Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = linear oscillating motor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 784 KiB  
Article
Resting-State EEG Alpha Asymmetry as a Potential Marker of Clinical Features in Parkinson’s Disease
by Thalita Frigo da Rocha, Valton Costa, Lucas Camargo, Elayne Borges Fernandes and Anna Carolyna Gianlorenço
J. Pers. Med. 2025, 15(7), 291; https://doi.org/10.3390/jpm15070291 - 4 Jul 2025
Viewed by 478
Abstract
Background: Asymmetrical brain oscillations may be characteristic of Parkinson’s disease (PD). We investigated differences in oscillation asymmetry between individuals with PD and healthy controls and explored associations between the asymmetry and clinical features. Methods: Clinical and resting-state EEG data from 37 [...] Read more.
Background: Asymmetrical brain oscillations may be characteristic of Parkinson’s disease (PD). We investigated differences in oscillation asymmetry between individuals with PD and healthy controls and explored associations between the asymmetry and clinical features. Methods: Clinical and resting-state EEG data from 37 patients and 24 controls were cross-sectionally analyzed. EEG asymmetry indices were calculated for the delta, theta, alpha, and beta frequencies in the frontal, central, and parietal regions. Independent t-tests and linear regression models were employed. Results: Patients exhibited lower alpha asymmetry than controls in the parietal region (t(59) = 2.12, p = 0.03). In the frontal alpha asymmetry models, there were associations with time since diagnosis (β = −0.042) and attention/orientation (β = 0.061), and with Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRSIII)-posture (β = 0.136) and MDS-UPDRSIII-rest-tremor persistence (β = −0.111). In the central alpha model, higher asymmetry was associated with the physical activity levels (International Physical Activity Questionnaire) IPAQ-active (β = 0.646) and IPAQ-very active (β = 0.689), (Timed Up and Go) TUG dual-task cost (β = 0.023), MDS-UPDRSII-freezing (β = 0.238), and being male (β = 0.535). In the parietal alpha asymmetry model, MDS-UPDRSII-gait/balance was inversely associated with alpha asymmetry (β = −0.156), while IPAQ-active (β = −0.247) and being male (β = −0.191) were associated with lower asymmetry. Conclusions: Our findings highlight the potential role of alpha asymmetry as a neurophysiological marker of PD’s motor symptoms, mainly rest tremor, gait/balance, freezing, and specific cognitive domains such as attention/orientation. The models stressed the relationship between disease progression and reduced alpha asymmetry. Brazilian Registry of Clinical Trials (RBR-7zjgnrx, 9 June 2022). Full article
(This article belongs to the Section Disease Biomarker)
Show Figures

Figure 1

15 pages, 1821 KiB  
Article
Nonlinear Dynamics of MEG and EMG: Stability and Similarity Analysis
by Armin Hakkak Moghadam Torbati, Christian Georgiev, Daria Digileva, Nicolas Yanguma Muñoz, Pierre Cabaraux, Narges Davoudi, Harri Piitulainen, Veikko Jousmäki and Mathieu Bourguignon
Brain Sci. 2025, 15(7), 681; https://doi.org/10.3390/brainsci15070681 - 25 Jun 2025
Viewed by 420
Abstract
Background: Sensorimotor beta oscillations are critical for motor control and become synchronized with muscle activity during sustained contractions, forming corticomuscular coherence (CMC). Although beta activity manifests in transient bursts, suggesting nonlinear behavior, most studies rely on linear analyses, leaving the underlying dynamic structure [...] Read more.
Background: Sensorimotor beta oscillations are critical for motor control and become synchronized with muscle activity during sustained contractions, forming corticomuscular coherence (CMC). Although beta activity manifests in transient bursts, suggesting nonlinear behavior, most studies rely on linear analyses, leaving the underlying dynamic structure of brain–muscle interactions underexplored. Objectives: To investigate the nonlinear dynamics underlying beta oscillations during isometric contraction. Methods: MEG and EMG were recorded from 17 right-handed healthy adults performing a 10 min isometric pinch task. Lyapunov exponent (LE), fractal dimension (FD), and correlation dimension (CD) were computed in 10 s windows to assess temporal stability. Signal similarity was assessed using Pearson correlation of amplitude envelopes and the nonlinear features. Burstiness was estimated using the coefficient of variation (CV) of the beta envelope to examine how transient fluctuations in signal amplitude relate to underlying nonlinear dynamics. Phase-randomized surrogate signals were used to validate the nonlinearity of the original data. Results: In contrast to FD, LE and CD revealed consistent, structured dynamics over time and significantly differed from surrogate signals, indicating sensitivity to non-random patterns. Both MEG and EMG signals demonstrated temporal stability in nonlinear features. However, MEG–EMG similarity was captured only by linear envelope correlation, not by nonlinear features. CD was strongly associated with beta burstiness in MEG, suggesting it reflects information similar to that captured by the amplitude envelope. In contrast, LE showed a weaker, inverse relationship, and FD was not significantly associated with burstiness. Conclusions: Nonlinear features capture intrinsic, stable dynamics in cortical and muscular beta activity, but do not reflect cross-modal similarity, highlighting a distinction from conventional linear analyses. Full article
(This article belongs to the Section Developmental Neuroscience)
Show Figures

