]
- Alvi, I.A.; Madan, J.; Kaushik, D.; Sardana, S.; Pandey, R.S.; Ali, A. Comparative study of transfersomes, liposomes, and niosomes for topical delivery of 5-fluorouracil to skin cancer cells. Anti-Cancer Drugs 2011, 22, 774–782. [Google Scholar] [CrossRef]
- Kulkarni, P.R.; Yadav, J.D.; Vaidya, K.A.; Gandhi, P.P. Transferosomes: An emerging tool for transdermal drug delivery. Int. J. Pharm. Sci. Res. 2011, 2, 735–741. [Google Scholar]
- Alomrani, A.H.; Gamal, A.S.; Amro, A.A.; Mohamed, B. Itraconazole hydroxypropyl-β-cyclodextrin loaded deformable liposomes: In vitro skin penetration studies and antifungal efficacy using Candida albicans as model. Colloids Surf. B Biointerfaces 2015, 121, 74–81. [Google Scholar] [CrossRef]
- Dragicevic-Curic, N.; Susanna, G.; Burkhard, G.; Sven, W.; Fahr, A. Surface charged temoporfin-loaded flexible vesicles: In vitro skin penetration studies and stability. Int. J. Pharm. 2010, 384, 100–108. [Google Scholar] [CrossRef]
- Ashtikar, M.; Nagarsekar, K.; Fahr, A. Transdermal delivery from liposomal formulations—Evolution of the technology over the last three decades. J. Control. Release 2016, 242, 126–140. [Google Scholar] [CrossRef] [PubMed]
- Saharawat, S.; Verma, S. A comprehensive review on niosomes as a strategy in targeted drug delivery: Pharmaceutical, and herbal cosmetic applications. Curr. Drug Deliv. 2024, 21, 1460–1473. [Google Scholar] [CrossRef] [PubMed]
- Lens, M. Niosomes as vesicular nanocarriers in cosmetics: Characterisation, development and efficacy. Pharmaceutics 2025, 17, 287. [Google Scholar] [CrossRef] [PubMed]
- Mawazi, S.M.; Ge, Y.; Widodo, R.T. Niosome preparation techniques and structure—An illustrated review. Pharmaceutics 2025, 17, 67. [Google Scholar] [CrossRef]
- Ahad, A.; Al-Jenoobi, F.I.; Al-Mohizea, A.M.; Aqil, M.; Kohli, K. Transdermal delivery of calcium channel blockers for hypertension. Expert Opin. Drug Deliv. 2013, 10, 1137–1153. [Google Scholar] [CrossRef]
- Aqil, M.; Ahad, A.; Sultana, Y.; Ali, A. Status of terpenes as skin penetration enhancers. Drug Discov. Today 2007, 12, 1061–1067. [Google Scholar] [CrossRef]
- Ahad, A.; Aqil, M.; Kohli, K.; Chaudhary, H.; Sultana, Y.; Mujeeb, M.; Talegaonkar, S. Chemical penetration enhancers: A patent review. Expert Opin. Ther. Pat. 2009, 19, 969–988. [Google Scholar] [CrossRef]
- Elsayed, M.M.; Abdallah, O.Y.; Naggar, V.F.; Khalafallah, N.M. Deformable liposomes and ethosomes: Mechanism of enhanced skin delivery. Int. J. Pharm. 2006, 322, 60–66. [Google Scholar] [CrossRef]
- Touitou, E.; Godin, B.; Dayan, N.; Weiss, C.; Piliponsky, A.; Levi-Schaffer, F. Intracellular delivery mediated by an ethosomal carrier. Biomaterials 2001, 22, 3053–3059. [Google Scholar] [CrossRef]
- Dubey, V.; Mishra, D.; Dutta, T.; Nahar, M.; Saraf, D.K.; Jain, N.K. Dermal and transdermal delivery of an anti-psoriatic agent via ethanolic liposomes. J. Control. Release 2007, 123, 148–154. [Google Scholar] [CrossRef]
