Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,144)

Search Parameters:
Keywords = lignin applications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1250 KiB  
Review
Lignin Waste Valorization in the Bioeconomy Era: Toward Sustainable Innovation and Climate Resilience
by Alfonso Trezza, Linta Mahboob, Anna Visibelli, Michela Geminiani and Annalisa Santucci
Appl. Sci. 2025, 15(14), 8038; https://doi.org/10.3390/app15148038 - 18 Jul 2025
Abstract
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived [...] Read more.
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived carbon materials are offering scalable, low-cost alternatives to critical raw materials in batteries and supercapacitors. In agriculture, lignin-based biostimulants and controlled-release fertilizers support resilient, low-impact food systems. Cosmetic and pharmaceutical industries are leveraging lignin’s antioxidant, UV-protective, and antimicrobial properties to create bio-based, clean-label products. In water purification, lignin-based adsorbents are enabling efficient and biodegradable solutions for persistent pollutants. These technological leaps are not merely incremental, they represent a paradigm shift toward a materials economy powered by renewable carbon. Backed by global sustainability roadmaps like the European Green Deal and China’s 14th Five-Year Plan, lignin is moving from industrial residue to strategic asset, driven by unprecedented investment and cross-sector collaboration. Breakthroughs in lignin upgrading, smart formulation, and application-driven design are dismantling long-standing barriers to scale, performance, and standardization. As showcased in this review, lignin is no longer just a promising biopolymer, it is a catalytic force accelerating the global transition toward circularity, climate resilience, and green industrial transformation. The future of sustainable innovation is lignin-enabled. Full article
(This article belongs to the Special Issue Biosynthesis and Applications of Natural Products)
13 pages, 5908 KiB  
Article
Experimental Study on the Strength Characteristics of Modified Guilin Red Clay
by Wenwu Chen, Zhigao Xie, Jiguang Chen, Mengyao Hong, Xiaobo Wang, Haofeng Zhou and Bai Yang
Buildings 2025, 15(14), 2533; https://doi.org/10.3390/buildings15142533 - 18 Jul 2025
Abstract
To address the engineering challenges associated with Guilin red clay, such as its potentially low strength and unfavorable mechanical behavior, this study investigated the effectiveness of lignin and lime as modifiers. Consolidation undrained triaxial tests and scanning electron microscopy (SEM) were employed to [...] Read more.
To address the engineering challenges associated with Guilin red clay, such as its potentially low strength and unfavorable mechanical behavior, this study investigated the effectiveness of lignin and lime as modifiers. Consolidation undrained triaxial tests and scanning electron microscopy (SEM) were employed to evaluate the strength characteristics and microstructural changes in modified clay specimens with varying dosages. The results demonstrate distinct strengthening mechanisms: Lignin exhibits an optimal dosage (6%), significantly increasing cohesion and internal friction angle through physical reinforcement (“soil fiber” formation), but higher dosages (8%) lead to particle separation and strength reduction. In contrast, lime provides continuous and substantial strength enhancement with increasing dosage (up to 8%), primarily through chemical reactions producing cementitious compounds (e.g., C-S-H, C-A-H) that densify the structure. Consequently, lime-modified clay shows significantly higher cohesion and internal friction angle compared to lignin-modified clay at equivalent or higher dosages, with corresponding stress–strain curves shifting from enhanced (strain-hardening) to softening behavior. These findings provide practical insights into red clay improvement in geotechnical engineering applications. Full article
(This article belongs to the Special Issue Advances in Soil–Geosynthetic Composite Materials)
Show Figures

