Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,917)

Search Parameters:
Keywords = lignocellulosics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 415 KiB  
Review
Advanced Wood Composites with Recyclable or Biodegradable Polymers Embedded—A Review of Current Trends
by Paschalina Terzopoulou, Dimitris S. Achilias and Evangelia C. Vouvoudi
J. Compos. Sci. 2025, 9(8), 415; https://doi.org/10.3390/jcs9080415 - 4 Aug 2025
Abstract
Wood polymer composites (WPCs) represent a rapidly growing class of sustainable materials, formed by combining lignocellulosic fibers with thermoplastic or thermoset polymeric matrices. This review summarizes the state of the art in WPC development, emphasizing the use of recyclable (or recycled) and biodegradable [...] Read more.
Wood polymer composites (WPCs) represent a rapidly growing class of sustainable materials, formed by combining lignocellulosic fibers with thermoplastic or thermoset polymeric matrices. This review summarizes the state of the art in WPC development, emphasizing the use of recyclable (or recycled) and biodegradable polymers as matrix materials. The integration of waste wood particles into the production of WPCs addresses global environmental challenges, including plastic pollution and deforestation, by offering an alternative to conventional wood-based and petroleum-based products. Key topics covered in the review include raw material sources, fiber pre-treatments, compatibilizers, mechanical performance, water absorption behavior, thermal stability and end-use applications. Full article
Show Figures

Figure 1

22 pages, 2666 KiB  
Article
Comparative Proteomic Analysis of Flammulina filiformis Reveals Substrate-Specific Enzymatic Strategies for Lignocellulose Degradation
by Weihang Li, Jiandong Han, Hongyan Xie, Yi Sun, Feng Li, Zhiyuan Gong and Yajie Zou
Horticulturae 2025, 11(8), 912; https://doi.org/10.3390/horticulturae11080912 (registering DOI) - 4 Aug 2025
Abstract
Flammulina filiformis, one of the most delicious and commercially important mushrooms, demonstrates remarkable adaptability to diverse agricultural wastes. However, it is unclear how different substrates affect the degradation of lignocellulosic biomass and the production of lignocellulolytic enzymes in F. filiformis. In [...] Read more.
Flammulina filiformis, one of the most delicious and commercially important mushrooms, demonstrates remarkable adaptability to diverse agricultural wastes. However, it is unclear how different substrates affect the degradation of lignocellulosic biomass and the production of lignocellulolytic enzymes in F. filiformis. In this study, label-free comparative proteomic analysis of F. filiformis cultivated on sugarcane bagasse, cotton seed shells, corn cobs, and glucose substrates was conducted to identify degradation mechanism across various substrates. Label-free quantitative proteomics identified 1104 proteins. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of protein expression differences were predominantly enriched in energy metabolism and carbohydrate metabolic pathways. Detailed characterization of carbohydrate-active enzymes among the identified proteins revealed glucanase (GH7, A0A067NSK0) as the key enzyme. F. filiformis secreted higher levels of cellulases and hemicellulases on sugarcane bagasse substrate. In the cotton seed shells substrate, multiple cellulases functioned collaboratively, while in the corn cobs substrate, glucanase predominated among the cellulases. These findings reveal the enzymatic strategies and metabolic flexibility of F. filiformis in lignocellulose utilization, providing novel insights for metabolic engineering applications in biotechnology. The study establishes a theoretical foundation for optimizing biomass conversion and developing innovative substrates using targeted enzyme systems. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