- Dubey, V.; Mishra, D.; Jain, N.K. Melatonin loaded ethanolic liposomes: Physicochemical characterization and enhanced transdermal delivery. Eur. J. Pharm. Biopharm. 2007, 67, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Carafa, M.; Santucci, E.; Lucania, G. Lidocaine-loaded non ionic surfactant vesicles: Characterization and in vitro permeation studies. Int. J. Pharm. 2002, 231, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Bseiso, E.A.; Nasr, M.; Sammour, O.; El Gawad, N.A.A. Recent advances in topical formulation carriers of antifungal agents. Indian J. Dermatol. Venereol. Leprol. 2015, 81, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Cevc, G.; Blume, G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim. Biophys. Acta 1992, 1104, 226–232. [Google Scholar] [CrossRef]
- Verma, P.; Pathak, K. Therapeutic and cosmeceutical potential of ethosomes: An overview. Adv. Pharm. Technol. Res. 2010, 1, 274–282. [Google Scholar] [CrossRef]
- Dave, V.; Kumar, D.; Lewis, S.; Paliwal, S. Ethosome for enhanced transdermal drug delivery of aceclofenac. Int. J. Drug Deliv. 2010, 2, 81–92. [Google Scholar] [CrossRef]
- Ahad, A.; Raish, M.; Al-Mohizea, A.M.; Al-Jenoobi, F.I.; Alam, M.A. Enhanced anti-inflammatory activity of carbopol loaded meloxicam nanoethosomes gel. Int. J. Biol. Macromol. 2014, 67, 99–104. [Google Scholar] [CrossRef]
- Hu, C.; Rhodes, D.G. Proniosomes: A novel drug carrier preparation. Int. J. Pharm. 2000, 206, 110–122. [Google Scholar] [CrossRef]
- Macedo, T.; Block, L.H.; Shukla, A.J. Release of tolmetin from carbomer gel systems. Drug Dev. Ind. Pharm. 1993, 19, 887–902. [Google Scholar] [CrossRef]
- Abdelbary, G.; El-Gendy, N. Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS PharmSciTech 2008, 9, 740–747. [Google Scholar] [CrossRef]
- Barry, B.W. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur. J. Pharm. Sci. 2001, 14, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Ogiso, T.; Niinaka, N.; Iwaki, M. Mechanism for enhancement effect of lipid disperse system on percutaneous absorption. J. Pharm. Sci. 1996, 85, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Alomrani, A.H.; Badran, M.M. Flexosomes for transdermal delivery of meloxicam: Characterization and antiinflammatory activity. Artif. Cells Nanomed. Biotechnol. 2017, 45, 305–312. [Google Scholar] [CrossRef]
- El Maghraby, G.M.; Williams, A.C.; Barry, B.W. Skin hydration and possible shunt route penetration in controlled estradiol delivery from ultradeformable and standard liposomes. J. Pharm. Pharmacol. 2001, 53, 1311–1322. [Google Scholar] [CrossRef]
- Gillet, A.; Lecomte, F.; Hubert, P.; Ducat, E.; Evrard, B.; Piel, G. Skin penetration behaviour of liposomes as a function of their composition. Eur. J. Pharm. Biopharm. 2011, 79, 43–53. [Google Scholar] [CrossRef]
- El Zaafarany, G.M.; Gehanne, A.S.; Samar, A.M.; Nahed, M.D. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int. J. Pharm. 2010, 397, 164–172. [Google Scholar] [CrossRef]
- Hiruta, Y.; Yoshiyuki, H.; Kumi, K.; Yasuko, O.; Yoshie, M. Novel ultradeformable vesicles entrapped with bleomycin and enhanced to penetrate rat skin. J. Control. Release 2006, 113, 146–154. [Google Scholar] [CrossRef]
- Monteiro, M.S.; Ozzetti, R.A.; Vergnanini, A.L.; de Brito-Gitirana, L.; Volpato, N.M.; de Freitas, Z.M.; Ricci, E., Jr.; dos Santos, E.P. Evaluation of octyl pmethoxycinnamate included in liposomes and cyclodextrins in anti-solar preparations: Preparations, characterizations and in vitro penetration studies. Int. J. Nanomed. 2012, 7, 3045–3058. [Google Scholar]