Figure 1

18 pages, 3809 KiB  
Article
Innovative In Situ Interfacial Co-Assembled Lignin/Chitosan Nanoparticles—Green Synthesis, Physicochemical Characterization, In Vitro Release, and Intermolecular Interactions
by Zhani Yanev, Denitsa Georgieva, Silviya Hristova, Milena Tzanova, Denitsa Nicheva, Boika Andonova-Lilova, Tzvetelina Zagorcheva, Diyana Vladova, Neli Grozeva and Zvezdelina Yaneva
Int. J. Mol. Sci. 2025, 26(14), 6883; https://doi.org/10.3390/ijms26146883 - 17 Jul 2025
Abstract
In the present study, novel conjugated lignin/chitosan nanoparticles (LCNPs) were synthesized by a first-time simple green methodology using interfacial co-assembly between both biopolymers. The physicochemical (ζ-potential, size, concentration of surface acidic/basic groups), structural (surface functional groups), and morphological characteristics of the blank and [...] Read more.
In the present study, novel conjugated lignin/chitosan nanoparticles (LCNPs) were synthesized by a first-time simple green methodology using interfacial co-assembly between both biopolymers. The physicochemical (ζ-potential, size, concentration of surface acidic/basic groups), structural (surface functional groups), and morphological characteristics of the blank and quercetin-encapsulated (Q-LCNPs) nanoparticles were analyzed by the Boehm method, Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The experimentally determined encapsulation capacity was satisfactory—95.75%. The in vitro quercetin release efficiency in acidic solution that simulated the gastric microenvironment was 21.9%, followed by 68.5% and 99.8% cumulative release efficiency in simulated intestinal media at pH 7.4 and 6.8, respectively. The satisfactory applicability of the Weibull and sigmoidal mathematical models towards the experimental in vitro release data was indicative of the remarkable roles of diffusion and relaxation mechanisms. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

17 pages, 900 KiB  
Review
Cellulose Nanofibril-Based Biodegradable Polymers from Maize Husk: A Review of Extraction, Properties, and Applications
by Nthabiseng Motshabi, Gaofetoge Gobodiwang Lenetha, Moipone Alice Malimabe and Thandi Patricia Gumede
Polymers 2025, 17(14), 1947; https://doi.org/10.3390/polym17141947 - 16 Jul 2025
Viewed by 127
Abstract
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with [...] Read more.
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with cellulose nanofibrils (CNFs) has shown promise, yet most research focuses on conventional sources like wood pulp and cotton, neglecting agricultural residues. This review addresses the potential of maize husk, a lignocellulosic waste abundant in South Africa, as a source of CNFs. It evaluates the literature on the structure, extraction, characterisation, and integration of maize husk-derived CNFs into biodegradable polymers. The review examines the chemical composition, extraction methods, and key physicochemical properties that affect performance when blended with PLA, PBS, or PCL. However, high lignin content and heterogeneity pose extraction and dispersion challenges. Optimised maize husk CNFs can enhance the mechanical strength, barrier properties, and thermal resistance of biopolymer systems. This review highlights potential applications in packaging, biomedical, and agricultural sectors, aligning with South African bioeconomic goals. It concludes by identifying research priorities for improving compatibility and processing at an industrial scale, paving the way for maize husk CNFs as effective, locally sourced reinforcements in green material innovation. Full article
Show Figures

Figure 1

16 pages, 2358 KiB  
Article
Enhancing Polycaprolactone with Levulinic Acid-Extracted Lignin: Toward Sustainable Bio-Based Polymer Blends
by Elodie Melro, Hugo Duarte, Filipe E. Antunes, Artur J. M. Valente, Anabela Romano and Bruno Medronho
J. Compos. Sci. 2025, 9(7), 366; https://doi.org/10.3390/jcs9070366 - 14 Jul 2025
Viewed by 88
Abstract
The growing demand for sustainable materials has intensified the search for biodegradable polymers. Poly(ε-caprolactone) (PCL), though biodegradable, is fossil-derived. In this study, a novel lignin extracted from pine wood using a green solvent was incorporated into PCL and compared with commercial lignins (dealkaline, [...] Read more.
The growing demand for sustainable materials has intensified the search for biodegradable polymers. Poly(ε-caprolactone) (PCL), though biodegradable, is fossil-derived. In this study, a novel lignin extracted from pine wood using a green solvent was incorporated into PCL and compared with commercial lignins (dealkaline, alkaline, and lignosulfonate). The lignin additions imparted antioxidant properties, enhanced thermal stability, and promoted circular economy goals through lignin valorization. Notably, the green-extracted lignin showed superior compatibility with PCL when compared with commercial lignins, as evidenced by lower water uptake and solubility, and improved surface hydrophobicity (higher contact angle). Although the addition of lignin reduced the tensile strength and elongation at break, it greatly increased the PCL radical scavenging activity (DPPH) from 8 ± 1% of neat PCL to 94.8 ± 0.3% when 20 wt% of lignin-LA was added. Among the tested lignins, lignin-LA stands out as the most promising candidate to be applied as a functional additive in biodegradable polymer blends and composites for advanced sustainable applications. Not only given its intrinsically higher sustainability but also due to its capacity for improving the thermal properties of PCL–lignin blends. Full article
Show Figures