22 pages, 2605 KiB  
Article
Production of Bioadsorbents via Low-Temperature Pyrolysis of Exhausted Olive Pomace for the Removal of Methylene Blue from Aqueous Media
by Safae Chafi, Manuel Cuevas-Aranda, Mª Lourdes Martínez-Cartas and Sebastián Sánchez
Molecules 2025, 30(15), 3254; https://doi.org/10.3390/molecules30153254 - 3 Aug 2025
Viewed by 56
Abstract
In this work, biochars were produced by pyrolysis of exhausted olive pomace and evaluated as low-cost adsorbents for the removal of methylene blue (MB) from aqueous solutions. The biochar obtained at 400 °C for 1 h, which exhibited the best adsorption performance, was [...] Read more.
In this work, biochars were produced by pyrolysis of exhausted olive pomace and evaluated as low-cost adsorbents for the removal of methylene blue (MB) from aqueous solutions. The biochar obtained at 400 °C for 1 h, which exhibited the best adsorption performance, was characterized by FTIR, N2 adsorption–desorption isotherms, SEM-EDX, and proximate analysis, revealing a mesoporous structure with a relatively low specific surface area but enriched in surface functional groups, likely due to the partial degradation of lignocellulosic components. Adsorption experiments were conducted to optimize operational parameters such as solid particle size (2–3 mm), agitation speed (75 rpm), and bioadsorbent dosage (1 g per 0.05 L of MB solution), which allowed for dye removal efficiencies close to 100%. Kinetic studies showed that MB adsorption followed a pseudo-second-order model, while equilibrium data at 30 °C were best described by the Langmuir isotherm (R2 = 0.999; SE = 4.25%), suggesting monolayer coverage and strong adsorbate–adsorbent affinity. Desorption trials using water, ethanol, and their mixtures resulted in low MB recovery, whereas the addition of 10% acetic acid significantly improved desorption performance. Under optimal conditions, up to 52% of the retained dye was recovered. Full article
(This article belongs to the Special Issue Advances in Biomass Chemicals: Transformation and Valorization)
Show Figures

Graphical abstract

14 pages, 2011 KiB  
Article
Circulating of In Situ Recovered Stream from Fermentation Broth as the Liquor for Lignocellulosic Biobutanol Production
by Changsheng Su, Yunxing Gao, Gege Zhang, Xinyue Zhang, Yating Li, Hongjia Zhang, Hao Wen, Wenqiang Ren, Changwei Zhang and Di Cai
Fermentation 2025, 11(8), 453; https://doi.org/10.3390/fermentation11080453 - 3 Aug 2025
Viewed by 59
Abstract
Developing a more efficient, cleaner, and energy-saving pretreatment process is the primary goal for lignocellulosic biofuels production. This study demonstrated the feasibility of circulating high-concentration acetone–butanol–ethanol (ABE) obtained via in situ product recovery (ISPR) as a pretreatment liquor. Taking ABE solvent separated from [...] Read more.
Developing a more efficient, cleaner, and energy-saving pretreatment process is the primary goal for lignocellulosic biofuels production. This study demonstrated the feasibility of circulating high-concentration acetone–butanol–ethanol (ABE) obtained via in situ product recovery (ISPR) as a pretreatment liquor. Taking ABE solvent separated from pervaporation (PV) and gas stripping (GS) as examples, results indicated that under dilute alkaline (1% NaOH) catalysis, the highly recalcitrant lignocellulosic matrices can be efficiently depolymerized, thereby improving fermentable sugars recovery in saccharification stage and ABE yield in subsequent fermentation stage. Results also revealed delignification of 91.5% (stream from PV) and 94.3% (stream from GS), with total monosaccharides recovery rates of 56.5% and 57.1%, respectively, can be realized when using corn stover as feedstock. Coupled with ABE fermentation, mass balance indicated a maximal 106.6 g of ABE (65.8 g butanol) can be produced from 1 kg of dry corn stover by circulating the GS condensate in pretreatment (the optimized pretreatment conditions were 1% w/v alkali and 160 °C for 1 h). Additionally, technical lignin with low molecular weight and narrow distribution was isolated, which enabled further side-stream valorisation. Therefore, integrating ISPR product circulation with lignocellulosic biobutanol shows strong potential for application under the concept of biorefinery. Full article
Show Figures

