NaGdF4:Yb, Er, Tm Upconversion Nanoparticles for Bioimaging in Shortwave-Infrared Range: Study of Energy Transfer Processes and Composition Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization of Yb, Er, and Tm Doped β-NaGdF4 NPs
2.2. Spectroscopic Study of Yb, Er, and Tm Doped β-NaGdF4 NPs in VIS and SWIR Ranges
3. Results and Discussion
3.1. Synthesis and Characterization of Yb, Er, and Tm Doped β-NaGdF4 NPs
3.1.1. X-ray Powder Diffraction Results
3.1.2. Transmission Electron Microscopy Results
3.2. Spectroscopic Study Results
3.2.1. Luminescence Spectra in VIS and SWIR Ranges Analysis
3.2.2. Luminescence Lifetime in VIS Range Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mandl, G.A.; Cooper, D.R.; Hirsch, T.; Seuntjens, J.; Capobianco, J.A. Perspective: Lanthanide-Doped Upconverting Nanoparticles. Methods Appl. Fluoresc. 2019, 7, 012004. [Google Scholar] [CrossRef]
- Chen, B.; Wang, F. Emerging Frontiers of Upconversion Nanoparticles. Trends Chem. 2020, 2, 427–439. [Google Scholar] [CrossRef]
- Liang, G.; Wang, H.; Shi, H.; Wang, H.; Zhu, M.; Jing, A.; Li, J.; Li, G. Recent Progress in the Development of Upconversion Nanomaterials in Bioimaging and Disease Treatment. J. Nanobiotechnol. 2020, 18, 154. [Google Scholar] [CrossRef] [PubMed]
- Mettenbrink, E.M.; Yang, W.; Wilhelm, S. Bioimaging with Upconversion Nanoparticles. Adv. Photonics Res. 2022, 3, 2200098. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Jin, D.; Schartner, E.P.; Lu, Y.; Liu, Y.; Zvyagin, A.V.; Zhang, L.; Dawes, J.M.; Xi, P.; Piper, J.A.; et al. Single-Nanocrystal Sensitivity Achieved by Enhanced Upconversion Luminescence. Nat. Nanotechnol. 2013, 8, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Sun, Y.; Gao, H.; Jin, S.; Zhang, Z.; Zhang, H.; Pan, G.; Kang, M.; Ma, X.; Mao, Y. High-Performance Perovskite Solar Cells Based on NaCsWO3@ NaYF 4@NaYF4:Yb,Er Upconversion Nanoparticles. ACS Appl. Mater. Interfaces 2021, 13, 2674–2684. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Madirov, E.; Busko, D.; Hossain, I.M.; Konyushkin, V.A.; Nakladov, A.N.; Kuznetsov, S.V.; Farooq, A.; Gharibzadeh, S.; Paetzold, U.W.; et al. Harvesting Sub-Bandgap Photons via Upconversion for Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 54874–54883. [Google Scholar] [CrossRef] [PubMed]
- Del Barrio, M.; Cases, R.; Cebolla, V.; Hirsch, T.; De Marcos, S.; Wilhelm, S.; Galbán, J. A Reagentless Enzymatic Fluorescent Biosensor for Glucose Based on Upconverting Glasses, as Excitation Source, and Chemically Modified Glucose Oxidase. Talanta 2016, 160, 586–591. [Google Scholar] [CrossRef]
- Del Barrio, M.; De Marcos, S.; Cebolla, V.; Heiland, J.; Wilhelm, S.; Hirsch, T.; Galbán, J. Enzyme-Induced Modulation of the Emission of Upconverting Nanoparticles: Towards a New Sensing Scheme for Glucose. Biosens. Bioelectron. 2014, 59, 14–20. [Google Scholar] [CrossRef]