Figure 1

14 pages, 5483 KiB  
Article
A Saturation Adaptive Nonlinear Integral Sliding Mode Controller for Ship Permanent Magnet Propulsion Motors
by Xi Wang, Zhaoting Liu, Peng Zhou, Baozhu Jia, Ronghui Li and Yuanyuan Xu
J. Mar. Sci. Eng. 2025, 13(5), 976; https://doi.org/10.3390/jmse13050976 - 18 May 2025
Viewed by 364
Abstract
The conventional-speed Sliding Mode Controller (SMC) for ship PM propulsion motors, which employs exponential reaching laws and linear sliding surface functions, demonstrates susceptibility to oscillatory phenomena. To solve this problem, this paper proposes a saturation adaptive nonlinear integral sliding mode controller (SANI-SMC) which [...] Read more.
The conventional-speed Sliding Mode Controller (SMC) for ship PM propulsion motors, which employs exponential reaching laws and linear sliding surface functions, demonstrates susceptibility to oscillatory phenomena. To solve this problem, this paper proposes a saturation adaptive nonlinear integral sliding mode controller (SANI-SMC) which combines a nonlinear integral sliding surface function with an adaptive saturation gain reaching rate. The nonlinear integral sliding surface function improves the system responsiveness, and then enhances the stability and robustness of the system. The adaptive saturation gain reaching rate not only mitigates the chattering effect induced by the sign function in traditional exponential reaching rates, but also weakens the underlying oscillations. This approach effectively solves the overshoot problem inherent in traditional PI controllers, and has better anti-interference ability under sudden load variations. Finally, the proposed controller is experimentally verified based on an electric propulsion semi-physical experimental platform consisting of Rapid Control Prototyping (RCP), and compared with a Proportional–Integral (PI) controller and an SMC. Moreover, the integral absolute error (IAE), integral time-weighted absolute error (ITAE), and integral of the square value (ISV) metrics are calculated for the PI controller, SMC, and SANI-SMC based on experimental data collection. The results demonstrate that the SANI-SMC exhibits superior stability and robustness compared to both the PI controller and SMC. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 9531 KiB  
Article
Stability Analysis and Static–Dynamic Characterization of Subminiature Two-Dimensional (2D) Electro-Hydraulic Servo Valves
by Lei Pan, Quanchao Dai, Zhankai Song, Chengtao Zhu and Sheng Li
Machines 2025, 13(5), 388; https://doi.org/10.3390/machines13050388 - 6 May 2025
Viewed by 388
Abstract
Aiming to solve the difficult problem of the miniaturization of servo valves, this paper designs a subminiature two-dimensional (2D) electro-hydraulic servo valve, which realizes the integration of the pilot stage and the power stage and significantly improves the work-to-weight ratio. Meanwhile, a high-power-density [...] Read more.
Aiming to solve the difficult problem of the miniaturization of servo valves, this paper designs a subminiature two-dimensional (2D) electro-hydraulic servo valve, which realizes the integration of the pilot stage and the power stage and significantly improves the work-to-weight ratio. Meanwhile, a high-power-density brushless DC motor (BLDC) is adopted as the electro-mechanical converter to further reduce the volume and mass. Firstly, the structure and working principle of the two-dimensional (2D) servo valve are described, and the mathematical model of the electro-mechanical converter is established. Aiming at the special working condition of the electro-mechanical converter with high-frequency oscillation at a small turning angle, this paper designs a position–current double closed-loop PID control algorithm based on the framework of the vector control algorithm (FOC). At the same time, the current feedforward compensation technique is included to cope with the high-frequency nonlinear disturbance problem of the electro-mechanical converter. The stability conditions of the electro-mechanical converter and the main valve were established based on the Routh–Hurwitz criterion, and the effects of the control algorithm of the electro-mechanical converter and the main parameters of the main valve on the stability of the system were analyzed. The dynamic and static characteristics of the 2D valve were simulated and analyzed by establishing a joint simulation model in Matlab/Simulink and AMESim. The prototype was fabricated, and the experimental bench was built; the size of the experimental prototype was 31.7 mm × 29.3 mm × 31 mm, and its mass was 73 g. Under a system pressure of 7 MPa, the flow rate of this valve was 5 L/min; the hysteresis loop of the spool-displacement input–output curve was 4.8%, and the linearity was 2.54%, which indicated that it had the ability of high-precision control and that it was suitable for the precision fluid system. The step response time was 7.5 ms, with no overshoot; the frequency response amplitude bandwidth was about 90 Hz (−3 dB); the phase bandwidth was about 95 Hz (−90°); and the dynamic characterization experiment showed that it had a fast response characteristic, which can satisfy the demand of high-frequency and high-dynamic working conditions. Full article
(This article belongs to the Section Electromechanical Energy Conversion Systems)
Show Figures