Figure 1

21 pages, 3238 KiB  
Article
Fingerprinting Agro-Industrial Waste: Using Polysaccharides from Cell Walls to Biomaterials
by Débora Pagliuso, Adriana Grandis, Amanda de Castro Juraski, Adriano Rodrigues Azzoni, Maria de Lourdes Teixeira de Morais Polizeli, Helio Henrique Villanueva, Guenther Carlos Krieger Filho and Marcos Silveira Buckeridge
Sustainability 2025, 17(14), 6362; https://doi.org/10.3390/su17146362 - 11 Jul 2025
Viewed by 174
Abstract
Climate change resulting from human development necessitates increased land use, food, and energy consumption, underscoring the need for sustainable development. Incorporating various feedstocks into value-added liquid fuels and bioproducts is essential for achieving sustainability. Most biomass consists of cell walls, which serve as [...] Read more.
Climate change resulting from human development necessitates increased land use, food, and energy consumption, underscoring the need for sustainable development. Incorporating various feedstocks into value-added liquid fuels and bioproducts is essential for achieving sustainability. Most biomass consists of cell walls, which serve as a primary carbon source for bioenergy and biorefinery processes. This structure contains a cellulose core, where lignin and hemicelluloses are crosslinked and embedded in a pectin matrix, forming diverse polysaccharide architectures across different species and tissues. Nineteen agro-industrial waste products were analyzed for their potential use in a circular economy. The analysis included cell wall composition, saccharification, and calorific potential. Thermal capacity and degradation were similar among the evaluated wastes. The feedstocks of corn cob, corn straw, soybean husk, and industry paper residue exhibited a higher saccharification capacity despite having lower lignin and uronic acid contents, with cell walls comprising 30% glucose and 60% xylose. Therefore, corn, soybeans, industrial paper residue, and sugarcane are more promising for bioethanol production. Additionally, duckweed, barley, sorghum, wheat, rice, bean, and coffee residues could serve as feedstocks for other by-products in green chemistry, generating valuable products. Our findings show that agro-industrial residues display a variety of polymers that are functional for various applications in different industry sectors. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

21 pages, 4000 KiB  
Article
Structure-Properties Correlations of PVA-Cellulose Based Nanocomposite Films for Food Packaging Applications
by Konstantinos Papapetros, Georgios N. Mathioudakis, Dionysios Vroulias, Nikolaos Koutroumanis, George A. Voyiatzis and Konstantinos S. Andrikopoulos
Polymers 2025, 17(14), 1911; https://doi.org/10.3390/polym17141911 - 10 Jul 2025
Viewed by 232
Abstract
Bio-nanocomposites based on poly (vinyl alcohol) (PVA) and cellulosic nanostructures are favorable for active food packaging applications. The current study systematically investigates the mechanical properties, gas permeation, and swelling parameters of PVA composites with cellulose nanocrystals (CNC) or nano lignocellulose (NLC) fibers. Alterations [...] Read more.
Bio-nanocomposites based on poly (vinyl alcohol) (PVA) and cellulosic nanostructures are favorable for active food packaging applications. The current study systematically investigates the mechanical properties, gas permeation, and swelling parameters of PVA composites with cellulose nanocrystals (CNC) or nano lignocellulose (NLC) fibers. Alterations in these macroscopic properties, which are critical for food packaging applications, are correlated with structural information at the molecular level. Strong interactions between the fillers and polymer host matrix were observed, while the PVA crystallinity exhibited a maximum at ~1% loading. Finally, the orientation of the PVA nanocrystals in the uniaxially stretched samples was found to depend non-monotonically on the CNC loading and draw ratio. Concerning the macroscopic properties of the composites, the swelling properties were reduced for the D1 food simulant, while for water, a considerable decrease was observed only when high NLC loadings were involved. Furthermore, although the water vapor transmission rates are roughly similar for all samples, the CO2, N2, and O2 gas permeabilities are low, exhibiting further decrease in the 1% and 1–5% loading for CNC and NLC composites, respectively. The mechanical properties were considerably altered as a consequence of the good dispersion of the filler, increased crystallinity of the polymer matrix, and morphology of the filler. Thus, up to ~50%/~170% enhancement of the Young’s modulus and up to ~20%/~50% enhancement of the tensile strength are observed for the CNC/NLC composites. Interestingly, the elongation at break is also increased by ~20% for CNC composites, while it is reduced by ~40% for the NLC composites, signifying the favorable/unfavorable interactions of cellulose/lignin with the matrix. Full article
(This article belongs to the Special Issue Cellulose and Its Composites: Preparation and Applications)
Show Figures