- Radunz, S.; Andresen, E.; Würth, C.; Koerdt, A.; Tschiche, H.R.; Resch-Genger, U. Simple Self-Referenced Luminescent pH Sensors Based on Upconversion Nanocrystals and pH-Sensitive Fluorescent BODIPY Dyes. Anal. Chem. 2019, 91, 7756–7764. [Google Scholar] [CrossRef]
- Wilhelm, S.; Del Barrio, M.; Heiland, J.; Himmelstoß, S.F.; Galbán, J.; Wolfbeis, O.S.; Hirsch, T. Spectrally Matched Upconverting Luminescent Nanoparticles for Monitoring Enzymatic Reactions. ACS Appl. Mater. Interfaces 2014, 6, 15427–15433. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zou, X.; Su, Q.; Yuan, W.; Cao, C.; Wang, Q.; Zhu, X.; Feng, W.; Li, F. Ratiometric Nanothermometer In Vivo Based on Triplet Sensitized Upconversion. Nat. Commun. 2018, 9, 2698. [Google Scholar] [CrossRef] [PubMed]
- Jaque, D.; Vetrone, F. Luminescence Nanothermometry. Nanoscale 2012, 4, 4301. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.; Tu, L.; Li, Q.; Feng, Y.; Que, I.; Zhang, Y.; Liu, X.; Xue, B.; Cruz, L.J.; Chang, Y.; et al. Near Infrared Light Sensitive Ultraviolet–Blue Nanophotoswitch for Imaging-Guided “Off–On” Therapy. ACS Nano 2018, 12, 3217–3225. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, G. Upconversion Nanoparticles for Cancer Therapy. Adv. NanoBiomed Res. 2022, 2, 2200092. [Google Scholar] [CrossRef]
- Suo, H.; Zhu, Q.; Zhang, X.; Chen, B.; Chen, J.; Wang, F. High-Security Anti-Counterfeiting through Upconversion Luminescence. Mater. Today Phys. 2021, 21, 100520. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.; Liu, F.; Liu, J. Engineered Lanthanide-Doped Upconversion Nanoparticles for Biosensing and Bioimaging Application. Microchim. Acta 2022, 189, 109. [Google Scholar] [CrossRef]
- Auzel, F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem. Rev. 2004, 104, 139–174. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, Y.; Yang, T.; Feng, W.; Li, C.; Li, F. Sub-10 Nm Hexagonal Lanthanide-Doped NaLuF4 Upconversion Nanocrystals for Sensitive Bioimaging In Vivo. J. Am. Chem. Soc. 2011, 133, 17122–17125. [Google Scholar] [CrossRef]
- Chen, G.; Shen, J.; Ohulchanskyy, T.Y.; Patel, N.J.; Kutikov, A.; Li, Z.; Song, J.; Pandey, R.K.; Ågren, H.; Prasad, P.N.; et al. (α-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging. ACS Nano 2012, 6, 8280–8287. [Google Scholar] [CrossRef]
- Tessitore, G.; Mandl, G.A.; Brik, M.G.; Park, W.; Capobianco, J.A. Recent Insights into Upconverting Nanoparticles: Spectroscopy, Modeling, and Routes to Improved Luminescence. Nanoscale 2019, 11, 12015–12029. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Cui, Y.; Levenson, R.M.; Chung, L.W.K.; Nie, S. In Vivo Cancer Targeting and Imaging with Semiconductor Quantum Dots. Nat. Biotechnol. 2004, 22, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.T.; Kim, S.; Nakayama, A.; Stott, N.E.; Bawendi, M.G.; Frangioni, J.V. Selection of Quantum Dot Wavelengths for Biomedical Assays and Imaging. Mol. Imaging 2003, 2, 50–64. [Google Scholar] [CrossRef] [PubMed]
