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Abstract: A comparative investigation of amino acids (proline, cysteine, and alanine) as dosimetric
materials using electron paramagnetic resonance (EPR) spectroscopy in the absorbed dosage range of
1–25 kGy is presented. There were no signals in the EPR spectra of the samples before irradiation.
After irradiation, the complex spectra were recorded. These results showed that the investigated
amino acids were sensitive to radiation. In the EPR spectrum of cysteine after irradiation, RS• radicals
dominated. The effects of the microwave power on the saturation of the EPR signals showed the
presence of at least three different types of free radicals in proline. It was also found out that the DL-
proline and cysteine had stable free radicals after irradiation and represented a linear dosage response
up to 10 kGy. On the other hand, the amino acid alanine has been accepted by the International
Atomic Energy Agency as a transfer standard dosimetry system. In view of this, the obtained results
of the proline and cysteine studies have been compared with those of the alanine studies. The
results showed that the amino acids proline and cysteine could be used as alternative dosimetric
materials in lieu of alanine in a dosage range of 1–10 kGy of an absorbed dose of γ-rays using EPR
spectroscopy. Regarding the radiation sensitivity, the following order of decreased dosage responses
was determined: alanine > DL-proline > cysteine > L-proline.

Keywords: electron paramagnetic resonance (EPR) spectroscopy; amino acids; proline; cysteine;
alanine; dosimetry; free radicals; γ-radiation

1. Introduction

Among the various methods of dosimetry, for example, polarimetry, photo- and
thermo-luminescence, measurements of electroconductivity and dielectric losses, etc., EPR
dosimetry has particular significance. In a number of cases, EPR spectroscopy has shown
advantages over the other methods. These advantages include a high sensitivity for a
wide measurement range with high accuracy, the small size of the used samples, the non-
destructive character of the measurements, and the automation of the processing of the
dosimetric data. Many scientists have made valuable contributions to the development of
reference standard dosimeters for high energy radiation on the basis of using alanine in an
EPR dosimetry system [1,2]. Until the present, this has been the most common material
used in EPR dosimetry, and it has been formally accepted by International Atomic Energy
Agency (IAEA, Vienna, Austria) [3], the National Institute for Standards and Technology
(NIST, Maryland, USA) [4], and the National Physical Laboratory (NPL, Teddington, UK) [5]
as a secondary reference and transfer dosimeter for high-dosage irradiation. Alanine EPR
dosimetry has been applied successfully for measuring intermediate and high radiation
doses. Although the performance of alanine dosimetry has improved, the sensitivity of
the material is too low for a fast and simple low-dosage determination. However, there
are widely spread applications of alanine, and many scientists continue to search for
alternative materials with better characteristics. Materials with greater sensitivity are
required to make EPR dosimeters competitive with other dosimetry systems. Strategies
for identifying new EPR dosimeter materials have been proposed by Ikeya et al. and
Lund et al. [6,7]. The criteria that should be fulfilled by a useful dosimetry system can
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be divided into radiation dosimetry criteria and radiation chemistry criteria in regard to
EPR properties. The important radiation dosimetry criteria are tissue equivalence (with
respect to scattering) and the energy absorption of ionizing radiation, as well as the stability
of radicals over time and the linearity of the signal versus the dose. The radical stability
and linearity of the signal with respect to dose must be verified experimentally, and
tissue equivalence excludes materials containing heavy elements. The important radiation
chemistry criteria are a high radical yield and a suitable radical structure, which provide
longer-living radicals with a simple symmetrical line and a short longitudinal relaxation
time period. Many studies have already been carried out in an effort to identify new
materials for electron paramagnetic resonance dosimetry and to substitute alanine in such
dosimetry [7–16]. Many substances, such as saccharides [17], formates [18,19], tartrate [20],
dithionate [21], and ascorbic acid [22], have been studied as dosimetric materials, and a
number of amino acids in which free-radical populations form during irradiation have
been suggested for high-dosage dosimetry using electron paramagnetic resonance analysis.
Several compounds, all of which have been found to be more sensitive than alanine by a
factor of 2–10, have been investigated [23,24]. Sucrose has also been widely studied as a
dosimeter in radiation accidents, for irradiation with different types ionizing radiation, and
with mixed types of radiations [17,25–30]. In the current study, the dosimetric properties
of the amino acids proline and cysteine were investigated and compared with those of
alanine. These materials were chosen because they are known to have good characteristics
as dosimetric materials. They belong to a class of biological substances which, after
irradiation, exhibit reasonably well-resolved spectra. It is convenient to study them by EPR
spectrometry for two reasons: amino acids are components of proteins that can be purified
in crystalline form, and they are used in many foods and food additives. Because of this, if
they show good results, they could potentially be used for accidental and/or retrospective
dosimetry. The application of the amino acids to a successful and versatile free radical
method of dosimetry depends on the magnitude of the radical yield per unit of absorbed
dose and on the lifetime of the free radicals. On the other hand, proline and cysteine are
among the few left amino acids that have not yet been studied with respect their use in EPR
dosimetry. In view of this, in the present study, all characteristics for dosimetric materials
such as sensitivity to radiation, time stability of the radiation, the created free radicals, and
the dose–response characteristics of proline and cysteine were studied. The obtained results
showed the possibilities of using these materials for dosimetric purposes for γ radiation,
and this study will enrich the existing knowledge about the EPR dosimetry of amino acids.