Figure 1

25 pages, 904 KiB  
Review
Edible Mushroom Cultivation in Liquid Medium: Impact of Microparticles and Advances in Control Systems
by Juan Carlos Ferrer Romero, Oana Bianca Oprea, Liviu Gaceu, Siannah María Más Diego, Humberto J. Morris Quevedo, Laura Galindo Alonso, Lilianny Rivero Ramírez and Mihaela Badea
Processes 2025, 13(8), 2452; https://doi.org/10.3390/pr13082452 - 2 Aug 2025
Viewed by 264
Abstract
Mushrooms are eukaryotic organisms with absorptive heterotrophic nutrition, capable of feeding on organic matter rich in cellulose and lignocellulose. Since ancient times, they have been considered allies and, in certain cultures, they were seen as magical beings or food of the gods. Of [...] Read more.
Mushrooms are eukaryotic organisms with absorptive heterotrophic nutrition, capable of feeding on organic matter rich in cellulose and lignocellulose. Since ancient times, they have been considered allies and, in certain cultures, they were seen as magical beings or food of the gods. Of the great variety of edible mushrooms identified worldwide, less than 2% are traded on the market. Although mushrooms have been valued for their multiple nutritional and healing benefits, some cultures perceive them as toxic and do not accept them in their culinary practices. Despite the existing skepticism, several researchers are promoting the potential of edible mushrooms. There are two main methods of mushroom cultivation: solid-state fermentation and submerged fermentation. The former is the most widely used and simplest, since the fungus grows in its natural environment; in the latter, the fungus grows suspended without developing a fruiting body. In addition, submerged fermentation is easily monitored and scalable. Both systems are important and have their limitations. This article discusses the main methods used to increase the performance of submerged fermentation with emphasis on the modes of operation used, types of bioreactors and application of morphological bioengineering of filamentous fungi, and especially the use of intelligent automatic control technologies and the use of non-invasive monitoring in fermentation systems thanks to the development of machine learning (ML), neural networks, and the use of big data, which will allow more accurate decisions to be made in the fermentation of filamentous fungi in submerged environments with improvements in production yields. Full article
Show Figures

Figure 1

30 pages, 2603 KiB  
Review
Sugarcane Industry By-Products: A Decade of Research Using Biotechnological Approaches
by Serafín Pérez-Contreras, Francisco Hernández-Rosas, Manuel A. Lizardi-Jiménez, José A. Herrera-Corredor, Obdulia Baltazar-Bernal, Dora A. Avalos-de la Cruz and Ricardo Hernández-Martínez
Recycling 2025, 10(4), 154; https://doi.org/10.3390/recycling10040154 - 2 Aug 2025
Viewed by 227
Abstract
The sugarcane industry plays a crucial economic role worldwide, with sucrose and ethanol as its main products. However, its processing generates large volumes of by-products—such as bagasse, molasses, vinasse, and straw—that contain valuable components for biotechnological valorization. This review integrates approximately 100 original [...] Read more.
The sugarcane industry plays a crucial economic role worldwide, with sucrose and ethanol as its main products. However, its processing generates large volumes of by-products—such as bagasse, molasses, vinasse, and straw—that contain valuable components for biotechnological valorization. This review integrates approximately 100 original research articles published in JCR-indexed journals between 2015 and 2025, of which over 50% focus specifically on sugarcane-derived agroindustrial residues. The biotechnological approaches discussed include submerged fermentation, solid-state fermentation, enzymatic biocatalysis, and anaerobic digestion, highlighting their potential for the production of biofuels, enzymes, and high-value bioproducts. In addition to identifying current advances, this review addresses key technical challenges such as (i) the need for efficient pretreatment to release fermentable sugars from lignocellulosic biomass; (ii) the compositional variability of by-products like vinasse and molasses; (iii) the generation of metabolic inhibitors—such as furfural and hydroxymethylfurfural—during thermochemical processes; and (iv) the high costs related to inputs like hydrolytic enzymes. Special attention is given to detoxification strategies for inhibitory compounds and to the integration of multifunctional processes to improve overall system efficiency. The final section outlines emerging trends (2024–2025) such as the use of CRISPR-engineered microbial consortia, advanced pretreatments, and immobilization systems to enhance the productivity and sustainability of bioprocesses. In conclusion, the valorization of sugarcane by-products through biotechnology not only contributes to waste reduction but also supports circular economy principles and the development of sustainable production models. Full article
Show Figures

Graphical abstract

18 pages, 1390 KiB  
Review
Fantastic Ferulic Acid Esterases and Their Functions
by Savvina Leontakianakou, Patrick Adlercreutz and Eva Nordberg Karlsson
Int. J. Mol. Sci. 2025, 26(15), 7474; https://doi.org/10.3390/ijms26157474 (registering DOI) - 2 Aug 2025
Viewed by 205
Abstract
Ferulic acid (FA) is one of the most abundant hydroxycinnamic acids found in plant cell walls. Its dehydrodimers play an important role in maintaining the structural rigidity of the plant cell wall. Ferulic acid esterases (FAEs) act as debranching enzymes, cleaving the ester [...] Read more.
Ferulic acid (FA) is one of the most abundant hydroxycinnamic acids found in plant cell walls. Its dehydrodimers play an important role in maintaining the structural rigidity of the plant cell wall. Ferulic acid esterases (FAEs) act as debranching enzymes, cleaving the ester bond between FA and the substituted carbohydrate moieties in FA-containing polysaccharides in the plant cell wall. This enzymatic reaction facilitates the degradation of lignocellulosic materials and is crucial for the efficient utilization of biomass resources. This review focuses on the occurrence of ferulic acid in nature and its different forms and outlines the various classification systems of FAEs, their substrate specificity, and the synergistic interactions of these enzymes with other CAZymes. Additionally, it highlights the various methods that have been developed for detecting hydroxycinnamic acids and estimating the enzyme activity, as well as the versatile applications of ferulic acid. Full article
(This article belongs to the Special Issue The Characterization and Application of Enzymes in Bioprocesses)
Show Figures