- Hemmer, E.; Venkatachalam, N.; Hyodo, H.; Hattori, A.; Ebina, Y.; Kishimoto, H.; Soga, K. Upconverting and NIR Emitting Rare Earth Based Nanostructures for NIR-Bioimaging. Nanoscale 2013, 5, 11339. [Google Scholar] [CrossRef] [PubMed]
- Skripka, A.; Benayas, A.; Marin, R.; Canton, P.; Hemmer, E.; Vetrone, F. Double Rare-Earth Nanothermometer in Aqueous Media: Opening the Third Optical Transparency Window to Temperature Sensing. Nanoscale 2017, 9, 3079–3085. [Google Scholar] [CrossRef] [PubMed]
- Hemmer, E.; Benayas, A.; Légaré, F.; Vetrone, F. Exploiting the Biological Windows: Current Perspectives on Fluorescent Bioprobes Emitting above 1000 Nm. Nanoscale Horiz. 2016, 1, 168–184. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Mancini, M.C.; Nie, S. Second Window for In Vivo Imaging. Nat. Nanotechnol. 2009, 4, 710–711. [Google Scholar] [CrossRef]
- Ma, D.; Xu, X.; Hu, M.; Wang, J.; Zhang, Z.; Yang, J.; Meng, L. Rare-Earth-Based Nanoparticles with Simultaneously Enhanced Near-Infrared (NIR)-Visible (Vis) and NIR-NIR Dual-Conversion Luminescence for Multimodal Imaging. Chem. Asian J. 2016, 11, 1050–1058. [Google Scholar] [CrossRef]
- Chang, Y.; Chen, H.; Xie, X.; Wan, Y.; Li, Q.; Wu, F.; Yang, R.; Wang, W.; Kong, X. Bright Tm3+-Based Downshifting Luminescence Nanoprobe Operating around 1800 Nm for NIR-IIb and c Bioimaging. Nat. Commun. 2023, 14, 1079. [Google Scholar] [CrossRef]
- Wang, L.; Yan, R.; Huo, Z.; Wang, L.; Zeng, J.; Bao, J.; Wang, X.; Peng, Q.; Li, Y. Fluorescence Resonant Energy Transfer Biosensor Based on Upconversion-Luminescent Nanoparticles. Angew. Chem. Int. Ed. 2005, 44, 6054–6057. [Google Scholar] [CrossRef]
- Kamimura, M.; Matsumoto, T.; Suyari, S.; Umezawa, M.; Soga, K. Ratiometric Near-Infrared Fluorescence Nanothermometry in the OTN-NIR (NIR II/III) Biological Window Based on Rare-Earth Doped β-NaYF4 Nanoparticles. J. Mater. Chem. B 2017, 5, 1917–1925. [Google Scholar] [CrossRef] [PubMed]
- Naczynski, D.J.; Tan, M.C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C.M.; Riman, R.E.; Moghe, P.V. Rare-Earth-Doped Biological Composites as In Vivo Shortwave Infrared Reporters. Nat. Commun. 2013, 4, 2199. [Google Scholar] [CrossRef] [PubMed]
- Sekiyama, S.; Umezawa, M.; Kuraoka, S.; Ube, T.; Kamimura, M.; Soga, K. Temperature Sensing of Deep Abdominal Region in Mice by Using over-1000 Nm Near-Infrared Luminescence of Rare-Earth-Doped NaYF4 Nanothermometer. Sci. Rep. 2018, 8, 16979. [Google Scholar] [CrossRef] [PubMed]
- Wortmann, L.; Suyari, S.; Ube, T.; Kamimura, M.; Soga, K. Tuning the Thermal Sensitivity of β-NaYF4: Yb3+, Ho3+, Er3+ Nanothermometers for Optimal Temperature Sensing in OTN-NIR (NIR II/III) Biological Window. J. Lumin. 2018, 198, 236–242. [Google Scholar] [CrossRef]
