Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = linear energy transfer spectra

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6679 KiB  
Article
Poly(sodium styrene sulfonate)-Grafted SiO2 Nanoparticle: Synthesis and Use as a Water-Insoluble Dispersant for Coal Water Slurry
by Guanghua Zhang, Ruijun Liu, Wanbin Zhang, Kangmin Zhang, Junfeng Zhu and Ce Zhang
Polymers 2025, 17(1), 21; https://doi.org/10.3390/polym17010021 - 25 Dec 2024
Viewed by 1011
Abstract
This study introduces a novel water-insoluble dispersant for coal water slurry (CWS), namely, a poly(sodium styrene sulfonate)-grafted SiO2 nanoparticle (SiO2-g-PSSNa). SiO2-g-PSSNa was synthesized by combining the surface acylation reaction with surface-initiated atom transfer [...] Read more.
This study introduces a novel water-insoluble dispersant for coal water slurry (CWS), namely, a poly(sodium styrene sulfonate)-grafted SiO2 nanoparticle (SiO2-g-PSSNa). SiO2-g-PSSNa was synthesized by combining the surface acylation reaction with surface-initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectrometry (FTIR), X-ray photoelectron spectroscopy (XPS), energy dispersive spectrometer (EDS), nuclear magnetic resonance spectroscopy (NMR) and thermogravimetric analysis (TGA) verified that SiO2-g-PSSNa with the desired structure was successfully obtained. Afterwards, the performance of SiO2-g-PSSNa as a dispersant in CWS preparation was evaluated. The results indicated that the optimal dosage of SiO2-g-PSSNa was 0.3%. Compared to the famous commercial products, PSSNa and lignosulfonate (LS), SiO2-g-PSSNa exhibits improved viscosity reduction performance. When SiO2-g-PSSNa was used as the dispersant, the maximum coal loading of CWS was 64.2%, which was higher than LS (63.4%) and PSSNa (63.9%). All CWSs obtained in this study were pseudoplastic fluids and more consistent with the Herschel–Bulkley rheological model. The turbiscan stability index (TSI) of CWS prepared with SiO2-g-PSSNa was 0.05, which was significantly lower than CWSs obtained from PSSNa (0.30) and LS (0.36). Therefore, SiO2-g-PSSNa also exhibits excellent stability performance. This result was confirmed by rod penetration tests. The underlying mechanism was also clarified by various measurements, such as contact angle, zeta potential, EDS and low-field nuclear magnetic resonance spectra (low-field NMR). The results reveal that SiO2-g-PSSNa can adsorbed onto the coal surface. SiO2-g-PSSNa possesses a special branched structure, which bears a higher charge density as compared to linear ones with approximate chemical composition. As a result, coal particles adsorbed with SiO2-g-PSSNa exhibit more electronegativity. With the enhancement of the electrostatic repulsive between coal particles, the apparent viscosity was lowered and the static stability was improved. This study demonstrated that solubility in water is not an essential factor in engineering the dispersant. Densely charged groups are probably more important. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

14 pages, 4803 KiB  
Article
Nature of Charge Transfer Effects in Complexes of Dopamine Derivatives Adsorbed on Graphene-Type Nanostructures
by Alex-Adrian Farcaş and Attila Bende
Int. J. Mol. Sci. 2024, 25(19), 10522; https://doi.org/10.3390/ijms251910522 - 29 Sep 2024
Viewed by 1171
Abstract
Continuing the investigation started for dopamine (DA) and dopamine-o-quinone (DoQ) (see, the light absorption and charge transfer properties of the dopamine zwitterion (called dopamine-semiquinone or DsQ) adsorbed on the graphene nanoparticle surface is investigated using the ground state and linear-response time-dependent density functional [...] Read more.
Continuing the investigation started for dopamine (DA) and dopamine-o-quinone (DoQ) (see, the light absorption and charge transfer properties of the dopamine zwitterion (called dopamine-semiquinone or DsQ) adsorbed on the graphene nanoparticle surface is investigated using the ground state and linear-response time-dependent density functional theories, considering the ωB97X-D3BJ/def2-TZVPP level of theory. In terms of the strength of molecular adsorption on the surface, the DsQ form has 50% higher binding energy than that found in our previous work for the DA or DoQ cases (−20.24 kcal/mol vs. −30.41 kcal/mol). The results obtained for electronically excited states and UV-Vis absorption spectra show that the photochemical behavior of DsQ is more similar to DA than that observed for DoQ. Of the three systems analyzed, the DsQ-based complex shows the most active charge transfer (CT) phenomenon, both in terms of the number of CT-like states and the amount of charge transferred. Of the first thirty electronically excited states computed for the DsQ case, eleven are purely of the CT type, and nine are mixed CT and localized (or Frenkel) excitations. By varying the adsorption distance between the molecule and the surface vertically, the amount of charge transfer obtained for DA decreases significantly as the distance increases: for DoQ it remains stable, for DsQ there are states for which little change is observed, and for others, there is a significant change. Furthermore, the mechanistic compilation of the electron orbital diagrams of the individual components cannot describe in detail the nature of the excitations inside the complex. Full article
(This article belongs to the Special Issue Photochemistry in Molecular Clusters)
Show Figures