Figure 1

14 pages, 5265 KiB  
Article
Research on Output Performance of Linear Motor Reciprocating Pump Based on Mechanical-Hydraulic-Load Coupling Model
by Jinbo Xiang, Zhiqiang Wang, Lihong Li, Ziwei Qi and Xiaopeng Yue
Machines 2025, 13(5), 381; https://doi.org/10.3390/machines13050381 - 30 Apr 2025
Viewed by 351
Abstract
To study the output performance of the multi-unit linear motor reciprocating pump group, a mechanical-hydraulic-load coupling model was established based on the electromagnetic output model of the linear oscillating motor and the load model of the hydraulic pump system. The dynamic characteristics of [...] Read more.
To study the output performance of the multi-unit linear motor reciprocating pump group, a mechanical-hydraulic-load coupling model was established based on the electromagnetic output model of the linear oscillating motor and the load model of the hydraulic pump system. The dynamic characteristics of the multi-unit linear motor reciprocating pump and the output performance under different input signal parameters were studied using the AMEsim-Simulink co-simulation method, and the validity of the simulation model was verified by the prototype output performance experiment. The analysis result indicates that the parameters of the input signal have a greater impact on the performance of the linear motor reciprocating pump. And the sine wave signal is more suitable as the control signal of the linear motor reciprocating pump, while the staggered parallel mode can greatly reduce the flow output pulsation rate of the even number pump group. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