2. Results and Discussion
2.1. EPR Spectra

No EPR signals were observed in the samples before irradiation. After irradiation,
complex EPR spectra were recorded. It is known that complex spectra are composed as
a result of the superposition of the signals of several free radicals. The spectra of L- and
DL- proline are shown in Figure 1a,b. As can be seen, the EPR spectra of L- and DL-proline
are similar but not exactly the same. The EPR spectrum of DL-proline is characterized
by a g factor of 2.00378 ± 0.00002 of the central line, a constant of the hyperfine splitting
of A ≈ 2.171, and a linewidth of ∆H ≈ 0.94 mT. The EPR spectrum of L-proline is also
centered at a g value of 2.00379 ± 0.00002, and its most intensive three lines have widths of
∆H ≈ 0.96 mT and a splitting value of A = 2.107. As DL-proline is a racemic mixture of
the isomers D- and L-proline, it was not expected to have a different EPR spectrum than
that of L-proline. The difference was explained based on the type of sample. In comparison
with the DL-proline sample, which was crystalline, the L-proline sample was in the form
of powder. This supposes a higher hygroscopicity of the sample. It is known that the
absorbance of moisture from the air leads to decreases in the quantity of free radicals and
the intensity of the EPR signal, respectively, because of recombination processes. Likely,
some of the radicals were more sensitive to the moisture and they disappeared because of
the recombination, and this change the shape of the spectra at all.
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Figure 1. EPR spectra of (a) L-proline, (b) DL-proline, and (c) cysteine after γ-irradiation with 10 kGy.