- Ximendes, E.C.; Rocha, U.; Sales, T.O.; Fernández, N.; Sanz-Rodríguez, F.; Martín, I.R.; Jacinto, C.; Jaque, D. In Vivo Subcutaneous Thermal Video Recording by Supersensitive Infrared Nanothermometers. Adv. Funct. Mater. 2017, 27, 1702249. [Google Scholar] [CrossRef]
- Cortelletti, P.; Skripka, A.; Facciotti, C.; Pedroni, M.; Caputo, G.; Pinna, N.; Quintanilla, M.; Benayas, A.; Vetrone, F.; Speghini, A. Tuning the Sensitivity of Lanthanide-Activated NIR Nanothermometers in the Biological Windows. Nanoscale 2018, 10, 2568–2576. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Lei, L.; Xia, J.; Hua, Y.; Deng, D.; Xu, S. Yb/Er/Tm Tri-Doped Na3ZrF7 Upconversion Nanocrystals for High Performance Temperature Sensing. J. Lumin. 2019, 209, 8–13. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Zhang, X.; Li, L.; Hao, H. Up-Converting Luminescence and Temperature Sensing of Er3+/Tm3+/Yb3+ Co-Doped NaYF4 Phosphors Operating in Visible and the First Biological Window Range. Nanomaterials 2021, 11, 2660. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, C.; Peng, C.; Li, C.; Wang, L.; Chai, R.; Lin, J. Controllable Red, Green, Blue (RGB) and Bright White Upconversion Luminescence of Lu2 O3:Yb3+/Er3+/Tm3+ Nanocrystals through Single Laser Excitation at 980 Nm. Chem. Eur. J. 2009, 15, 4649–4655. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, C.; Yang, Q. White Upconversion of Rare-Earth Doped ZnO Nanocrystals and Its Dependence on Size of Crystal Particles and Content of Yb3+ and Tm3+. J. Appl. Phys. 2009, 105, 084701. [Google Scholar] [CrossRef]
- Ray, S.K.; Joshi, B.; Hur, J. White-Light Emission in Yb3+/Er3+/Tm3+- and Yb3+/Er3+/Tm3+ /Ho3+-Doped α-NiMoO4 Nanoparticles. Nanotechnology 2022, 33, 395705. [Google Scholar] [CrossRef] [PubMed]
- Pominova, D.; Proydakova, V.; Romanishkin, I.; Ryabova, A.; Kuznetsov, S.; Uvarov, O.; Fedorov, P.; Loschenov, V. Temperature Sensing in the Short-Wave Infrared Spectral Region Using Core-Shell NaGdF4:Yb3+, Ho3+, Er3+@NaYF4 Nanothermometers. Nanomaterials 2020, 10, 1992. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Upconversion Luminescent Materials: Advances and Applications. Chem. Rev. 2015, 115, 395–465. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Ågren, H.; Ohulchanskyy, T.Y.; Prasad, P.N. Light Upconverting Core–Shell Nanostructures: Nanophotonic Control for Emerging Applications. Chem. Soc. Rev. 2015, 44, 1680–1713. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Deng, R.; Xie, X.; Liu, X. Enhancing Luminescence in Lanthanide-Doped Upconversion Nanoparticles. Angew. Chem. Int. Ed. 2014, 53, 11702–11715. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.; Zhao, B.; Lin, C.; Berry, M.; May, P.S.; Smith, S. Spectroscopic Imaging and Power Dependence of Near-Infrared to Visible Upconversion Luminescence from NaYF4:Yb3+, Er3+ Nanoparticles on Nanocavity Arrays. J. Phys. Chem. C 2015, 119, 24976–24982. [Google Scholar] [CrossRef]