17 pages, 5811 KiB  
Article
Steering Dynamic and Hybrid Steering Control of a Novel Micro-Autonomous Railway Inspection Car
by Yaojung Shiao and Thi Ngoc Hang Thai
Appl. Sci. 2025, 15(7), 3891; https://doi.org/10.3390/app15073891 - 2 Apr 2025
Viewed by 468
Abstract
This paper aims to present a hybrid steering control method combining the self-guidance capability of a wheelset and fuzzy logic controller (FLC), which were applied to our new micro-autonomous railway inspection vehicle, enhancing the vehicle’s stability. The vehicle features intelligent inspection systems and [...] Read more.
This paper aims to present a hybrid steering control method combining the self-guidance capability of a wheelset and fuzzy logic controller (FLC), which were applied to our new micro-autonomous railway inspection vehicle, enhancing the vehicle’s stability. The vehicle features intelligent inspection systems and a suspension system with variable damping capability that uses smart magnetorheological fluid to control vertical oscillations. A mathematical model of the steering dynamic system was developed based on the vehicle’s unique structure. Two simulation models of the vehicle were built on Simpack and Simulink to evaluate the lateral dynamic capability of the wheelset, applying Hertzian normal theory and Kalker’s linear theory. The hybrid steering control was designed to adjust the torque differential of the two front-wheel drive motors of the vehicle to keep the vehicle centered on the track during operation. The control simulation results show that this hybrid control system has better performance than an uncontrolled vehicle, effectively keeps the car on the track centerline with deviation below 10% under working conditions, and takes advantage of the natural self-guiding force of the wheelset. In conclusion, the proposed hybrid steering system controller demonstrates stable and efficient operation and meets the working requirements of intelligent track inspection systems installed on vehicles. Full article
Show Figures

Figure 1

21 pages, 3397 KiB  
Article
A Novel Filtering Observer: A Cost-Effective Estimation Solution for Industrial PMSM Drives Using in-Motion Control Systems
by Cagatay Dursun and Selin Ozcira Ozkilic
Energies 2025, 18(4), 883; https://doi.org/10.3390/en18040883 - 12 Feb 2025
Viewed by 902
Abstract
This paper presents a cost-efficient estimation method, the filtering observer (FOBS), which provides a smooth estimation through prior estimation, enhancing the field-oriented control (FOC) performance of motion control systems by estimating the angular rotor position, angular rotor velocity, and disturbance torque of permanent [...] Read more.
This paper presents a cost-efficient estimation method, the filtering observer (FOBS), which provides a smooth estimation through prior estimation, enhancing the field-oriented control (FOC) performance of motion control systems by estimating the angular rotor position, angular rotor velocity, and disturbance torque of permanent magnet synchronous motors (PMSMs). The cost-effective FOBS demonstrates characteristics akin to optimal estimating methods and employs arbitrary pole placement, facilitating more straightforward adjustment of the FOBS gain. The non-linear characteristics of low-resolution and low-cost encoders, the computation of angular rotor velocity using traditional techniques, and disturbances over broad frequency ranges in the servo drive system impair the efficacy of the motion control system. As a cost-effective solution, the FOBS minimizes the deficiencies of the low-cost encoder, reduces oscillations and measurement delays in the speed feedback signal, and provides smooth estimation of disturbance torque. Based on the results from experiments, the FOBS was compared against traditional approaches and the performance of the motion control system was examined. Also, the performance of the motion control system was investigated. The results indicate that these enhancements were achieved with low processing power and an easily implementable estimate technique suitable for low-cost industrial systems. Full article
Show Figures

Figure 1

23 pages, 10476 KiB  
Article
Balance Control Method for Bipedal Wheel-Legged Robots Based on Friction Feedforward Linear Quadratic Regulator
by Aimin Zhang, Renyi Zhou, Tie Zhang, Jingfu Zheng and Shouyan Chen
Sensors 2025, 25(4), 1056; https://doi.org/10.3390/s25041056 - 10 Feb 2025
Cited by 1 | Viewed by 1390
Abstract
With advancements in mobile robot technology, wheel-legged robots have emerged as promising next-generation mobile solutions, reducing design costs and enhancing adaptability in unstructured environments. As underactuated systems, their balance control has become a prominent research focus. Despite there being numerous control approaches, challenges [...] Read more.
With advancements in mobile robot technology, wheel-legged robots have emerged as promising next-generation mobile solutions, reducing design costs and enhancing adaptability in unstructured environments. As underactuated systems, their balance control has become a prominent research focus. Despite there being numerous control approaches, challenges remain. Balance control methods for wheel-legged robots are influenced by hardware characteristics, such as motor friction, which can induce oscillations and hinder dynamic convergence. This paper presents a friction feedforward Linear Quadratic Regulator (LQR) balance control method. Specifically, a basic LQR controller is developed based on the dynamics model of the wheel-legged robot, and a Stribeck friction model is established to characterize motor friction. A constant-speed excitation trajectory is designed to gather data for friction identification, and the Particle Swarm Optimization (PSO) algorithm is applied to determine the optimal friction parameters. The identified friction model is subsequently incorporated as feedforward compensation for the LQR controller’s torque output, resulting in the proposed friction feedforward LQR balance control algorithm. The minimum standard deviation for friction identification is approximately 0.30, and the computed friction model values closely match the actual values, indicating effective and accurate identification results. Balance experiments demonstrate that under diverse conditions—such as flat ground, single-sided bridges, and disturbance scenarios—the convergence performance of the friction feedforward LQR algorithm markedly surpasses that of the baseline LQR, effectively reducing oscillations, accelerating convergence, and improving the robot’s stability and robustness. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