Figure 1

20 pages, 2249 KiB  
Article
Cellulolytic Potential of Newly Isolated Alcohol-Tolerant Bacillus methylotrophicus
by Anna Choińska-Pulit, Justyna Sobolczyk-Bednarek and Wojciech Łaba
Materials 2025, 18(14), 3256; https://doi.org/10.3390/ma18143256 - 10 Jul 2025
Viewed by 215
Abstract
Reprocessing lignocellulosic waste to obtain new products for industrial purposes is a vital part of circular economy. This paper reports the cellulase production by newly isolated Bacillus methylotrophicus cultured on lignocellulosic agro-industrial by-products, out of which brewer’s spent grain (BSG) was selected as [...] Read more.
Reprocessing lignocellulosic waste to obtain new products for industrial purposes is a vital part of circular economy. This paper reports the cellulase production by newly isolated Bacillus methylotrophicus cultured on lignocellulosic agro-industrial by-products, out of which brewer’s spent grain (BSG) was selected as most beneficial. Plackett–Burman design was used for screening medium components, while Box–Behnken design was further applied to model the impact of the three most influential variables. The maximum approximated cellulase activity was 0.469 U/mL (1 U = 1 µmol of reducing sugars/1 min), at 48.6 g/L substrate, 5.3 g/L ammonium sulfate, pH 6.1. The partially purified cellulase was characterized, which demonstrated broad range of optimal pH (6.5–9.4), temperature (50–60 °C), and sensitivity to metals. Changes in lignin and pentosans content was demonstrated as a result of BSG hydrolysis with a cell-free cellulase preparation. The produced enzyme was used for hydrolysis of various chemically pretreated (NaOH and H2SO4) cellulosic substrates, where for reused alkali-pretreated BSG (after microbial enzyme production) the saccharification efficiency was at a level of 25%. The cellulolytic potential of the bacterial strain, along with its resistance to ethanol, present a beneficial combination, potentially applicable to aid saccharification of lignocellulosic by-products for biofuel production. Full article
(This article belongs to the Special Issue Biomass Materials Recycling: Utilization and Valorisation)
Show Figures

Figure 1

18 pages, 781 KiB  
Article
Technical Lignins Antibacterial Effects Against Environmental Mastitis Pathogens Across Various Levels of Bedding Cleanliness In Vitro
by Godloves M. Oppong, Diana C. Reyes, Zhengxin Ma, Santiago A. Rivera, Marjorie A. Killerby, Diego Zamudio, Anne B. Lichtenwalner and Juan J. Romero
Molecules 2025, 30(14), 2904; https://doi.org/10.3390/molecules30142904 - 9 Jul 2025
Viewed by 196
Abstract
This study aimed to evaluate the antibacterial activity of several technical lignins against major environmental bacteria that cause mastitis in dairy cattle. The efficacy of four types of technical lignins against environmental mastitis pathogens was evaluated using MIC and MBC assays. The best [...] Read more.
This study aimed to evaluate the antibacterial activity of several technical lignins against major environmental bacteria that cause mastitis in dairy cattle. The efficacy of four types of technical lignins against environmental mastitis pathogens was evaluated using MIC and MBC assays. The best candidate, sodium lignosulfonate (NaL-O), was further tested using sawdust bedding substrates. Substrates were prepared in different cleanliness conditions: sawdust only, sawdust plus urine, sawdust plus feces, or sawdust plus a combination of both. The antimicrobial activity of NaL-O against the mixture of environmental mastitis-causing pathogens was determined on days 0, 2, and 6 of incubation. In addition, the components of bedding substrates were analyzed to help understand the dynamics of pathogen loads. In the MIC and MBC assays, NaL-O showed the best antimicrobial performance against all pathogens except Escherichia coli. When testing in the bedding substrates, the addition of NaL-O decreased the concentration of Staphylococcus chromogenes, Streptococcus uberis, and Pseudomonas aeruginosa across all bedding cleanliness levels at d 0, 2, and 6 of incubation. As the incubation time increased, the antimicrobial effect decreased. NaL-O also lowered the counts of E. coli and Klebsiella pneumoniae across all incubation times, but to a lesser extent. The presence of feces significantly reduced the antibacterial effects of NaL-O for these two bacteria. Among the technical lignins tested, NaL-O showed the broadest antibacterial activity against the mastitis pathogens tested. This study suggests that NaL-O has promising potential as a bedding conditioner to control environmental pathogens on dairies due to its low cost, ready availability, and compatibility with sustainable livestock practices. Combined with bedding cleanliness, bedding conditioner application may play a crucial role in reducing the growth of EM pathogens and subsequent mastitis incidence. Full article
Show Figures