- Li, G.; Fan, C.; Li, X.; Fan, Y.; Wang, X.; Li, M.; Liu, Y. Preparation and in vitro evaluation of tacrolimus-loaded ethosomes. Sci. World J. 2012, 2012, 874053. [Google Scholar] [CrossRef]
- López-Pinto, J.M.; Gonzalez-Rodriguez, M.L.; Rabasco, A.M. Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. Int. J. Pharm. 2005, 298, 1–12. [Google Scholar] [CrossRef]
- Cevc, G.; Richardsen, H. Lipid vesicles and membrane fusion. Adv. Drug Deliv. Rev. 1999, 38, 207–232. [Google Scholar] [CrossRef] [PubMed]
- Hua, S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front. Pharmacol. 2015, 6, 223. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.; Ferreira, H.; Little, C.; Cavaco-Paulo, A. Effect of ultrasound parameters for unilamellar liposome preparation. Ultrason. Sonochem. 2010, 17, 628–632. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.H.; Kim, S.Y.; Seong, H. Investigation on physicochemical characteristics of a nanoliposome-based system for dual drug delivery. Nanoscale Res. Lett. 2018, 13, 111. [Google Scholar] [CrossRef]
- Duangjit, S.; Opanasopit, P.; Rojanarata, T.; Ngawhirunpat, T. Characterization and in vitro skin permeation of meloxicam-loaded liposomes versus transfersomes. J. Drug Deliv. 2011, 2011, 418316. [Google Scholar] [CrossRef]
- Cevc, G.; Blume, G. New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, transfersomes. Biochim. Biophys. Acta Biomembr. 2001, 1514, 191–205. [Google Scholar] [CrossRef]
- Duangjit, S.; Pamornpathomkul, B.; Opanasopit, P.; Rojanarata, T.; Obata, Y.; Takayama, K.; Ngawhirunpat, T. Role of the charge, carbon chain length, and content of surfactant on the skin penetration of meloxicam-loaded liposomes. Int. J. Nanomed. 2014, 9, 2005–2017. [Google Scholar] [CrossRef]
- Duangjit, S.; Obata, Y.; Sano, H.; Onuki, Y.; Opanasopit, P.; Ngawhirunpat, T.; Miyoshi, T.; Kato, S.; Takayama, K. Comparative study of novel ultradeformable liposomes: Menthosomes, transfersomes and liposomes for enhancing skin permeation of meloxicam. Biol. Pharm. Bull. 2014, 37, 239–247. [Google Scholar] [CrossRef]
- Watanabe, H.; Obata, Y.; Ishida, K.; Takayama, K. Effect of l-menthol on the thermotropic behavior of ceramide 2/cholesterol mixtures as a model for the intercellular lipids in stratum corneum. Colloid Surfaces B 2009, 73, 116–121. [Google Scholar] [CrossRef]
- Patel, T.; Ishiuji, Y.; Yosipovitch, G. Menthol: A refreshing look at this ancient compound. J. Am. Acad. Dermatol. 2007, 57, 873–878. [Google Scholar] [CrossRef]
- Obata, Y.; Hatta, I.; Ohta, N.; Kunizawa, N.; Yagi, N.; Takayama, K. Combined effects of ethanol and L-menthol on hairless rat stratum corneum investigated by synchrotron X-ray diffraction. J. Control. Release 2006, 115, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Cevc, G. Rationale for production and dermal application of lipid vesicles in liposome dermatics. In Liposome Dermatics (Griesbach Conference); Braun-Falco, O., Korting, H.C., Maibach, H.I., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 82–90. [Google Scholar]
- Dragicevic-Curic, N.; Scheglmann, D.; Albrecht, V.; Fahr, A. Development of different temoporfin-loaded invasomes—Novel nanocarriers of temoporfin: Characterization, stability and in vitro skin penetration studies. Colloids Surf. B Biointerfaces 2009, 70, 198–206. [Google Scholar] [CrossRef]