21 pages, 12918 KiB  
Article
Analysis and Optimization Design of Moving Magnet Linear Oscillating Motors
by Minghu Yu, Yuqiu Zhang, Jiekun Lin and Peng Zhang
Actuators 2025, 14(2), 81; https://doi.org/10.3390/act14020081 - 8 Feb 2025
Cited by 1 | Viewed by 773
Abstract
Permanent Magnet Linear Oscillating Motors (PMLOMs) are popular in micro-positioning systems, biomedical devices, and refrigeration compressors due to their simple structure, high efficiency, rapid response, and quiet operation. This paper proposes a method for the analysis and optimization of electromechanical systems that employs [...] Read more.
Permanent Magnet Linear Oscillating Motors (PMLOMs) are popular in micro-positioning systems, biomedical devices, and refrigeration compressors due to their simple structure, high efficiency, rapid response, and quiet operation. This paper proposes a method for the analysis and optimization of electromechanical systems that employs a moving magnet linear oscillating motor. A simplified magnetic circuit method model was built to derive an electromagnetic thrust formula, and the initial design parameters of the motor and the thrust at the equilibrium position were calculated. Subsequently, a finite element model was developed, and a multi-objective optimization method was applied to refine the key dimensions of the motor to enhance its thrust characteristics. Furthermore, an analysis of the resonant characteristics of the electromechanical coupled system was conducted to identify the optimal operating frequency for the optimization scheme. Finally, the experimental validation of the optimized design was performed on a prototype, with the measured data showing a general correlation with the trends observed in the simulation analysis results. The effectiveness of this system analysis method was validated through experimental data. The results demonstrate that the thrust at the initial position is linearly correlated with both the outer arc radius of the permanent magnet and its mechanical pole arc coefficient. Additionally, the axial length of the outer stator, the axial spacing between the two outer stators, and the axial length of the magnets serve as key influencing parameters for the thrust characteristics within the effective stroke range. Furthermore, when the motor operates at its mechanical resonance frequency, it can attain the maximum efficiency. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

15 pages, 6878 KiB  
Article
Finite Element Analysis of Electromagnetic Characteristics of a Single-Phase Permanent Magnet Linear Oscillation Actuator
by Hongbin Zhang, Zhaoxin Wang, Minshuo Chen, Zhan Shen, Haitao Yu and Zhike Xu
Sensors 2025, 25(2), 452; https://doi.org/10.3390/s25020452 - 14 Jan 2025
Cited by 1 | Viewed by 1205
Abstract
The electromagnetic characteristics of a single-phase permanent magnet linear oscillation actuator are analyzed by the finite element method. Firstly, the basic structure and operation principle of the linear oscillation actuator are introduced. The internal stator slot and arc tooth are used to reduce [...] Read more.
The electromagnetic characteristics of a single-phase permanent magnet linear oscillation actuator are analyzed by the finite element method. Firstly, the basic structure and operation principle of the linear oscillation actuator are introduced. The internal stator slot and arc tooth are used to reduce the detent force. According to the principle of electromagnetic fields, the electromagnetic field equation is listed and the function of the motor is deduced. At the same time, the eight-node hexahedral element is used to calculate the listed universal functions, and the inductance, flux linkage, induced electromotive force and electromagnetic force of the motor are deduced. The electromagnetic field of the motor is simulated by two-dimensional and three-dimensional finite element methods, and the accuracy of the calculation results of the electromagnetic characteristics of the cylindrical linear oscillation motor by the two methods is compared and analyzed. Finally, an experimental prototype was developed and the no-load characteristics of the motor were tested using the existing linear motor towing method. By comparing the experimental and simulation results, the accuracy of the theoretical analysis and the rationality of the motor design are verified. Full article
Show Figures