Figure 1

18 pages, 4549 KiB  
Article
Efficiency Determination of Water Lily (Eichhornia crassipes) Fiber Delignification by Electrohydrolysis Using Different Electrolytes
by R. Sanchez-Torres, E. Onofre Bustamante, T. Pérez López and A. C. Espindola-Flores
Recycling 2025, 10(4), 130; https://doi.org/10.3390/recycling10040130 - 1 Jul 2025
Viewed by 206
Abstract
Nowadays, biomass use has increased due to it being the most abundant raw material on the planet, and treating it is a difficult task, as a result of the number of existing methods and the applications’ diversification. This research work shows the results [...] Read more.
Nowadays, biomass use has increased due to it being the most abundant raw material on the planet, and treating it is a difficult task, as a result of the number of existing methods and the applications’ diversification. This research work shows the results obtained using different delignification methods (physical and chemical) on water lily ((Eichhornia crassipes) fiber lignocellulosic biomass including a seldom exploited method, known as “electrohydrolysis” in order to determinate the removal efficiency of lignin and hemicellulose. The characterization of the physicochemical and morphological properties of the water lily (Eichhornia crassipes) fiber before and after the pretreatments were applied were by means of Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD) and optical microscopy (OM). The results of FT-IR show a significant decrease in the bands associated with lignin and hemicellulose. By XRD, it was determined that the crystallinity of the cellulose increased by 60% for the treated samples with respect to the reference, and an increase in the surface roughness of the samples was observed by OM. In conclusion, it was determined that electrochemistry delignification is an efficient, environmentally friendly methodology to remove the soluble sugars, opening the possibility to use the water lily (Eichhornia crassipes) fiber to produce a green concrete. Full article
(This article belongs to the Special Issue Biomass Revival: Rethinking Waste Recycling for a Greener Future)
Show Figures

Figure 1

29 pages, 5081 KiB  
Article
Production, Characterization, and Application of KOH-Activated Biochar from Rice Straw for Azo Dye Adsorption
by Megananda Eka Wahyu, Damayanti Damayanti and Ho Shing Wu
Biomass 2025, 5(3), 40; https://doi.org/10.3390/biomass5030040 - 1 Jul 2025
Viewed by 314
Abstract
This study explored the production and activation of biochar from rice straw residue for dye adsorption applications. Rice straw, a widely available but underutilized biomass, was processed to isolate lignin and generate biochar through pyrolysis at 450 °C and 550 °C. Activation using [...] Read more.
This study explored the production and activation of biochar from rice straw residue for dye adsorption applications. Rice straw, a widely available but underutilized biomass, was processed to isolate lignin and generate biochar through pyrolysis at 450 °C and 550 °C. Activation using chemical agents (e.g., KOH and NaOH) was performed to enhance surface area and porosity. Among the tested conditions, KOH activation at a char-to-agent ratio of 1:3 produced activated carbon at 800 °C with the highest BET surface area (835.2 m2/g), and high fixed carbon (44.4%) after HCl washing. Thermogravimetric analysis was used to investigate pyrolysis kinetics, with activation energies determined using the Kissinger, Flynn–Wall–Ozawa, and Kissinger–Akahira–Sunose models. The brown solid showed a higher activation energy (264 kJ/mol) compared to isolated lignin (194 kJ/mol), indicating that more energy is required for decomposition. The AC was evaluated for the adsorption of methylene blue (MB) and methyl orange (MO) from aqueous solutions. Both dyes followed the Langmuir isotherm model, indicating that monolayer adsorption occurred. The maximum adsorption capacities reached 222 mg/g for MB and 244 mg/g for MO at 303 K, with higher values at elevated temperatures. Adsorption followed a pseudo-second-order kinetic model and was governed by a physisorption mechanism, as supported by thermodynamic analysis (ΔH < 20 kJ/mol and Ea < 40 kJ/mol). These findings demonstrate that KOH-activated biochar from rice straw residue is a high-performance, low-cost adsorbent for dye removal, contributing to sustainable biomass utilization and wastewater treatment. Full article
Show Figures