Figure 1

12 pages, 6897 KiB  
Article
Comprehensive Detection of Particle Radiation Effects on the Orbital Platform of the Upper Stage of the Chinese CZ-4C Carrier Rocket
by Guohong Shen, Zheng Chang, Huanxin Zhang, Chunqin Wang, Ying Sun, Zida Quan, Xianguo Zhang and Yueqiang Sun
Atmosphere 2024, 15(6), 705; https://doi.org/10.3390/atmos15060705 - 12 Jun 2024
Cited by 2 | Viewed by 1523
Abstract
Based on the characteristics of space particle radiation in the Sun-synchronous orbit (SSO), a space particle radiation effect comprehensive measuring instrument (SPRECMI) was installed on the orbital platform of the upper stage of the Chinese CZ-4C carrier rocket, which can acquire the high-energy [...] Read more.
Based on the characteristics of space particle radiation in the Sun-synchronous orbit (SSO), a space particle radiation effect comprehensive measuring instrument (SPRECMI) was installed on the orbital platform of the upper stage of the Chinese CZ-4C carrier rocket, which can acquire the high-energy proton energy spectra, linear energy transfer (LET) spectra of particles, and radiation dose rate. The particle radiation detection data were obtained at 1000 km altitude for the first time, which can be used mainly for scientific research of the space environment, in-orbit fault analysis, and the operational control management of spacecraft, and can also serve as reference data for component validation tests. After SPRECMI’s development, accelerator calibration and simulations were conducted, and the results demonstrated that all the measured indicators, including the high-energy proton spectra (energy range: 21.8–275.0 MeV, precision: <3.3%), total radiation dose (dose range: 0–1.04 × 106 rad, sensitivity: 6.2 µrad/h), and the LET spectra (range: 0.001–37.20 MeV/(mg/cm2), >37.2 MeV/(mg/cm2)), met the relevant requirements. Furthermore, the in-orbit flight test revealed that the detection results of the load components were consistent with the physical characteristics of the particle radiation environment of the spacecraft’s orbit. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

20 pages, 7997 KiB  
Article
NaGdF4:Yb, Er, Tm Upconversion Nanoparticles for Bioimaging in Shortwave-Infrared Range: Study of Energy Transfer Processes and Composition Optimization
by Daria Pominova, Vera Proydakova, Igor Romanishkin, Sergei Kuznetsov, Kirill Linkov, Nataliya Tabachkova and Anastasia Ryabova
Photonics 2024, 11(1), 38; https://doi.org/10.3390/photonics11010038 - 30 Dec 2023
Cited by 4 | Viewed by 2900
Abstract
Upconversion nanoparticles are promising for many applications. For triple-doped nanoparticles (NPs), the luminescence intensity shows a non-linear dependence on the rare-earth ion concentration, making it difficult to obtain bright phosphors with high energy output. We investigated the energy transfer processes in β-NaGdF4 [...] Read more.
Upconversion nanoparticles are promising for many applications. For triple-doped nanoparticles (NPs), the luminescence intensity shows a non-linear dependence on the rare-earth ion concentration, making it difficult to obtain bright phosphors with high energy output. We investigated the energy transfer processes in β-NaGdF4:Yb-Er-Tm NPs and considered strategies for increasing the thulium luminescence intensity, in particular, the use of core–shell structures. The luminescence spectra were analyzed in the short-wavelength infrared (SWIR) and visible (VIS) regions. The Er3+ and Tm3+ luminescence lifetimes in the VIS region were measured to study the energy transfer processes between the active ions. The quenching of the Tm3+ luminescence in the SWIR region was observed. However, both Er3+ and Tm3+ luminescence bands were observed in the VIS range. We attribute these effects to energy transfer between Tm3+ 3F43H6 and Er3+ 4I13/24I9/2, which occurs due to overlap of Er3+ and Tm3+ luminescence bands, and also to competition between Er3+ and Tm3+ for energy transfer from Yb3+. For core–shell NPs, when Tm3+ and Er3+ are separated into adjacent layers, quenching cannot be avoided, likely due to the mutual diffusion of ions during shell synthesis. The most optimal strategy to obtain luminescence in the SWIR range is to use an inert intermediate shell between the layers containing Tm3+ and Er3+. Full article
(This article belongs to the Special Issue Phototheranostics: Science and Applications)
Show Figures