Figure 1

30 pages, 13622 KiB  
Article
Performance Simulation and Experimental Verification of a Low-Temperature Differential Free-Piston Stirling Air Conditioner Under Multi-Harmonic Drive
by Yajuan Wang, Junan Zhang, Junde Guo, Gao Zhang and Jianhua Zhang
Processes 2025, 13(1), 134; https://doi.org/10.3390/pr13010134 - 6 Jan 2025
Viewed by 1148
Abstract
This study seeks to improve the performance of a low-temperature differential free-piston Stirling air conditioner (FPSAC). To achieve this, a novel approach is proposed, which replaces the conventional simple harmonic drive with a multi-harmonic drive. This modification aims to optimize the motion of [...] Read more.
This study seeks to improve the performance of a low-temperature differential free-piston Stirling air conditioner (FPSAC). To achieve this, a novel approach is proposed, which replaces the conventional simple harmonic drive with a multi-harmonic drive. This modification aims to optimize the motion of the driving piston, bringing it closer to the ideal movement pattern. The research involves both thermodynamic and dynamic coupling simulations of the FPSAC, complemented by experimental verification of its key performance parameters. A thermodynamic model for the gas medium, employing a quasi-one-dimensional dynamic approach for compressible fluids, and a nonlinear two-dimensional vibration dynamic model for the solid piston are developed, focusing on the low-temperature differential FPSAC physical model. The finite difference method is employed to numerically simulate the entire system, including the electromagnetic thrust of the multi-harmonic-driven linear oscillating motor, fluid transport equations, and the nonlinear dynamic equations of the power and gas control pistons. Variations in displacement, velocity, and pressure for each control volume at any given time are obtained, along with the indicator and temperature–entropy diagrams after the system stabilizes. The simulation results show that, in cooling mode, assuming no heat loss or mechanical friction, the Stirling cooler operates at a frequency of 80 Hz. Using the COPsin value for the simple harmonic drive as a baseline, performance is improved by altering the driving method. Under the multi-harmonic drive, the COPc5 increased by 10.03% and COPc7 by 14.23%. In heating mode, the COP under the multi-harmonic drive improved by 0.51% for COPh5 and 2.61% for COPh7. Performance experiments were conducted on the low-temperature differential FPSAC, and the key parameter test results showed good agreement with the simulation outcomes. The maximum deviation at the trough was found to be less than 2.45%, while at the peak, the maximum error did not exceed 3.61%. When compared to the simple harmonic drive, the application of the multi-harmonic drive significantly enhances the overall efficiency of the FPSAC, demonstrating its superior performance. The simulation analysis and experimental results indicate a significant improvement in the coefficient of performance of the Stirling cooler under the multi-harmonic drive at the same power level, demonstrating that the multi-harmonic drive is an effective approach for enhancing FPSAC performance. Furthermore, it should be noted that the method proposed in this study is applicable to other types of low-temperature differential free-piston Stirling air conditioners. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