Figure 1

50 pages, 8944 KiB  
Review
Fire-Resistant Coatings: Advances in Flame-Retardant Technologies, Sustainable Approaches, and Industrial Implementation
by Rutu Patel, Mayankkumar L. Chaudhary, Yashkumar N. Patel, Kinal Chaudhari and Ram K. Gupta
Polymers 2025, 17(13), 1814; https://doi.org/10.3390/polym17131814 - 29 Jun 2025
Viewed by 831
Abstract
Fire-resistant coatings have emerged as crucial materials for reducing fire hazards in various industries, including construction, textiles, electronics, and aerospace. This review provides a comprehensive account of recent advances in fire-resistant coatings, emphasizing environmentally friendly and high-performance systems. Beginning with a classification of [...] Read more.
Fire-resistant coatings have emerged as crucial materials for reducing fire hazards in various industries, including construction, textiles, electronics, and aerospace. This review provides a comprehensive account of recent advances in fire-resistant coatings, emphasizing environmentally friendly and high-performance systems. Beginning with a classification of traditional halogenated and non-halogenated flame retardants (FRs), this article progresses to cover nitrogen-, phosphorus-, and hybrid-based systems. The synthesis methods, structure–property relationships, and fire suppression mechanisms are critically discussed. A particular focus is placed on bio-based and waterborne formulations that align with green chemistry principles, such as tannic acid (TA), phytic acid (PA), lignin, and deep eutectic solvents (DESs). Furthermore, the integration of nanomaterials and smart functionalities into fire-resistant coatings has demonstrated promising improvements in thermal stability, char formation, and smoke suppression. Applications in real-world contexts, ranging from wood and textiles to electronics and automotive interiors, highlight the commercial relevance of these developments. This review also addresses current challenges such as long-term durability, environmental impacts, and the standardization of performance testing. Ultimately, this article offers a roadmap for developing safer, sustainable, and multifunctional fire-resistant coatings for future materials engineering. Full article
(This article belongs to the Special Issue Flame-Retardant Polymer Composites II)
Show Figures

Figure 1

19 pages, 2806 KiB  
Article
Characterization, Combustion Behaviour, and Kinetic and Thermodynamic Modelling of Mango Peel as a Potential Biomass Feedstock
by Mohamed Anwar Ismail, Ibrahim Dubdub, Suleiman Mousa, Zaid Abdulhamid Alhulaybi Albin Zaid and Majdi Ameen Alfaiad
Polymers 2025, 17(13), 1799; https://doi.org/10.3390/polym17131799 - 27 Jun 2025
Viewed by 267
Abstract
Mango peel (MP), an abundant agro-industrial residue, was evaluated as a solid biofuel using combined physicochemical characterisation and non-isothermal thermogravimetric kinetics (TGA). Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) revealed hydroxyl-rich surfaces and porous microstructures. Thermogravimetric combustion, conducted [...] Read more.
Mango peel (MP), an abundant agro-industrial residue, was evaluated as a solid biofuel using combined physicochemical characterisation and non-isothermal thermogravimetric kinetics (TGA). Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) revealed hydroxyl-rich surfaces and porous microstructures. Thermogravimetric combustion, conducted at heating rates of 20–80 K min−1, displayed three distinct stages. These stages correspond to dehydration (330–460 K), hemicellulose/cellulose oxidation (420–590 K), and cellulose/lignin oxidation (540–710 K). Kinetic analysis using six model-free methods (Friedman (FR), Flynn–Wall–Ozawa (FWO), Kissinger–Akahira–Sunose (KAS), Starink (STK), Kissinger (K), and Vyazovkin (VY)) yielded activation energies (Ea) of 52–197 kJ mol−1, increasing with conversion (mean Ea ≈ 111 kJ mol−1). Coats–Redfern (CR) fitting confirmed a three-dimensional diffusion mechanism (D3, R2 > 0.99). Thermodynamic analysis revealed that the formation of the activated complex is endothermic, with activation enthalpy (ΔH) values of 45–285 kJ mol−1. The process was found to be non-spontaneous under the studied conditions, with Gibbs free energy (ΔG) values ranging from 83 to 182 kJ mol−1. With a high heating value (HHV) of 21.9 MJ kg−1 and favourable combustion kinetics, MP is a promising supplementary fuel for industrial biomass boilers. However, its high potassium oxide (K2O) content requires dedicated ash management strategies to mitigate slagging risks, a key consideration for its practical, large-scale application. Full article
(This article belongs to the Special Issue Advances in Cellulose and Wood-Based Composites)
Show Figures