To compare both spectra, Figure 2 shows the EPR spectra of DL- and L-proline ir-
radiated with 25 kGy. It can be seen that some additional lines are observed at the low
and high magnetic fields in the EPR spectra of DL-proline. Besides these extra lines, a
small difference in the linewidths of the two lines on the left and on the right of the central
line is observed. This can be related to the various relaxation times that characterized
the interaction of the electron spin with the surroundings and with each other. Thus, in
some cases, the lifetime of the individual spin-orientation state in the radical, or that of the
radical itself, may be so short time that the linewidth is affected. These effects can arise
from the electron exchange and transfer between molecular species. However, this is not
so important for the aim of the current study because there were no observed differences
between the spectra of the samples of the L-proline irradiated with different doses and
the spectra of the DL-proline samples irradiated with different doses. Figure 3 shows the
spectra of the investigated samples irradiated with different doses of gamma rays. The fact
that there are differences between the spectra of the various materials did not influence
the results with respect to their dosimetric properties because they are being studied as
independent dosimetric materials. Since there were no changes in the EPR spectrum with
the dosage, an amplitude of the first derivative (“peak-to-peak”, from maximum to mini-
mum, denoted by I in Figure 1) can be taken as a relative measure of the quantity of the free
radicals. The EPR spectra of cysteine consisted of three lines with the g factors g1 = 2.0542,
g2 = 2.0251, and g3 = 2.0053, which are denoted by P1, P2, and P3, respectively, in Figure 1c.
According to the literature data, the spectrum of cysteine after irradiation is due to the
domination of RS• radicals [31]. This “sulphur pattern” is also found in the spectra of
various thiols and in compounds containing S-S bonds after gammairradiation at room
temperature. An interaction with one or two methylene protons in RCH2S· radicals may be
observed, though, generally, the proton interactions are too small to further characterize
the trapped species. However, a low intensive signal located between P1 and P2 in the
spectrum, due to another type of radical with an unknown nature, which was more visible
and is denoted by the arrow in Figure 3, was also observed.
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The well-known powder EPR spectrum of irradiated α-alanine consists of five broad
lines having intensity ratios of 1:4:6:4:1, separated by approximately 2.5 mT (though this is
not shown). The observed quintet spectrum is attributed to the hyperfine interaction of
the unpaired electron with four protons—three protons from the methyl group and one
proton from the α-carbon atom—CH3C·HCOOH. The peak-to-peak amplitude of the most
intensive central line is commonly used to monitor the dosage deposited in alanine samples
after exposure to ionizing radiation. Many studies on the composition of the alanine EPR
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spectrum are available in the literature [32–35]. It has been shown that the EPR spectrum
of irradiated alanine consists of at least three different radical species [36–38].

2.2. Effect of the Dose on the Shape of the EPR Spectra

As mentioned above, Figure 3 shows the effect of the dosage on the shape of the
signals in the EPR spectra. It is shown that in the spectra of L- and DL- proline, the different
doses do not lead to any changes in the shape of the spectra. At the same time, a small
change in the intensity of the central line in the spectrum of cysteine, relative to both lines
from right and left, with the increased doses was observed. This can likely be produced by
different densities of the radiation beams during irradiation with lower (1 kGy) and higher
(25 kGy) doses. However, this may also be due to saturation at high dosages of the radicals
responsible for this line. Previous investigations have shown that different dosages do not
impact the shape of the spectra of alanine.