22 pages, 6872 KiB  
Article
Improved Interconnected MRAS Parameter Identification for Speed Sensorless Control of Linear Induction Motor
by Hailin Hu, Shiyan Yu, Liangjie Ren, Mingda Zhai and Yuhui Chen
Actuators 2025, 14(1), 2; https://doi.org/10.3390/act14010002 - 26 Dec 2024
Cited by 1 | Viewed by 892
Abstract
After eliminating the speed sensor in the linear induction motor (LIM) high-performance closed-loop control system, the speed feedback information is missing in the speed closed loop. The accuracy of speed observation results is affected by changes in magnetizing inductance and primary resistance. This [...] Read more.
After eliminating the speed sensor in the linear induction motor (LIM) high-performance closed-loop control system, the speed feedback information is missing in the speed closed loop. The accuracy of speed observation results is affected by changes in magnetizing inductance and primary resistance. This effect can cause significant oscillations in the results of the speed sensorless control system, preventing them from converging. An enhanced model reference adaptive system (MRAS) multi-parameter parallel identification methodology based on the interconnected second-order super-twisting algorithm (SOSTA) is proposed. To enhance the system’s dynamic performance, we designed an improvement to the MRAS observer based on the SOSTA, with a focus on the LIM state-space equation that considers dynamic edge-end effects. The impact of parameter alterations on the LIM system is examined. To improve speed observation accuracy and system stability, a two-parameter MRAS identification model was created. The Popov hyperstability principle was used to formulate control laws for these two parameters, ultimately enabling the identification of these two parameters. The identified values were fed back to the speed observation and control system, which reduces the coupling of these two parameters and speed. Simulation and hardware-in-the-loop experiments demonstrate that the observation system estimates speed accurately when these two parameters undergo abrupt changes within the rated speed range, enhancing the precision and robustness of the speed sensorless control system. Full article
(This article belongs to the Special Issue Advanced Theory and Application of Magnetic Actuators—2nd Edition)
Show Figures

Figure 1

14 pages, 34977 KiB  
Article
Experimental Study on Submerged Nozzle Damping Characteristics of Solid Rocket Motor
by Xinyan Li, Zhenglong Chen, Xiaosi Li, Bo Xu and Shengnan Wang
Aerospace 2024, 11(9), 759; https://doi.org/10.3390/aerospace11090759 - 16 Sep 2024
Cited by 2 | Viewed by 1744
Abstract
Acoustic instabilities in solid rocket motors (SRMs) can lead to severe performance deterioration and structural damage. Nozzle damping accounts for the main acoustic dissipation source, and it is highly dependent on geometric parameters and operating conditions. This study experimentally investigated the acoustic damping [...] Read more.
Acoustic instabilities in solid rocket motors (SRMs) can lead to severe performance deterioration and structural damage. Nozzle damping accounts for the main acoustic dissipation source, and it is highly dependent on geometric parameters and operating conditions. This study experimentally investigated the acoustic damping characteristics of submerged nozzles in SRMs, focusing on the effects of submerged cavity dimensions, nozzle convergent angle, throat-to-port area ratio, and mean pressure variations on the longitudinal instability. The steady-state wave decay method was used to quantify the acoustic damping, and a designed rotary valve system was employed to introduce periodic pressure oscillations in the high-pressure combustion chamber. The results revealed that a larger submerged cavity would reduce the nozzle damping efficiency, with the elimination of the submerged cavity enhancing the nozzle decay coefficient magnitude by 41.9%. Furthermore, increasing the nozzle convergent angle was found to amplify acoustic wave reflection, thereby diminishing damping performance. A linear inverse relationship was observed between the throat-to-port area ratio and the decay coefficient, with a 125% increase in the ratio resulting in a 24.3% reduction in the decay coefficient. Interestingly, despite the formation of complex vortices in the submerged cavity, the mean pressure variation presented negligible effects on acoustic damping characteristics, and its damping performance is similar to a simple nozzle without a cavity. These findings provide valuable experimental data for predicting the stability of a solid rocket motor with a submerged nozzle and offer insights into the optimization of submerged nozzle designs for higher acoustic damping in SRMs. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