- Noculak, A.; Podhorodecki, A. Size and Shape Effects in β-NaGdF4: Yb3+, Er3+ Nanocrystals. Nanotechnology 2017, 28, 175706. [Google Scholar] [CrossRef]
- Krämer, K.W.; Biner, D.; Frei, G.; Güdel, H.U.; Hehlen, M.P.; Lüthi, S.R. Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors. Chem. Mater. 2004, 16, 1244–1251. [Google Scholar] [CrossRef]
- Suyver, J.F.; Aebischer, A.; Biner, D.; Gerner, P.; Grimm, J.; Heer, S.; Krämer, K.W.; Reinhard, C.; Güdel, H.U. Novel Materials Doped with Trivalent Lanthanides and Transition Metal Ions Showing Near-Infrared to Visible Photon Upconversion. Opt. Mater. 2005, 27, 1111–1130. [Google Scholar] [CrossRef]
- Niu, N.; He, F.; Gai, S.; Li, C.; Zhang, X.; Huang, S.; Yang, P. Rapid Microwave Reflux Process for the Synthesis of Pure Hexagonal NaYF4:Yb3+,Ln3+,Bi3+ (Ln3+ = Er3+, Tm3+, Ho3+) and Its Enhanced UC Luminescence. J. Mater. Chem. 2012, 22, 21613. [Google Scholar] [CrossRef]
- Kumar, V.; Som, S.; Dutta, S.; Das, S.; Swart, H.C. Influence of Ho3+ Doping on the Temperature Sensing Behavior of Er3+-Yb3+ Doped La2CaZnO5 Phosphor. RSC Adv. 2016, 6, 84914–84925. [Google Scholar] [CrossRef]
- Banski, M.; Podhorodecki, A.; Misiewicz, J.; Afzaal, M.; Abdelhady, A.L.; O’Brien, P. Selective Excitation of Eu3+ in the Core of Small β-NaGdF 4 Nanocrystals. J. Mater. Chem. C 2013, 1, 801–807. [Google Scholar] [CrossRef]
- Dong, H.; Sun, L.-D.; Yan, C.-H. Energy Transfer in Lanthanide Upconversion Studies for Extended Optical Applications. Chem. Soc. Rev. 2015, 44, 1608–1634. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.M.; Levy, E.S.; Cohen, B.E. Rationally Designed Energy Transfer in Upconverting Nanoparticles. Adv. Mater. 2015, 27, 5753–5761. [Google Scholar] [CrossRef]
- Huang, L.; Wang, L.; Xue, X.; Zhao, D.; Qin, G.; Qin, W. Enhanced Red Upconversion Luminescence in Er–Tm Codoped NaYF4 Phosphor. J. Nanosci. Nanotechnol. 2011, 11, 9498–9501. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.M.; Han, G.; Goldberg, J.D.; Gargas, D.J.; Ostrowski, A.D.; Schuck, P.J.; Cohen, B.E.; Milliron, D.J. Combinatorial Discovery of Lanthanide-Doped Nanocrystals with Spectrally Pure Upconverted Emission. Nano Lett. 2012, 12, 3839–3845. [Google Scholar] [CrossRef]
- Chan, E.M.; Gargas, D.J.; Schuck, P.J.; Milliron, D.J. Concentrating and Recycling Energy in Lanthanide Codopants for Efficient and Spectrally Pure Emission: The Case of NaYF4:Er 3+ /Tm 3+ Upconverting Nanocrystals. J. Phys. Chem. B 2012, 116, 10561–10570. [Google Scholar] [CrossRef]
- Prorok, K.; Pawlyta, M.; Stręk, W.; Bednarkiewicz, A. Energy Migration Up-Conversion of Tb3+ in Yb3+ and Nd3+ Codoped Active-Core/Active-Shell Colloidal Nanoparticles. Chem. Mater. 2016, 28, 2295–2300. [Google Scholar] [CrossRef]