Figure 1

14 pages, 2543 KiB  
Article
Lead-Free Cs3Bi2Br9 Perovskite Quantum Dots for Detection of Heavy Metal Cu2+ Ions in Seawater
by Yuefeng Gao and Baojiu Chen
J. Mar. Sci. Eng. 2023, 11(5), 1001; https://doi.org/10.3390/jmse11051001 - 8 May 2023
Cited by 8 | Viewed by 2982
Abstract
Seawater pollution caused by heavy metal ions is a growing concern among the public. Perovskite quantum dots (PeQDs) are ideal probes for detecting metal ions due to their exceptional sensing characteristics, including remarkable sensitivity, low detection limit, and good selectivity. However, traditional lead-based [...] Read more.
Seawater pollution caused by heavy metal ions is a growing concern among the public. Perovskite quantum dots (PeQDs) are ideal probes for detecting metal ions due to their exceptional sensing characteristics, including remarkable sensitivity, low detection limit, and good selectivity. However, traditional lead-based PeQDs exhibit drawbacks related to lead toxicity and poor water stability. Herein, lead-free halide PeQDs Cs3Bi2Br9 were synthesized using Bi3+ instead of Pb2+ via the ligand-assisted reprecipitation method. The luminescence performance of the precursor is analyzed with respect to the reaction conditions. The results reveal that the optimal reaction temperature is 80 °C, the ideal octylamine dosage is 35 μL, and the most effective reaction time is 10 min. Photoluminescence spectra of Cs3Bi2Br9 are analyzed at various temperatures and demonstrate that fluorescence intensity decreases as temperature increases. The value of the exciton binding energy (Eb) is determined to be 88.6 meV. Cs3Bi2Br9 PeQDs synthesized under the optimum reaction conditions are utilized as fluorescent probes to detect copper ions in seawater. Results from experiments demonstrate that the presence of copper ions markedly quenched the photoluminescence of Cs3Bi2Br9 owing to the effective transfer of electrons from Cs3Bi2Br9 to Cu2+. A strong linear correlation between the degree of quenching and the contents of Cu2+ is observed. Cs3Bi2Br9 PeQDs demonstrate a sensitivity and detection limit of 1.21 μM−1 and 98.3 nM, respectively. Furthermore, this probe exhibits good photostability, water stability, and selectivity for copper ions, thereby indicating its potential for detecting marine heavy metal contaminants. Full article
Show Figures

Figure 1

15 pages, 4658 KiB  
Article
Structural and Spectroscopic Effects of Li+ Substitution for Na+ in LixNa1−xCaLa0.5Er0.05Yb0.45(MoO4)3 Upconversion Scheelite-Type Phosphors
by Chang Sung Lim, Aleksandr Aleksandrovsky, Maxim Molokeev, Aleksandr Oreshonkov and Victor Atuchin
Crystals 2023, 13(2), 362; https://doi.org/10.3390/cryst13020362 - 20 Feb 2023
Cited by 14 | Viewed by 2263
Abstract
New triple molybdates LixNa1−xCaLa0.5(MoO4)3:Er3+0.05/Yb3+0.45 (x = 0, 0.05, 0.1, 0.2, 0.3) were manufactured successfully using the microwave-assisted sol-gel-based technique (MAS). Their room-temperature crystal structures were determined in space group [...] Read more.
New triple molybdates LixNa1−xCaLa0.5(MoO4)3:Er3+0.05/Yb3+0.45 (x = 0, 0.05, 0.1, 0.2, 0.3) were manufactured successfully using the microwave-assisted sol-gel-based technique (MAS). Their room-temperature crystal structures were determined in space group I41/a by Rietveld analysis. The compounds were found to have a scheelite-type structure. In Li-substituted samples, the sites of big cations were occupied by a mixture of (Li, Na, La, Er, Yb) ions, which provided a linear cell volume decrease with the Li content increase. The increased upconversion (UC) efficiency and Raman spectroscopic properties of the phosphors were discussed in detail. The mechanism of optimization of upconversion luminescence upon Li content variation was shown to be due to the control of excitation/energy transfer channel, while the control of luminescence channels played a minor role. The UC luminescence maximized at lithium content x = 0.05. The mechanism of UC optimization was shown to be due to the control of excitation/energy transfer channel, while the control of luminescence channels played a minor role. Over the whole spectral range, the Raman spectra of LixNa1−xCaLa0.5(MoO4)3 doped with Er3+ and Yb3+ ions were totally superimposed with the luminescence signal of Er3+ ions, and increasing the Li+ content resulted in the difference of Er3+ multiple intensity. The density functional theory calculations with the account for the structural disorder in the system of Li, Na, Ca, La, Er and Yb ions revealed the bandgap variation from 3.99 to 4.137 eV due to the changing of Li content. It was found that the direct electronic transition energy was close to the indirect one for all compounds. The determined chromaticity points (ICP) of the LiNaCaLa(MoO4)3:Er3+,Yb3+ phosphors were in good relation to the equal-energy point in the standard CIE (Commission Internationale de L’Eclairage) coordinates. Full article
(This article belongs to the Special Issue Rare Earths-Doped Materials (Volume II))
Show Figures