Graphical abstract

19 pages, 993 KiB  
Article
Antibacterial Properties of Submerged Cultivated Fomitopsis pinicola, Targeting Gram-Negative Pathogens, Including Borrelia burgdorferi
by Olga Bragina, Maria Kuhtinskaja, Vladimir Elisashvili, Mikheil Asatiani and Maria Kulp
Sci 2025, 7(3), 104; https://doi.org/10.3390/sci7030104 - 2 Aug 2025
Viewed by 119
Abstract
The rise in multidrug-resistant bacterial strains and persistent infections such as Lyme disease caused by Borrelia burgdorferi highlights the need for novel antimicrobial agents. The present study explores the antioxidant, antibacterial, and cytotoxic properties of extracts from submerged mycelial biomass of Fomitopsis pinicola [...] Read more.
The rise in multidrug-resistant bacterial strains and persistent infections such as Lyme disease caused by Borrelia burgdorferi highlights the need for novel antimicrobial agents. The present study explores the antioxidant, antibacterial, and cytotoxic properties of extracts from submerged mycelial biomass of Fomitopsis pinicola, cultivated in synthetic and lignocellulosic media. Four extracts were obtained using hot water and 80% ethanol. The provided analysis of extracts confirmed the presence of various bioactive compounds, including flavonoids, alkaloids, and polyphenols. All extracts showed dose-dependent antioxidant activity (IC50: 1.9–6.7 mg/mL). Antibacterial tests revealed that Klebsiella pneumoniae was most sensitive, with the L2 extract producing the largest inhibition zone (15.33 ± 0.47 mm), while the strongest bactericidal effect was observed against Acinetobacter baumannii (MBC as low as 0.5 mg/mL for L1). Notably, all extracts significantly reduced the viability of stationary-phase B. burgdorferi cells, with L2 reducing viability to 42 ± 2% at 5 mg/mL, and decreased biofilm mass, especially with S2. Cytotoxicity assays showed minimal effects on NIH 3T3 cells, with slight toxicity in HEK 293 cells for S2 and L1. These results suggest that F. pinicola extracts, particularly ethanolic L2 and S2, may offer promising natural antimicrobial and antioxidant agents for managing resistant infections. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

12 pages, 4246 KiB  
Article
Theoretical Modeling of Pathways of Transformation of Fructose and Xylose to Levulinic and Formic Acids over Single Na Site in BEA Zeolite
by Izabela Czekaj and Weronika Grzesik
Catalysts 2025, 15(8), 735; https://doi.org/10.3390/catal15080735 (registering DOI) - 1 Aug 2025
Viewed by 178
Abstract
The aim of our work is to theoretically model the conversion of C6 and C5 carbohydrates derived from lignocellulosic biomass waste into C1–C5 carboxylic acids such as levulinic, oxalic, lactic, and formic acids. Understanding the mechanism of these processes will provide the necessary [...] Read more.
The aim of our work is to theoretically model the conversion of C6 and C5 carbohydrates derived from lignocellulosic biomass waste into C1–C5 carboxylic acids such as levulinic, oxalic, lactic, and formic acids. Understanding the mechanism of these processes will provide the necessary knowledge to better plan the structure of zeolite. In this article, we focus on the theoretical modeling of two carbohydrates, representing C5 and C6, namely xylose and fructose, into levulinic acid (LE) and formic acid (FA). The modeling was carried out with the participation of Na-BEA zeolite in a hierarchical form, due to the large size of the carbohydrates. The density functional theory (DFT) method (StoBe program) was used, employing non-local generalized gradient-corrected functions according to Perdew, Burke, and Ernzerhof (RPBE) to account for electron exchange and correlation and using the nudged elastic band (NEB) method to determine the structure and energy of the transition state. The modeling was performed using cluster representations of hierarchical Na-Al2Si12O39H23 and ideal Al2Si22O64H34 beta zeolite. However, to accommodate the size of the carbohydrate molecules in reaction paths, only hierarchical Na-Al2Si12O39H23 was used. Sodium ions were positioned above the aluminum centers within the zeolite framework. Full article
(This article belongs to the Special Issue State of the Art and Future Challenges in Zeolite Catalysts)
Show Figures