- Singh, D. Ultradeformable system: A carrier for transdermal drug delivery. Indian J. Pharm. Sci. Res. 2013, 4, 4098–4104. [Google Scholar]
- Lakshmi, P.K.; Kalpana, B.; Prasanthi, D. Invasomes-novel vesicular carriers for enhanced skin permeation. Sys. Rev. Pharm. 2013, 4, 26–30. [Google Scholar] [CrossRef]
- Verma, D.D.; Fahr, A. Synergistic penetration enhancement effect of ethanol and phospholipids on the topical delivery of cyclosporine. J. Control. Release 2004, 97, 55–66. [Google Scholar] [CrossRef]
- Abdulbaqi, I.M.; Nurzalina, Y.D.; Khan, A.K.; Assi, R.A.; Kha, A.A. Ethosomal nanocarriers: The impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int. J. Nanomed. 2016, 11, 2279–2304. [Google Scholar] [CrossRef]
- Rahman, Z.; Zidan, V.; Khan, M.A. Non-destructive methods of characterization of risperidone solid lipid nanoparticles. Eur. J. Pharm. Biopharm. 2010, 76, 127–137. [Google Scholar] [CrossRef]
- Freitas, C.; Muller, R.H. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticles (SLN) dispersions. Int. J. Pharm. 1998, 168, 221–229. [Google Scholar] [CrossRef]
- Pardeike, J.; Hommoss, A.; Muller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 2009, 366, 170–184. [Google Scholar] [CrossRef]
- Hu, F.Q.; Jiang, S.P.; Du, Y.Z. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloid Surf. B 2005, 45, 167–173. [Google Scholar] [CrossRef]
- Ricci, M.; Puglia, C.; Bonina, F.; Di Giovanni, C.; Giovagnoli, S.; Carlo Rossi, C. Evaluation of indomethacin percutaneous absorption from nanostructured lipid carriers (NLC): In vitro and in vivo studies. J. Pharm. Sci. 2005, 94, 1149–1159. [Google Scholar] [CrossRef] [PubMed]
- Kuchler, S.; Herrmann, W.; Panek-Minkin, G.; Blaschke, T.; Zoschke, C.; Kramer, K.D.; Bittl, R.; Schäfer-Korting, M. SLN for topical application in skin diseases-characterization of drug-carrier and carrier-target interactions. Int. J. Pharm. 2010, 390, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Lombardi Borgia, S.; Regehly, M.; Sivaramakrishnan, R.; Mehnert, W.; Korting, H.C.; Danker, K.; Röder, B.; Kramer, K.D.; Schäfer-Korting, M. Lipid nanoparticles for skin penetration enhancement: Correlation to drug localization within the particle matrix as determined by fluorescence and parelectric spectroscopy. J. Control. Release 2005, 110, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Jenning, V.; Gysler, A.; Schafer-Korting, M.; Gohla, S.H. Vitamin A loaded solid lipid nanoparticles for topical use: Occlusive properties and drug targeting to the upper skin. Eur. J. Pharm. Biopharm. 2000, 49, 211–218. [Google Scholar] [CrossRef]
- Liu, J.; Hu, W.; Chen, H.; Ni, Q.; Xu, H.; Yang, X. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int. J. Pharm. 2007, 328, 191–195. [Google Scholar] [CrossRef]
- Estella-Hermoso de Mendoza, A.; Rayo, M.; Mollinedo, F.; Blanco-Prieto, M.J. Lipid nanoparticles for alkyl lysophospholipid edelfosine encapsulation: Development and in vitro characterization. Eur. J. Pharm. Biopharm. 2008, 68, 207–213. [Google Scholar] [CrossRef]