Figure 1

13 pages, 3537 KiB  
Article
Application of Amino Acids for High-Dosage Measurements with Electron Paramagnetic Resonance Spectroscopy
by Yordanka Karakirova
Molecules 2023, 28(4), 1745; https://doi.org/10.3390/molecules28041745 - 12 Feb 2023
Cited by 2 | Viewed by 2077
Abstract
A comparative investigation of amino acids (proline, cysteine, and alanine) as dosimetric materials using electron paramagnetic resonance (EPR) spectroscopy in the absorbed dosage range of 1–25 kGy is presented. There were no signals in the EPR spectra of the samples before irradiation. After [...] Read more.
A comparative investigation of amino acids (proline, cysteine, and alanine) as dosimetric materials using electron paramagnetic resonance (EPR) spectroscopy in the absorbed dosage range of 1–25 kGy is presented. There were no signals in the EPR spectra of the samples before irradiation. After irradiation, the complex spectra were recorded. These results showed that the investigated amino acids were sensitive to radiation. In the EPR spectrum of cysteine after irradiation, RS• radicals dominated. The effects of the microwave power on the saturation of the EPR signals showed the presence of at least three different types of free radicals in proline. It was also found out that the DL-proline and cysteine had stable free radicals after irradiation and represented a linear dosage response up to 10 kGy. On the other hand, the amino acid alanine has been accepted by the International Atomic Energy Agency as a transfer standard dosimetry system. In view of this, the obtained results of the proline and cysteine studies have been compared with those of the alanine studies. The results showed that the amino acids proline and cysteine could be used as alternative dosimetric materials in lieu of alanine in a dosage range of 1–10 kGy of an absorbed dose of γ-rays using EPR spectroscopy. Regarding the radiation sensitivity, the following order of decreased dosage responses was determined: alanine > DL-proline > cysteine > L-proline. Full article
(This article belongs to the Special Issue Applied EPR Spectroscopy)
Show Figures

Graphical abstract

19 pages, 4892 KiB  
Article
Microdosimetry Study of Proton Quality Factor Using Analytic Model Calculations
by Alexis Papadopoulos, Ioanna Kyriakou, Yusuke Matsuya, Sébastien Incerti, Ioannis A. Daglis and Dimitris Emfietzoglou
Appl. Sci. 2022, 12(18), 8950; https://doi.org/10.3390/app12188950 - 6 Sep 2022
Cited by 5 | Viewed by 3711
Abstract
The quality factor (Q) is formally linked to the stochastic (e.g., carcinogenic) risk of diverse ionizing radiations at low doses and/or low dose rates. Q can be a function of the non-stochastic physical quantity Linear Energy Transfer (LET) or the microdosimetric [...] Read more.
The quality factor (Q) is formally linked to the stochastic (e.g., carcinogenic) risk of diverse ionizing radiations at low doses and/or low dose rates. Q can be a function of the non-stochastic physical quantity Linear Energy Transfer (LET) or the microdosimetric parameter lineal energy (y). These two physical quantities can be calculated either by Monte Carlo (MC) track-structure simulations or by analytic models. In this work, various generalized analytical models were utilized and combined to determine the proton lineal energy spectra in liquid water spheres of various sizes (i.e., 10–3000 nm diameter) over the proton energy range of 1–250 MeV. The calculated spectra were subsequently used within the Theory of Dual Radiation Action (TDRA) and the ICRU Report 40 microdosimetric methodologies to determine the variation of Q¯ with proton energy. The results revealed that the LET-based Q values underestimated the microdosimetric-based Q¯ values for protons with energy below ~100 MeV. At energies relevant to the Bragg peak region (<20–30 MeV), the differences were larger than 20–50%, while reaching 200–500% at ~5 MeV. It was further shown that the microdosimetric-based Q¯ values for protons below ~100 MeV were sensitive to the sphere size. Finally, condensed-phase effects had a very small (<5%) influence on the calculated microdosimetric-based Q¯ over the proton energy range considered here. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