- Chen, B.; Wang, F. Combating Concentration Quenching in Upconversion Nanoparticles. Acc. Chem. Res. 2020, 53, 358–367. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, R.; Hu, J.; Guan, D.; Qiu, X.; Zhang, Y.; Kohane, D.S.; Liu, Q. Enhancement of Single Upconversion Nanoparticle Imaging by Topologically Segregated Core-Shell Structure with Inward Energy Migration. Nat. Commun. 2022, 13, 5927. [Google Scholar] [CrossRef]
- Shen, B.; Cheng, S.; Gu, Y.; Ni, D.; Gao, Y.; Su, Q.; Feng, W.; Li, F. Revisiting the Optimized Doping Ratio in Core/Shell Nanostructured Upconversion Particles. Nanoscale 2017, 9, 1964–1971. [Google Scholar] [CrossRef]
- Zhou, B.; Tang, B.; Zhang, C.; Qin, C.; Gu, Z.; Ma, Y.; Zhai, T.; Yao, J. Enhancing Multiphoton Upconversion through Interfacial Energy Transfer in Multilayered Nanoparticles. Nat. Commun. 2020, 11, 1174. [Google Scholar] [CrossRef]
- Pominova, D.V.; Romanishkin, I.D.; Proydakova, V.Y.; Grachev, P.V.; Moskalev, A.S.; Ryabova, A.V.; Makarov, V.I.; Linkov, K.G.; Kuznetsov, S.V.; Voronov, V.V.; et al. Optimization of Upconversion Luminescence Excitation Mode for Deeper In Vivo Bioimaging without Contrast Loss or Overheating. Methods Appl. Fluoresc. 2020, 8, 025006. [Google Scholar] [CrossRef]
- Pominova, D.; Romanishkin, I.; Proydakova, V.; Kuznetsov, S.; Grachev, P.; Ryabova, A.; Tabachkova, N.; Fedorov, P.; Loschenov, V. Study of Synthesis Temperature Effect on β-NaGdF4: Yb3+, Er3+ Upconversion Luminescence Efficiency and Decay Time Using Maximum Entropy Method. Methods Appl. Fluoresc. 2022, 10, 024005. [Google Scholar] [CrossRef]
- Pominova, D.V.; Proydakova, V.Y.; Romanishkin, I.D.; Ryabova, A.V.; Grachev, P.V.; Makarov, V.I.; Kuznetsov, S.V.; Uvarov, O.V.; Voronov, V.V.; Yapryntsev, A.D.; et al. Achieving High NIR-to-NIR Conversion Efficiency by Optimization of Tm3+ Content in Na(Gd,Yb)F4: Tm Upconversion Luminophores. Laser Phys. Lett. 2020, 17, 125701. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Ryabova, A.V.; Pominova, D.V.; Krutko, V.A.; Komova, M.G.; Loschenov, V.B. Spectroscopic research of upconversion nanomaterials based on complex oxide compounds doped with rare-earth ion pairs: Benefit for cancer diagnostics by upconversion fluorescence and radio sensitive methods. Photon. Lasers Med. 2013, 2, 117–128. [Google Scholar] [CrossRef]
Composition | T, °C | Lattice Parameters, Å3 | Unit Cell Volume, Å | D (nm) | ΔD, nm |
---|---|---|---|---|---|
β-NaGdF4:Yb-Tm(30:0.5) | 300 | a = 6.0123 (8) c = 3.5623 (5) | 111.51 (4) | 13.9 (4) | --- |
β-NaGdF4:Yb-Tm(30:0.5)@ NaGdF4:Yb-Er(20:2) | 310 | a = 6.0179 (7) c = 3.5643 (5) | 111.79 (3) | 17.1 (5) | 3.2 |
β-NaGdF4:Yb-Tm(30:0.5)@ NaGdF4:Yb-Er(20:2)@ NaYF4 | 310 | a = 6.0016 (4) c = 3.5377 (2) | 110.35 (2) | 23.5 (6) | 6.4 |
β-NaGdF4:Yb-Tm(30:0.5)@ NaYF4 | 310 | a = 5.9997 (4) c = 3.5366 (3) | 110.25 (2) | 16.7 (3) | 2.8 |
β-NaGdF4:Yb-Tm(30:0.5)@ NaYF4@ NaGdF4:Yb-Er(20:2) | 310 | a = 6.0113 (4) c = 3.5508 (3) | 111.12 (2) | 26.5 (4) | 9.8 |