2.3. Effect of the Microwave Power on the Shape and on the Saturation Degree of the EPR Signals

The intensities of the EPR signals are known to depend on the values of the instru-
mental settings, i.e., the microwave power and modulation amplitude. Therefore, the first
step after irradiation was to study the influence of these parameters on the EPR response.
In view of this fact, two series of investigations on the dependence of EPR intensity as a
function of the square root of the microwave power and of the magnetic field modulation
amplitude were made. The results (Figures 4 and 5) showed that for proline, the EPR
intensity remained linearly dependent on the microwave power up to 0.3 mW and on the
modulation amplitude up to 0.4 mT. For cysteine, the sample peaks 1 and 3 had linear
dependence up to 6 mW, whereas peak 2 was saturated at a lower value of the microwave
power (1 mW). The dependencies on the modulation amplitude were linear up to 0.4 mT.
The values of the parameters that were chosen for the measurements were required be in
the linear parts of the graphs. However, the appropriate instrumental settings to record
the EPR spectra of alanine were previously studied to compare the spectra, and it was
acceptable to determine them using the same instrument. Therefore, the following values
of the parameters were identified: in the case of proline, a microwave power 0.3 mW and
a modulation amplitude 0.4 mT were applied, and for cysteine and alanine, microwave
power of 1 mW and modulation amplitude of 0.4 mT, respectively, were applied.
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Figure 6 shows the behavior of the saturation of the EPR signal of the observed lines
in the spectra of proline with regard to the microwave power. For this study, a sample
of DL-proline irradiated with 5 kGy was used. The results for L-proline were the same,
which is why they are not shown. The number of each line can be seen on the left panel
in the figure, whereas on the right, the dependence on the square root of the microwave
power is shown. As seen in the figure, peaks 3, 4, and 5 have similar behaviors, namely,
a linear dependence up to 0.3 mW, which slowly decreased after that point. Peaks 2 and
6 decreased with the increase in microwave power. When the power exceeded 1 mW, peak
6 disappeared. The changes in the magnitude of the microwave power weakly influenced
the intensity of peaks 1 and 7. At values higher than 1 mW, peak 1 was not observed. On
the basis of these results, it can be concluded that at least three types of free radicals were
created in proline during the γ-irradiation. The first one was responsible for peaks 3, 4, and
5 in the EPR spectra of proline. Peaks 2 and 6 in the spectra are due to the second type of
radical. The last radical was responsible for peaks 1 and 7. Similar to this, if we look at
the dependence of different peaks in the spectra of cysteine with regard to the microwave
power (Figure 4, P1, P2, and P3), it can be seen that two different saturation behaviors were
observed. One of them was for peaks P1 and P3 and the second was for P2. Therefore, this
is evidence that in addition to RS• radicals in the EPR spectra, there are also contributions
by other paramagnetic species with unknown nature. This statement is in accordance with
the observation in Figure 3, where it can be seen that P2 had changed its intensity regarding
P1 and P3 after the increase in the dose.
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The investigation of the saturation effect of the lines in the EPR spectra of alanine
upon increase in the microwave power showed the presence of three different types of
radicals (R1, R2, and R3) [36].

2.4. Time Dependence of the Free Radicals

The time stability of free radicals depends on their molecular surroundings and, espe-
cially, on the state of the atom. Normally, in solutions, the lifetimes of the unpaired electrons
or free radicals are very short. Some crystalline materials, even at room temperature, can
exist for as long as several years. The type and amount of the free radicals created by
ionizing radiation depend on the crystalline structure and storage conditions.

From a dosimetry point of view, the knowledge of the time stability of the radiation-
induced EPR signal in the samples, as well as their decay kinetics, are highly important.
This is especially important when several days can elapse between the exposure and the
instrumental evaluations. There are at least two mechanisms of decay in the monitored free
radicals: recombination with other paramagnetic species to create diamagnetic products
and their transformation into another paramagnetic molecule. In the first case, only the
intensity of the obtained EPR spectrum will decrease with time and no changes in its shape
will be observed, and in the second case, new EPR spectra will appear. As it is typical, the
effects of the second type were observed immediately after irradiation of the substance
under study until stable paramagnetic species were formed. After that, the remaining stable
free radicals could only recombine. In view of this, all measurements were performed at
least 72 h after irradiation in order to avoid short-living intermediate relaxing products.

For this study, the samples were stored at room temperature in the dark and then
measured for a period of six months. The results showed that for this period, the intensity
of the DL-proline decreased by approximately 25% (Figure 7a). The radiation-induced
signal of L-proline decreased by 83% for 3 months (Figure 7b). Six months after irradiation,
the signals had decreased by 99% and nearly disappeared. This result can be explained by
the fact that the samples of L-proline are more hygroscopic than DL-proline. The L-proline
was in the form of powder, whereas the DL-proline samples were crystals. However, the
samples were stored under the same conditions, it was visible that the samples of L-proline
had absorbed moisture from the air, even though they were stored in plastic bags in a dry
and dark place. In the results, the recombination of the free radicals was observed, and
therefore, there was a decrease in the signal intensity.
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The cysteine intensity decreased by 21% over the same time period of six months
(Figure 7c).