20 pages, 2456 KiB  
Article
Understanding 2D-IR Spectra of Hydrogenases: A Descriptive and Predictive Computational Study
by Yvonne Rippers, Barbara Procacci, Neil T. Hunt and Marius Horch
Catalysts 2022, 12(9), 988; https://doi.org/10.3390/catal12090988 - 1 Sep 2022
Cited by 2 | Viewed by 2583
Abstract
[NiFe] hydrogenases are metalloenzymes that catalyze the reversible cleavage of dihydrogen (H2), a clean future fuel. Understanding the mechanism of these biocatalysts requires spectroscopic techniques that yield insights into the structure and dynamics of the [NiFe] active site. Due to [...] Read more.
[NiFe] hydrogenases are metalloenzymes that catalyze the reversible cleavage of dihydrogen (H2), a clean future fuel. Understanding the mechanism of these biocatalysts requires spectroscopic techniques that yield insights into the structure and dynamics of the [NiFe] active site. Due to the presence of CO and CN ligands at this cofactor, infrared (IR) spectroscopy represents an ideal technique for studying these aspects, but molecular information from linear IR absorption experiments is limited. More detailed insights can be obtained from ultrafast nonlinear IR techniques like IRpump-IRprobe and two-dimensional (2D-)IR spectroscopy. However, fully exploiting these advanced techniques requires an in-depth understanding of experimental observables and the encoded molecular information. To address this challenge, we present a descriptive and predictive computational approach for the simulation and analysis of static 2D-IR spectra of [NiFe] hydrogenases and similar organometallic systems. Accurate reproduction of experimental spectra from a first-coordination-sphere model suggests a decisive role of the [NiFe] core in shaping the enzymatic potential energy surface. We also reveal spectrally encoded molecular information that is not accessible by experiments, thereby helping to understand the catalytic role of the diatomic ligands, structural differences between [NiFe] intermediates, and possible energy transfer mechanisms. Our studies demonstrate the feasibility and benefits of computational spectroscopy in the 2D-IR investigation of hydrogenases, thereby further strengthening the potential of this nonlinear IR technique as a powerful research tool for the investigation of complex bioinorganic molecules. Full article
(This article belongs to the Special Issue Perspectives in Bioinorganic Catalysis)
Show Figures

Figure 1

14 pages, 2878 KiB  
Article
Predicting the Biological Effects of Human Salivary Gland Tumour Cells for Scanned 4He-, 12C-, 16O-, and 20Ne-Ion Beams Using an SOI Microdosimeter
by Sung Hyun Lee, Kota Mizushima, Shunsuke Yonai, Shinnosuke Matsumoto, Hideyuki Mizuno, Taku Nakaji, Ryosuke Kohno, Yoshiyuki Iwata, Toshiyuki Shirai, Vladimir Pan, Angela Kok, Marco Povoli, Linh T. Tran, Anatoly B. Rosenfeld, Masao Suzuki and Taku Inaniwa
Appl. Sci. 2022, 12(12), 6148; https://doi.org/10.3390/app12126148 - 16 Jun 2022
Cited by 6 | Viewed by 2161
Abstract
Experimental microdosimetry along with the microdosimetric kinetic (MK) model can be utilized to predict the biological effects of ions. To predict the relative biological effectiveness (RBE) of ions and the survival fraction (SF) of human salivary gland tumour (HSGc-C5) cells, microdosimetric quantities measured [...] Read more.
Experimental microdosimetry along with the microdosimetric kinetic (MK) model can be utilized to predict the biological effects of ions. To predict the relative biological effectiveness (RBE) of ions and the survival fraction (SF) of human salivary gland tumour (HSGc-C5) cells, microdosimetric quantities measured by a silicon-on-insulator (SOI) MicroPlus-mushroom microdosimeter along the spread-out Bragg peak (SOBP) delivered by pencil beam scanning of 4He, 12C, 16O, and 20Ne ions were used. The MK model parameters of HSGc-C5 cells were obtained from the best fit of the calculated SF for the different linear energy transfer (LET) of these ions and the formerly reported in vitro SF for the same LET and ions used for calculations. For a cube-shaped target of 10 × 10 × 6 cm3, treatment plans for 4He, 12C, 16O, and 20Ne ions were produced with proprietary treatment planning software (TPS) aiming for 10% SF of HSGc-C5 cells over the target volume and were delivered to a polymethyl methacrylate (PMMA) phantom. Afterwards, the saturation-corrected dose-mean lineal energy derived based on the measured microdosimetry spectra, along with the physical dose at various depths in PMMA phantoms, was used for the estimation of the SF, RBE, and RBE-weighted dose using the MK model. The predicted SF, RBE, and the RBE-weighted dose agreed with what was planned by the TPS within 3% at most depths for these ions. Full article
(This article belongs to the Special Issue Detectors for Medical Physics)
Show Figures