- Khalil, R.M.; Abd-Elbary, A.; Kassem, M.A.; Ghorab, M.M.; Basha, M. Nanostructured lipid carriers (NLCs) versus solid lipid nanoparticles (SLNs) for topical delivery of meloxicam. Pharm. Dev. Technol. 2014, 19, 304–314. [Google Scholar] [CrossRef]
- Kaur, P.; Verma, S.; Tomar, B.; Vyas, M.; Kakoty, V.; Saha, P.; Chandran, S.K. Exploring applications of flexible vesicular systems as transdermal drug delivery. Curr. Drug Deliv. 2024, 21, 1062–1072. [Google Scholar] [CrossRef]
- Priya, S.; Jain, K.K.; Daryani, J.; Desai, V.M.; Kathuria, H.; Singhvi, G. Revolutionizing rheumatoid arthritis treatment with emerging cutaneous drug delivery systems: Over-coming the challenges and paving the way forward. Nanoscale 2024, 17, 65–87. [Google Scholar] [CrossRef]
- Agrahari, V. Novel drug delivery systems, devices and fabrication methods. Drug Deliv. Transl. Res. 2018, 8, 303–306. [Google Scholar] [CrossRef]
- Vaidya, A.; Jain, S.; Pathak, K.; Pathak, D. Dendrimers: Nanosized multifunctional platform for drug delivery. Drug Deliv. Lett. 2018, 8, 3–19. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Han, Y.; Hu, Y.; Geng, Z.; Su, J. Targeted and responsive biomaterials in osteoarthritis. Theranostics 2023, 13, 931–954. [Google Scholar] [CrossRef] [PubMed]
- Nag, S.; Mohanto, S.; Ahmed, M.G.; Subramaniyan, V. “Smart” stimuli-responsive biomaterials revolutionizing the theranostic landscape of inflammatory arthritis. Mater. Today Chem. 2024, 39, 102178. [Google Scholar] [CrossRef]
Vesicular System | Limitations | Particular Ingredients | Common Ingredients | Scalability |
---|---|---|---|---|
Liposomes Steady-state flux of 0.11 µg cm−2 h−1 [96] | Core
| Phospholipids
| Certain well-defined production methods (extrusion, thin-film hydration) are reproducible, but meloxicam delivery systems have low scalability | |
Ethosomes Approx. 90% MX released within 7 h [135] | Core
| Standard production methods ensure high scalability | ||
Transferosomes Approx. 82% MX released from Carbopol-934 gel matrix in 24 h [11] Steady-state flux of 0.54 µg cm−2 h−1 [96] | Core
| Complex production due to establishing an optimal ratio of surfactants, which requires higher costs | ||
Flexosomes |
| Core
| Scalability depends on the complexity of the formulation | |
Menthosomes |
| Core
| Formulations need to be optimized for large-scale applications | |
Invasomes | Core
| Formulations need to be optimized for large-scale applications | ||
Niosomes Good pharmacodynamic response [20] | Core
| High scalability through extrusion, thin-film hydration [145] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plugariu, I.-A.; Bercea, M.; Gradinaru, L.M. New Gel Approaches for the Transdermal Delivery of Meloxicam. Gels 2025, 11, 500. https://doi.org/10.3390/gels11070500
Plugariu I-A, Bercea M, Gradinaru LM. New Gel Approaches for the Transdermal Delivery of Meloxicam. Gels. 2025; 11(7):500. https://doi.org/10.3390/gels11070500
Chicago/Turabian StylePlugariu, Ioana-Alexandra, Maria Bercea, and Luiza Madalina Gradinaru. 2025. "New Gel Approaches for the Transdermal Delivery of Meloxicam" Gels 11, no. 7: 500. https://doi.org/10.3390/gels11070500
APA StylePlugariu, I.-A., Bercea, M., & Gradinaru, L. M. (2025). New Gel Approaches for the Transdermal Delivery of Meloxicam. Gels, 11(7), 500. https://doi.org/10.3390/gels11070500