The investigations of the lifetimes of the radiation-induced radicals in alanine were
completed more than 35 years ago. They showed that the lifetimes of the free radicals were
very long [39]. It was reported that the decay rate was less than 1% for 3 years. On the
other hand, Hansen and Olsen [40] found a dependence between radical decay and applied
dosage. They discovered very low fading for doses below 10 kGy and more pronounced
fading for doses above 50 kGy. This showed that the radicals could likely begin to interact
with each other above a certain concentration. This fact can also explain the saturation
of the signal intensity at higher doses. There have been many other studies on the time
stability of irradiation-induced free radicals in alanine, and as a whole, they concluded that
they were stable for a long time period.

2.5. Dose–Response Characteristics

The dose–response characteristics of proline, cysteine, and alanine were obtained for
137Cs γ-rays. The responses were expressed as changes in the EPR signal intensity (“peak-
to-peak” amplitude of the first derivative, denoted by “I” in Figure 1) of the irradiated
samples as a function of the absorbed dose. The dose –response curves are shown in
Figure 8. Each data point consists of three independent measurements of three separate
samples that were simultaneously irradiated.

The results showed the linear dependence of the EPR signal intensity on the absorbed
dose gamma rays up to 10 kGy and the saturation of the intensity at 25 kGy. These
results are in accordance with those published in the literature data for the dose–response
characteristics of other materials, for example, those of mono- and di-saccharides [6].
With respect to radiation sensitivity, the following order of decreases in sensitivity was
determined: alanine > DL-proline > cysteine > L-proline. The dose–response curves were
built with the data obtained 72 h after irradiation. This was necessary to avoid the short-
living intermediate relaxing products in the first hours after radiation treatment.
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Because of the saturation processes, two types of equations were used to fit the results:
linear and polynomial regression. The obtained data are shown in Table 1.

Table 1. Coefficient values for the dependencies of the EPR signal intensity on the applied dosage.

Sample
Linear Regression

I = A + BD
Polynomial Regression

I = A + B1 + B2D2

A B R A B1 B2 R

DL-proline 251.45 163.81 0.9872 17.93 279.50 −4.60 0.9984
L-proline 110.58 65.94 0.9865 14.32 109.46 −1.71 0.9997
Cysteine 77.41 101.76 0.9984 33.32 121.70 −0.78 0.9992
Alanine 360.99 290.95 0.9944 97.55 410.05 −4.69 0.9991

I—intensity of the EPR signal; A, B—coefficients; D—the absorbed dose of radiation in kGy; R—correlation
coefficient.

3. Materials and Methods
3.1. Materials

The amino acids (L-proline, DL-proline, alanine, and cysteine) were bought from
Sigma Aldrich. Both forms of proline—L- and DL—-were used. The chemical structure of
cysteine and the isomers of proline are shown in Scheme 1. The structure of alanine is not
shown because it is well known.
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L-proline is the only proteinogenic amino acid that is a secondary amine, meaning that
its amine nitrogen is bound to two alkyl groups. It is especially important in the production
of collagen, which is a primary component in skin, cartilage, and bones. L-proline can be
found in a large number of food supplements to support the growth of connective tissue.
DL-proline is a racemic mixture of the naturally occurring isomers of L and D-proline.
D-amino acids have been found in relatively high abundance in human plasma and saliva.

Cysteine is a sulfur-containing, semi-essential proteinogenic amino acid. It can be
synthesized by the human body under normal physiological conditions if a sufficient
quantity of methionine is available. The majority of L-cysteine is obtained industrially
through the hydrolysis of animal materials, such as poultry feathers or hog hair. Cysteine,
primarily the L-enantiomer, is a precursor in the food, pharmaceutical, and personal care
industries. One of its largest applications is in the production of flavors.

Alanine is the simplest α-amino acid after glycine. The methyl side-chain of alanine is
non-reactive, and therefore, it is rarely directly involved in protein function. Alanine is a
nonessential amino acid, meaning it can be manufactured by the human body, and it does
not need to be obtained through the diet. Alanine is found in a wide variety of foods, but it
is particularly concentrated in meats.