Figure 1

27 pages, 9665 KiB  
Article
Impact of Radiation Quality on Microdosimetry and Chromosome Aberrations for High-Energy (>250 MeV/n) Ions
by Floriane Poignant, Ianik Plante, Luis Crespo and Tony Slaba
Life 2022, 12(3), 358; https://doi.org/10.3390/life12030358 - 1 Mar 2022
Cited by 4 | Viewed by 3034
Abstract
Studying energy deposition by space radiation at the cellular scale provides insights on health risks to astronauts. Using the Monte Carlo track structure code RITRACKS, and the chromosome aberrations code RITCARD, we performed a modeling study of single-ion energy deposition spectra and chromosome [...] Read more.
Studying energy deposition by space radiation at the cellular scale provides insights on health risks to astronauts. Using the Monte Carlo track structure code RITRACKS, and the chromosome aberrations code RITCARD, we performed a modeling study of single-ion energy deposition spectra and chromosome aberrations for high-energy (>250 MeV/n) ion beams with linear energy transfer (LET) varying from 0.22 to 149.2 keV/µm. The calculations were performed using cells irradiated directly by mono-energetic ion beams, and by poly-energetic beams after particle transport in a digital mouse model, representing the radiation exposure of a cell in a tissue. To discriminate events from ion tracks directly traversing the nucleus, to events from δ-electrons emitted by distant ion tracks, we categorized ion contributions to microdosimetry or chromosome aberrations into direct and indirect contributions, respectively. The ions were either ions of the mono-energetic beam or secondary ions created in the digital mouse due to interaction of the beam with tissues. For microdosimetry, the indirect contribution is largely independent of the beam LET and minimally impacted by the beam interactions in mice. In contrast, the direct contribution is strongly dependent on the beam LET and shows increased probabilities of having low and high-energy deposition events when considering beam transport. Regarding chromosome aberrations, the indirect contribution induces a small number of simple exchanges, and a negligible number of complex exchanges. The direct contribution is responsible for most simple and complex exchanges. The complex exchanges are significantly increased for some low-LET ion beams when considering beam transport. Full article
(This article belongs to the Special Issue Space Radiobiology)
Show Figures