β-NaGdF4:Yb-Tm(30:0.5)@ NaYF4@ NaGdF4:Yb-Er(20:2)@ NaYF4 | 310 | a = 5.9973 (2) c = 3.5315 (1) | 110.03 (1) | 33.2 (4) | 6.7 |
β-NaGdF4:Yb-Er(20:2) | 300 | a = 6.0453 (7) c = 3.5985 (5) | 113.89 (1) | 11.9 (1) | --- |
β-NaGdF4:Yb-Er(20:2)@ NaGdF4:Yb-Tm(30:0.5) | 310 | a = 6.0041 (5) c = 3.5586 (2) | 111.09 (2) | 18 (1) | 6.1 |
β-NaGdF4:Yb-Er(20:2)@ NaGdF4:Yb-Tm(30:0.5)@ NaYF4 | 310 | a = 5.9868 (3) c = 3.5388 (2) | 109.85 (1) | 22.7 (1) | 4.7 |
NPs | τgreen, ms | τred Er, ms | τred Tm, ms | |
---|---|---|---|---|
tri-doped NPs | NaGdF₄:Yb-Er-Tm (10:1:0.5)@NaYF₄ | 0.414 ± 0.004 | 0.735 ± 0.009 | NA (0.814 ± 0.019) |
NaGdF₄:Yb-Er-Tm (10:1:1) | 0.191 ± 0.057 | 0.221 ± 0.009 | NA (0.210 ± 0.037) | |
Yb-Er core, Yb-Tm shell | NaGdF₄:Yb-Er (20:2) | 0.120 ± 0.023 | 0.304 ± 0.008 | NA (0.296 ± 0.023) |
NaGdF₄:Yb-Er (20:2)@ NaGdF₄:Yb-Tm (30:0.5) | 0.090 ± 0.003 | 0.318 ± 0.003 | NA (0.333 ± 0.006) | |
NaGdF₄:Yb-Er (20:2)@ NaGdF₄:Yb-Tm (30:0.5)@ NaYF₄ | 0.616 ± 0.006 | 1.070 ± 0.024 | NA (1.292 ± 0.058) | |
Yb-Tm core, Yb-Er shell | NaGdF₄:Yb-Tm (30:0.5)@ NaGdF₄:Yb-Er (20:2) | 0.231 ± 0.024 | 0.190 ± 0.004 | NA (0.305 ± 0.013) |
NaGdF₄:Yb-Tm (30:0.5)@ NaGdF₄:Yb-Er (20:2)@NaYF₄ | 0.449 ± 0.003 | 0.835 ± 0.011 | NA (0.953 ± 0.020) | |
NaGdF₄:Yb-Tm (30:0.5)@ NaYF₄@NaGdF₄:Yb-Er (20:2) | NA (1.260 ± 0.120) | NA (1.060 ± 0.042) | 1.139 ± 0.047 | |
NaGdF₄:Yb-Tm (30:0.5)@ NaYF₄@NaGdF₄:Yb-Er (20:2)@NaYF4 | 0.324 ± 0.007 | 0.498 ± 0.005 | 1.078 ± 0.036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pominova, D.; Proydakova, V.; Romanishkin, I.; Kuznetsov, S.; Linkov, K.; Tabachkova, N.; Ryabova, A. NaGdF4:Yb, Er, Tm Upconversion Nanoparticles for Bioimaging in Shortwave-Infrared Range: Study of Energy Transfer Processes and Composition Optimization. Photonics 2024, 11, 38. https://doi.org/10.3390/photonics11010038
Pominova D, Proydakova V, Romanishkin I, Kuznetsov S, Linkov K, Tabachkova N, Ryabova A. NaGdF4:Yb, Er, Tm Upconversion Nanoparticles for Bioimaging in Shortwave-Infrared Range: Study of Energy Transfer Processes and Composition Optimization. Photonics. 2024; 11(1):38. https://doi.org/10.3390/photonics11010038
Chicago/Turabian StylePominova, Daria, Vera Proydakova, Igor Romanishkin, Sergei Kuznetsov, Kirill Linkov, Nataliya Tabachkova, and Anastasia Ryabova. 2024. "NaGdF4:Yb, Er, Tm Upconversion Nanoparticles for Bioimaging in Shortwave-Infrared Range: Study of Energy Transfer Processes and Composition Optimization" Photonics 11, no. 1: 38. https://doi.org/10.3390/photonics11010038
APA StylePominova, D., Proydakova, V., Romanishkin, I., Kuznetsov, S., Linkov, K., Tabachkova, N., & Ryabova, A. (2024). NaGdF4:Yb, Er, Tm Upconversion Nanoparticles for Bioimaging in Shortwave-Infrared Range: Study of Energy Transfer Processes and Composition Optimization. Photonics, 11(1), 38. https://doi.org/10.3390/photonics11010038