3.2. Irradiation

Three parallel samples of each amino acid were taken and irradiated with gamma rays.
The irradiation was performed by applying a source, 137Cs, a dosage rate of 200 Gy/h, and
a dosage range of 1–25 kGy. For control of the absorbed dose distribution, we used the
alanine dosimeters of a Kodak BioMax. Three dosimeters were placed at each point. The
control measurements and calibration of the absorbed dosage in water were completed by
an X-band EPR spectrometer (E-scan, Bruker). The irradiation was performed in air and
at room temperature. After irradiation, all the samples were kept in closed plastic bags at
room temperature and stored in the dark.

3.3. Principles of the EPR Method

EPR spectroscopy can be defined as the resonant absorption of electromagnetic energy
in paramagnetic substances by the transition of the spin of an unpaired electron between
different energy levels (a state of lower energy and a higher-energy state), in the presence
of a magnetic field. In the presence of an external magnetic field, the spin of unpaired
electron is orientated to it in two directions: parallel and antiparallel to the field. The
energy difference, ∆E, between these levels is proportional to the Lande g-factor, the Bohr
magneton, β, and the magnetic field, H. The relationship is given by the equation:

∆E = gβH

In case of thermal equilibrium, the population of the lower energy level E1, is slightly
higher than that of the upper level, E2. Therefore, the system is able to absorb energy,
∆E = hν, from an external high-frequency field. When the sample is irradiated using
radiation with an appropriate frequency and hν = gβH, transitions from the lower to the
upper state appear and the EPR spectrum, as a first derivative of the absorption curve,
is recorded.

3.4. Instrument

The EPR spectra were recorded using a JEOL JES FA 100 EPR spectrometer at room
temperature. The X-band EPR spectrometer was operated at 9.5 GHz of frequency, and it
had a standard TE011 cylindrical resonator.

3.5. Procedure of Measurement

For each single measurement, an equal weight of the samples was placed in quartz
tubes (4 mm inner diameters). For the best sensitivity, the tubes were positioned in the
center of the EPR cavity. Three independent measurements were used for every sample,
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including a procedure where inserting-removing-inserting of the sample was performed in
the cavity of the EPR spectrometer. The data were averaged, and in that way, the error of the
measurement was determined to be 3%. A reference sample, Mn magnetic diluted in MgO,
which is an internal standard in the above-mentioned spectrometer, was analyzed before
and after each series of measurements under the same conditions as those used for the
sample measurements to normalize the signal intensity of the samples and to minimize the
error resulting from any instability in the spectrometer. The parameters for recording the
spectra were as follows: modulation frequency of 100 kHz, microwave powers of 0.3 mW
(proline) and 1 mW (cysteine and alanine), modulation amplitude of 0.4 mT, time constant
of 0.03 s, and sweeping time of 2 min.

4. Conclusions

After irradiating DL-proline, L-proline, and cysteine samples with γ-rays, complex
EPR spectra of all samples were recorded. The effect of the microwave power on the shape
and the saturation of the EPR signals showed that at least three types of free radicals with
unknown natures were created in proline during the γ-irradiation, and two radicals were
created in cysteine, one of which was RS•. The time dependence analysis of the EPR spectra
after irradiation shows a fading of intensity of DL-proline with 25 %, L-proline – 99% and
cysteine – 21% for six months. For comparison, the free radicals created by the radiation in
alanine were stable for a longer time period. For all materials, the EPR signal amplitude
had a linear dose response up to 10 kGy, and it was saturated at higher doses. Under the
same experimental conditions, alanine also showed a linear response up to 10 kGy but with
better sensitivity. All these results provide an opportunity for DL-proline and cysteine to
be used as dosimetric materials for doses ranging from 1 to 10 kGy, but they have lower
sensitivity than alanine. However, in case of emergency dosimetry, if they are present in
such a situation, they could be successfully used for dose assessment. For retrospective
dosimetry, they are not very suitable because of the decay rates of the radiation-induced
free radicals. On the basis of the conducted research, it can be concluded that alanine
remains the best candidate for a universal dosimetric material.
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