Figure 1

26 pages, 21033 KiB  
Article
A Combined Experimental/Quantum-Chemical Study of Tetrel, Pnictogen, and Chalcogen Bonds of Linear Triatomic Molecules
by Freija De Vleeschouwer, Frank De Proft, Özge Ergün, Wouter Herrebout and Paul Geerlings
Molecules 2021, 26(22), 6767; https://doi.org/10.3390/molecules26226767 - 9 Nov 2021
Cited by 9 | Viewed by 3083
Abstract
Linear triatomic molecules (CO2, N2O, and OCS) are scrutinized for their propensity to form perpendicular tetrel (CO2 and OCS) or pnictogen (N2O) bonds with Lewis bases (dimethyl ether and trimethyl amine) as compared with their tendency [...] Read more.
Linear triatomic molecules (CO2, N2O, and OCS) are scrutinized for their propensity to form perpendicular tetrel (CO2 and OCS) or pnictogen (N2O) bonds with Lewis bases (dimethyl ether and trimethyl amine) as compared with their tendency to form end-on chalcogen bonds. Comparison of the IR spectra of the complexes with the corresponding monomers in cryogenic solutions in liquid argon enables to determine the stoichiometry and the nature of the complexes. In the present cases, perpendicular tetrel and pnictogen 1:1 complexes are identified mainly on the basis of the lifting of the degenerate ν 2 bending mode with the appearance of both a blue and a red shift. Van ′t Hoff plots of equilibrium constants as a function of temperature lead to complexation enthalpies that, when converted to complexation energies, form the first series of experimental complexation energies on sp1 tetrel bonds in the literature, directly comparable to quantum-chemically obtained values. Their order of magnitude corresponds with what can be expected on the basis of experimental work on halogen and chalcogen bonds and previous computational work on tetrel bonds. Both the order of magnitude and sequence are in fair agreement with both CCSD(T) and DFA calculations, certainly when taking into account the small differences in complexation energies of the different complexes (often not more than a few kJ mol−1) and the experimental error. It should, however, be noted that the OCS chalcogen complexes are not identified experimentally, most probably owing to entropic effects. For a given Lewis base, the stability sequence of the complexes is first successfully interpreted via a classical electrostatic quadrupole–dipole moment model, highlighting the importance of the magnitude and sign of the quadrupole moment of the Lewis acid. This approach is validated by a subsequent analysis of the molecular electrostatic potential, scrutinizing the σ and π holes, as well as the evolution in preference for chalcogen versus tetrel bonds when passing to “higher” chalcogens in agreement with the evolution of the quadrupole moment. The energy decomposition analysis gives further support to the importance/dominance of electrostatic effects, as it turns out to be the largest attractive term in all cases considered, followed by the orbital interaction and the dispersion term. The natural orbitals for chemical valence highlight the sequence of charge transfer in the orbital interaction term, which is dominated by an electron-donating effect of the N or O lone-pair(s) of the base to the central atom of the triatomics, with its value being lower than in the case of comparable halogen bonding situations. The effect is appreciably larger for TMA, in line with its much higher basicity than DME, explaining the comparable complexation energies for DME and TMA despite the much larger dipole moment for DME. Full article
Show Figures

Graphical abstract

18 pages, 38445 KiB  
Article
Pyrolysis Kinetic Behaviour of Glass Fibre-Reinforced Epoxy Resin Composites Using Linear and Nonlinear Isoconversional Methods
by Samy Yousef, Justas Eimontas, Nerijus Striūgas, Marius Praspaliauskas and Mohammed Ali Abdelnaby
Polymers 2021, 13(10), 1543; https://doi.org/10.3390/polym13101543 - 11 May 2021
Cited by 45 | Viewed by 4571
Abstract
Due to the increasing demand for glass fibre-reinforced epoxy resin composites (GFRC), huge amounts of GFRC waste are produced annually in different sizes and shapes, which may affect its thermal and chemical decomposition using pyrolysis technology. In this context, this research aims to [...] Read more.
Due to the increasing demand for glass fibre-reinforced epoxy resin composites (GFRC), huge amounts of GFRC waste are produced annually in different sizes and shapes, which may affect its thermal and chemical decomposition using pyrolysis technology. In this context, this research aims to study the effect of mechanical pre-treatment on the pyrolysis behaviour of GFRC and its pyrolysis kinetic. The experiments were started with the fabrication of GFRC panels using the vacuum-assisted resin transfer method followed by crushing the prepared panels using ball milling, thus preparing the milled GFRC with uniform shape and size. The elemental, proximate, and morphology properties of the panels and milled GFRC were studied. The thermal and chemical decomposition of the milled GFRC was studied using thermogravimetric coupled with Fourier-transform infrared spectroscopy (TG-FTIR) at different heating rates. Meanwhile, the volatile products were examined using TG coupled with gas chromatography–mass spectrometry (GC-MS). The TG-FTIR and TG-GC-MS experiments were performed separately. Linear (Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO), and Friedman) and nonlinear (Vyazovkin and Cai) isoconversional methods were used to determine the pyrolysis kinetic of the milled GFRC based on thermogravimetry and differential thermal gravimetry (TG/DTG). In addition, the TG/DTG data of the milled GFRC were fitting using the distributed activation energy model and the independent parallel reactions kinetic model. The TG results showed that GFRC can decompose in three stages, and the main decomposition is located in the range 256–500 °C. On the other hand, aromatic benzene and a C-H bond were the major functional groups in the released volatile components in FTIR spectra, while phenol (27%), phenol,4-(1-methylethyl) (40%), and p-isopropenylphenol (34%) were the major compounds in GC-MS analysis. Whereas, the kinetic results showed that both isoconversional methods can be used to determine activation energies, which were estimated 165 KJ/mol (KAS), 193 KJ/mol (FWO), 180 KJ/mol (Friedman), 177 KJ/mol (Vyazovkin), and 174 KJ/mol (Cai). Full article
Show Figures