Graphical abstract

30 pages, 703 KiB  
Review
Fungal Lytic Polysaccharide Monooxygenases (LPMOs): Functional Adaptation and Biotechnological Perspectives
by Alex Graça Contato and Carlos Adam Conte-Junior
Eng 2025, 6(8), 177; https://doi.org/10.3390/eng6080177 - 1 Aug 2025
Viewed by 266
Abstract
Fungal lytic polysaccharide monooxygenases (LPMOs) have revolutionized the field of biomass degradation by introducing an oxidative mechanism that complements traditional hydrolytic enzymes. These copper-dependent enzymes catalyze the cleavage of glycosidic bonds in recalcitrant polysaccharides such as cellulose, hemicellulose, and chitin, through the activation [...] Read more.
Fungal lytic polysaccharide monooxygenases (LPMOs) have revolutionized the field of biomass degradation by introducing an oxidative mechanism that complements traditional hydrolytic enzymes. These copper-dependent enzymes catalyze the cleavage of glycosidic bonds in recalcitrant polysaccharides such as cellulose, hemicellulose, and chitin, through the activation of molecular oxygen (O2) or hydrogen peroxide (H2O2). Their catalytic versatility is intricately modulated by structural features, including the histidine brace active site, surface-binding loops, and, in some cases, appended carbohydrate-binding modules (CBMs). The oxidation pattern, whether at the C1, C4, or both positions, is dictated by subtle variations in loop architecture, amino acid microenvironments, and substrate interactions. LPMOs are embedded in a highly synergistic fungal enzymatic system, working alongside cellulases, hemicellulases, lignin-modifying enzymes, and oxidoreductases to enable efficient lignocellulose decomposition. Industrial applications of fungal LPMOs are rapidly expanding, with key roles in second-generation biofuels, biorefineries, textile processing, food and feed industries, and the development of sustainable biomaterials. Recent advances in genome mining, protein engineering, and heterologous expression are accelerating the discovery of novel LPMOs with improved functionalities. Understanding the balance between O2- and H2O2-driven mechanisms remains critical for optimizing their catalytic efficiency while mitigating oxidative inactivation. As the demand for sustainable biotechnological solutions grows, this narrative review highlights how fungal LPMOs function as indispensable biocatalysts for the future of the Circular Bioeconomy and green industrial processes. Full article
Show Figures

Figure 1

13 pages, 6965 KiB  
Article
Direct Isolation of Carboxylated Cellulose Nanocrystals from Lignocellulose Source
by Thai Anh Do, Luong Lam Nguyen, Thuy Khue Nguyen Thi and Van Quyen Nguyen
Polymers 2025, 17(15), 2124; https://doi.org/10.3390/polym17152124 - 31 Jul 2025
Viewed by 232
Abstract
In this study, we report an effective, one-step chemical treatment to directly isolate carboxylated cellulose nanocrystals (CCNCs) from a lignocellulosic source using a mixture of peracetic acid and 10% H2SO4 solution. We used infrared spectroscopy, X-ray diffraction, dynamic light scattering, [...] Read more.
In this study, we report an effective, one-step chemical treatment to directly isolate carboxylated cellulose nanocrystals (CCNCs) from a lignocellulosic source using a mixture of peracetic acid and 10% H2SO4 solution. We used infrared spectroscopy, X-ray diffraction, dynamic light scattering, atomic force microscopy, and scanning electron microscopy to characterize all the materials. The obtained CCNCs exhibited needle-like shapes with a width of 10–50 nm and a length of 200–500 nm, a high crystalline index (71.3%), and a high content of -COOH groups (~1.405 mmol/g), with a zeta potential value of −48.5 mV. We attributed this to the cooperative effect of strong oxidative agent and strong acid, which makes the removal of all components occur simultaneously in parallel with the partial hydrolysis of amorphous cellulose regions. Our study opens a new, simple approach to directly isolate cellulose nanocrystals from a lignocellulosic source. Full article
(This article belongs to the Special Issue Sustainable Polymers for a Circular Economy)
Show Figures