16 pages, 5669 KiB  
Article
Investigation on the Dynamic Characteristics of a New High-Pressure Water Hydraulic Flow Control Valve
by Wenchao Liu, Jie Tian, Hongyao Wang, Junshi Li, Rulin Zhou and Yu Cao
Machines 2024, 12(9), 640; https://doi.org/10.3390/machines12090640 - 12 Sep 2024
Cited by 2 | Viewed by 1264
Abstract
Water has the disadvantages of low viscosity, poor lubrication, and easy leakage, which leads to many problems in water hydraulic flow control valves, such as low working pressure and large flow fluctuations. To address these issues, this paper proposes a novel digital flow [...] Read more.
Water has the disadvantages of low viscosity, poor lubrication, and easy leakage, which leads to many problems in water hydraulic flow control valves, such as low working pressure and large flow fluctuations. To address these issues, this paper proposes a novel digital flow control valve. The valve uses a linear stepper motor as the driving device. Compared to proportional electromagnets, the thrust and stroke of the linear stepper motor are larger, making the valve more suitable for high-pressure working conditions. Simultaneously, the valve innovatively incorporates a set of pilot valve spool strings at the front end of the pilot valve damping hole. Through controlling the two pilot valves to regulate the pressure difference before and after the damping hole, the flow passing through the pilot valve is maintained stable, thereby making the pressure of the upper chamber of the master valve spool more stable. In comparison to a single pilot valve structure, this design ensures a more stable main valve core position and reduces flow fluctuation. A mathematical and simulation model of the valve has been established, confirming the performance advantages of the new structure. The impact of structural parameters (such as valve core diameter, spring stiffness, and diameter of damping hole) on the stability of flow regulation has been investigated. A genetic algorithm has been employed to optimize the key parameters that influence valve flow stability, resulting in the identification of optimal parameters. The simulation results indicate that the optimized parameters lead to a reduction of approximately 45% in the maximum overshoot oscillation amplitude of the valve flow regulation. A prototype of the new flow control valve was developed, and a test system was established for conducting tests. The test results also confirmed the performance advantages of the valve and the accuracy of the optimal design. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

37 pages, 7983 KiB  
Article
Loss Model Control for Efficiency Optimization and Advanced Sliding Mode Controllers with Chattering Attenuation for Five-Phase Induction Motor Drive
by Hassen Moussa, Saber Krim, Hichem Kesraoui, Majdi Mansouri and Mohamed Faouzi Mimouni
Energies 2024, 17(16), 4192; https://doi.org/10.3390/en17164192 - 22 Aug 2024
Cited by 1 | Viewed by 1319
Abstract
This paper proposes firstly a Second Order Sliding Mode Control (SOSMC) based on a Super Twisting Algorithm (STA) (SOSMC-STA) combined with a Direct Field-Oriented Control (DFOC) strategy of a Five-Phase Induction Motor (FPIM). The SOSMC-STA is suggested for overcoming the shortcomings of the [...] Read more.
This paper proposes firstly a Second Order Sliding Mode Control (SOSMC) based on a Super Twisting Algorithm (STA) (SOSMC-STA) combined with a Direct Field-Oriented Control (DFOC) strategy of a Five-Phase Induction Motor (FPIM). The SOSMC-STA is suggested for overcoming the shortcomings of the Proportional Integral Controller (PIC) and the Conventional Sliding Mode Controller (CSMC). Indeed, the main limitations of the PIC are the slower speed response, the tuning difficulty of its parameters, and the sensitivity to changes in system parameters, including variations in process dynamics, load changes, or changes in setpoint. It is also limited to linear systems. Regarding the CSMC technique, its limitation is the chattering phenomenon, characterized by the rapid switching of the control signal. This phenomenon includes high-frequency oscillations which induce wear and tear on mechanical systems, adversely affecting performance. Secondly, this paper also proposes a Loss Model Controller (LMC) for FPIM energy optimization. Thus, the suggested LMC chooses the optimal flux magnitude required by the FPIM for each applied load torque, which consequently reduces the losses and the FPIM efficiency. The performance of the optimized DFOC-SOSMC-STA based on the LMC is verified using numerical simulation under the Matlab environment. The analysis of the simulation results shows that the DFOC-SOSMC-STA guarantees a high dynamic response, chattering reduction, good precision, and robustness in case of external load or parameter disturbances. Moreover, the DFOC-SOSMC-STA, combined with the LMC, reduces losses and increases efficiency. Full article
(This article belongs to the Topic Industrial Control Systems)
Show Figures

Figure 1

Back to TopTop