Figure 1

23 pages, 1463 KiB  
Article
Nonadiabatic Absorption Spectra and Ultrafast Dynamics of DNA and RNA Photoexcited Nucleobases
by James A. Green, Martha Yaghoubi Jouybari, Daniel Aranda, Roberto Improta and Fabrizio Santoro
Molecules 2021, 26(6), 1743; https://doi.org/10.3390/molecules26061743 - 20 Mar 2021
Cited by 31 | Viewed by 4183
Abstract
We have recently proposed a protocol for Quantum Dynamics (QD) calculations, which is based on a parameterisation of Linear Vibronic Coupling (LVC) Hamiltonians with Time Dependent (TD) Density Functional Theory (TD-DFT), and exploits the latest developments in multiconfigurational TD-Hartree methods for an effective [...] Read more.
We have recently proposed a protocol for Quantum Dynamics (QD) calculations, which is based on a parameterisation of Linear Vibronic Coupling (LVC) Hamiltonians with Time Dependent (TD) Density Functional Theory (TD-DFT), and exploits the latest developments in multiconfigurational TD-Hartree methods for an effective wave packet propagation. In this contribution we explore the potentialities of this approach to compute nonadiabatic vibronic spectra and ultrafast dynamics, by applying it to the five nucleobases present in DNA and RNA. For all of them we computed the absorption spectra and the dynamics of ultrafast internal conversion (100 fs timescale), fully coupling the first 2–3 bright states and all the close by dark states, for a total of 6–9 states, and including all the normal coordinates. We adopted two different functionals, CAM-B3LYP and PBE0, and tested the effect of the basis set. Computed spectra are in good agreement with the available experimental data, remarkably improving over pure electronic computations, but also with respect to vibronic spectra obtained neglecting inter-state couplings. Our QD simulations indicate an effective population transfer from the lowest energy bright excited states to the close-lying dark excited states for uracil, thymine and adenine. Dynamics from higher-energy states show an ultrafast depopulation toward the more stable ones. The proposed protocol is sufficiently general and automatic to promise to become useful for widespread applications. Full article
Show Figures

Figure 1

23 pages, 5831 KiB  
Review
Recent Progress in Distributed Brillouin Sensors Based on Few-Mode Optical Fibers
by Yong Hyun Kim and Kwang Yong Song
Sensors 2021, 21(6), 2168; https://doi.org/10.3390/s21062168 - 19 Mar 2021
Cited by 16 | Viewed by 3427
Abstract
Brillouin scattering is a dominant inelastic scattering observed in optical fibers, where the energy and momentum transfer between photons and acoustic phonons takes place. Narrowband reflection (or gain and loss) spectra appear in the spontaneous (or stimulated) Brillouin scattering, and their linear dependence [...] Read more.
Brillouin scattering is a dominant inelastic scattering observed in optical fibers, where the energy and momentum transfer between photons and acoustic phonons takes place. Narrowband reflection (or gain and loss) spectra appear in the spontaneous (or stimulated) Brillouin scattering, and their linear dependence of the spectral shift on ambient temperature and strain variations is the operation principle of distributed Brillouin sensors, which have been developed for several decades. In few-mode optical fibers (FMF’s) where higher-order spatial modes are guided in addition to the fundamental mode, two different optical modes can be coupled by the process of stimulated Brillouin scattering (SBS), as observed in the phenomena called intermodal SBS (two photons + one acoustic phonon) and intermodal Brillouin dynamic grating (four photons + one acoustic phonon; BDG). These intermodal scattering processes show unique reflection (or gain and loss) spectra depending on the spatial mode structure of FMF, which are useful not only for the direct measurement of polarization and modal birefringence in the fiber, but also for the measurement of environmental variables like strain, temperature, and pressure affecting the birefringence. In this paper, we present a technical review on recent development of distributed Brillouin sensors on the platform of FMF’s. Full article
(This article belongs to the Special Issue Fiber Optic Sensors and Fiber Lasers)
Show Figures

Figure 1

Back to TopTop