Figure 1

16 pages, 2657 KiB  
Article
Damage Analysis and a Novel Mathematical Relation Between the Interface Quality and the Impact Fracture Energy for Epoxy Composites Reinforced with Medium and High Ramie Woven Fabric Volume Fractions
by Marcelo Vitor Ferreira Machado, Felipe Perissé Duarte Lopes, Noan Tonini Simonassi, Eduardo Atem de Carvalho, Carlos Maurício Fontes Vieira and Sergio Neves Monteiro
Polymers 2025, 17(15), 2105; https://doi.org/10.3390/polym17152105 - 31 Jul 2025
Viewed by 215
Abstract
A literature review about polymer composites reveals that natural fibers have been widely used as a reinforcement phase in recent years. In this framework, the lignocellulosic fibers have received marked attention because of their environmental, thermomechanical, and economic advantages for many industrial sectors. [...] Read more.
A literature review about polymer composites reveals that natural fibers have been widely used as a reinforcement phase in recent years. In this framework, the lignocellulosic fibers have received marked attention because of their environmental, thermomechanical, and economic advantages for many industrial sectors. This research aims to identify the impact behavior of ramie reinforced epoxy composites with medium- and high-volume fractions of fibers in intact (nonaged) and aged conditions as well as to analyze if the influence of interface quality on the impact fracture energy can be described by a novel mathematical model. To reach these objectives, the study is designed with three groups (40%, 50%, and 60% of fiber theoretical volume fractions) of intact specimens and three groups of aged samples by condensation and ultraviolet radiation (C-UV) simulation containing the same fiber percentages. Consecutively, impact strength and fracture surface analyses are done to expand the comprehension of the damage mechanisms suffered by the biocomposites and to support the development of the mathematical relation. Certainly, this novel model can contribute to more sustainable and greener industries in the near future. Full article
(This article belongs to the Special Issue Biodegradable Polymer Composites, 2nd Edition)
Show Figures

Figure 1

16 pages, 1196 KiB  
Article
Sustainable Bioconversion of Cashew Apple Bagasse Hemicellulosic Hydrolysate into Xylose Reductase and Xylitol by Candida tropicalis ATCC 750: Impact of Aeration and Fluid Dynamics
by Juliana de França Serpa, Franciandro Dantas dos Santos, Carlos Eduardo Alves Soares, Benevides Costa Pessela and Maria Valderez Ponte Rocha
Appl. Microbiol. 2025, 5(3), 75; https://doi.org/10.3390/applmicrobiol5030075 (registering DOI) - 30 Jul 2025
Viewed by 162
Abstract
This study aimed to evaluate the production of xylose reductase (XR), an enzyme responsible for converting xylose into xylitol, by Candida tropicalis ATCC 750 using hemicellulosic hydrolysate from cashew apple bagasse (CABHM) as a low-cost carbon source. The effects of temperature, aeration, and [...] Read more.
This study aimed to evaluate the production of xylose reductase (XR), an enzyme responsible for converting xylose into xylitol, by Candida tropicalis ATCC 750 using hemicellulosic hydrolysate from cashew apple bagasse (CABHM) as a low-cost carbon source. The effects of temperature, aeration, and fluid dynamics on XR biosynthesis were also investigated. The highest XR production (1.53 U mL−1) was achieved at 30 °C, with 8.3 g·L−1 of xylitol produced by the yeast under microaerobic conditions, demonstrating that aeration and fluid dynamics are important factors in this process. Cellular metabolism and enzyme production decreased at temperatures above 35 °C. The maximum enzymatic activity was observed at pH 7.0 and 50 °C. XR is a heterodimeric protein with a molecular mass of approximately 30 kDa. These results indicate that CABHM is a promising substrate for XR production by C. tropicalis, contributing to the development of enzymatic bioprocesses for xylitol production from lignocellulosic biomass. This study also demonstrates the potential of agro-industrial residues as sustainable feedstocks in biorefineries, aligning with the principles of a circular bioeconomy. Full article
Show Figures

Figure 1

37 pages, 4320 KiB  
Article
Proof of Concept for Enhanced Sugar Yields and Inhibitors Reduction from Aspen Biomass via Novel, Single-Step Nitrogen Explosive Decompression (NED 3.0) Pretreatment Method
by Damaris Okafor, Lisandra Rocha-Meneses, Vahur Rooni and Timo Kikas
Energies 2025, 18(15), 4026; https://doi.org/10.3390/en18154026 - 29 Jul 2025
Viewed by 236
Abstract
The transition to sustainable energy sources has intensified interest in lignocellulosic biomass (LCB) as a feedstock for second-generation biofuels. However, the inherent structural recalcitrance of LCB requires the utilization of an effective pretreatment to enhance enzymatic hydrolysis and subsequent fermentation yields. This manuscript [...] Read more.
The transition to sustainable energy sources has intensified interest in lignocellulosic biomass (LCB) as a feedstock for second-generation biofuels. However, the inherent structural recalcitrance of LCB requires the utilization of an effective pretreatment to enhance enzymatic hydrolysis and subsequent fermentation yields. This manuscript presents a novel, single-step, and optimized nitrogen explosive decompression system (NED 3.0) designed to address the critical limitations of earlier NED versions by enabling the in situ removal of inhibitory compounds from biomass slurry and fermentation inefficiency at elevated temperatures, thereby reducing or eliminating the need for post-treatment detoxification. Aspen wood (Populus tremula) was pretreated by NED 3.0 at 200 °C, followed by enzymatic hydrolysis and fermentation. The analytical results confirmed substantial reductions in common fermentation inhibitors, such as acetic acid (up to 2.18 g/100 g dry biomass) and furfural (0.18 g/100 g dry biomass), during early filtrate recovery. Hydrolysate analysis revealed a glucose yield of 26.41 g/100 g dry biomass, corresponding to a hydrolysis efficiency of 41.3%. Fermentation yielded up to 8.05 g ethanol/100 g dry biomass and achieved a fermentation efficiency of 59.8%. Inhibitor concentrations in both hydrolysate and fermentation broth remained within tolerable limits, allowing for effective glucose release and sustained fermentation performance. Compared with earlier NED configurations, the optimized system improved sugar recovery and ethanol production. These findings confirm the operational advantages of NED 3.0, including reduced inhibitory stress, simplified process integration, and chemical-free operation, underscoring its potential for scalability in line with the EU Green Deal for bioethanol production from woody biomass. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

18 pages, 2342 KiB  
Article
Simplified, High Yielding Extraction of Xylan/Xylo-Oligosaccharides from Palmaria palmata: The Importance of the Algae Preservation Treatment
by Diogo Coelho, Diogo Félix Costa, Mário Barroca, Sara Alexandra Cunha, Maria Manuela Pintado, Helena Abreu, Margarida Martins and Tony Collins
Mar. Drugs 2025, 23(8), 302; https://doi.org/10.3390/md23080302 - 29 Jul 2025
Viewed by 149
Abstract
The complex plant cell wall heteropolysaccharide xylan, and its breakdown products xylo-oligosaccharides and xylose, are value-added compounds with a plethora of potential applications in diverse areas. They are nonetheless currently poorly exploited, with a major bottleneck being the unavailability of efficient, low-cost, high-yield [...] Read more.
The complex plant cell wall heteropolysaccharide xylan, and its breakdown products xylo-oligosaccharides and xylose, are value-added compounds with a plethora of potential applications in diverse areas. They are nonetheless currently poorly exploited, with a major bottleneck being the unavailability of efficient, low-cost, high-yield production processes. The major objective of the present study is to identify and characterise a high-yield process for the preparation of highly pure xylan/XOS products from the macroalga Palmaria palmata. Currently, most xylan is extracted from land-sourced lignocellulosic feedstocks, but we take advantage of the high xylan content, xylan aqueous solubility, lignin-free nature, weakly linked cell wall matrix, and sustainability of the macroalga to identify a simple, sustainable, high-yield, novel-xylan-structure extraction process. This is composed of five steps: alga oven drying, milling, aqueous extraction, centrifugation, and dialysis, and we show that the alga preservation step plays a critical role in component extractability, with oven drying at high temperatures, ~100 °C, enhancing the subsequent aqueous extraction process, and providing for xylan yields as high as 80% of a highly pure (~90%) xylan product. The process developed herein and the insights gained will promote a greater availability of these bioactive compounds and open up their application potential. Full article
Show Figures

Figure 1

Back to TopTop