Figure 1

15 pages, 1827 KiB  
Article
Hydrothermal Pretreatment Unlocks Waste Paper’s Sugar Potential: Enhanced Enzymatic Saccharification via Lignin Removal and Cellulose Decrystallization
by Hongzhi Ma, Pin Lv, Jian Yang, Yong Liang, Shuang Wu, Juncheng Song, Xiaobin Yang and Dayi Qian
Processes 2025, 13(7), 1994; https://doi.org/10.3390/pr13071994 - 24 Jun 2025
Viewed by 361
Abstract
Waste paper, with its high cellulose and hemicellulose content, represents a promising bioresource for producing fermentable sugars in biorefining processes. In this study, five types of waste paper were analyzed for cellulose content, and tissue paper (TP), exhibiting the highest cellulose content, was [...] Read more.
Waste paper, with its high cellulose and hemicellulose content, represents a promising bioresource for producing fermentable sugars in biorefining processes. In this study, five types of waste paper were analyzed for cellulose content, and tissue paper (TP), exhibiting the highest cellulose content, was selected for hydrothermal pretreatment. Optimal pretreatment conditions were determined through single-factor experiments: 160 °C, water as the solvent, and a retention time of 50 min, corresponding to a severity factor (SF) of 3.47. Under these conditions, the reducing sugar yield from pretreated TP reached 0.61 g sugar/g paper, a 38.64% increase compared to untreated TP. The enhancement was attributed to lignin solubilization, disruption of crystalline cellulose regions, and increased specific surface area. These findings demonstrate the effectiveness of hydrothermal pretreatment in improving the enzymatic digestibility of waste paper for biorefining applications. Full article
Show Figures

Figure 1

26 pages, 2941 KiB  
Article
A Fungi-Driven Sustainable Circular Model Restores Saline Coastal Soils and Boosts Farm Returns
by Fei Bian, Yonghui Wang, Haixia Ren, Luzhang Wan, Huidong Guo, Yuxue Jia, Xia Liu, Fanhua Ning, Guojun Shi and Pengfei Ren
Horticulturae 2025, 11(7), 730; https://doi.org/10.3390/horticulturae11070730 - 23 Jun 2025
Viewed by 370
Abstract
Agricultural production in the saline–alkaline soils of the Yellow River Delta faces persistent challenges in waste recycling and soil improvement. We developed a three-stage circular agriculture model integrating “crop straw–edible mushrooms–vegetables,” enabling simultaneous waste utilization and soil remediation within one year (two mushroom [...] Read more.
Agricultural production in the saline–alkaline soils of the Yellow River Delta faces persistent challenges in waste recycling and soil improvement. We developed a three-stage circular agriculture model integrating “crop straw–edible mushrooms–vegetables,” enabling simultaneous waste utilization and soil remediation within one year (two mushroom and two vegetable cycles annually). Crop straw was first used to cultivate Pleurotus eryngii, achieving 80% biological efficiency and reducing substrate costs by ~36.3%. The spent mushroom substrate (SMS) was then reused for Ganoderma lucidum and vegetable cultivation, maximizing the resource efficiency. SMS application significantly improved soil properties: organic matter increased 11-fold (from 14.8 to 162.78 g/kg) and pH decreased from 8.34 to ~6.75. The available phosphorus and potassium contents increased several-fold compared to untreated soil. Metagenomic analysis showed the enrichment of beneficial decomposer bacteria (Hyphomicrobiales, Burkholderiales, and Streptomyces) and functional genes involved in glyoxylate metabolism, nitrogen cycling, and lignocellulose degradation. These changes shifted the microbial community from a stress-tolerant to a nutrient-cycling profile. The vegetable yield and quality improved markedly: cabbage and cauliflower yields increased by 34–38%, and the tomato lycopene content rose by 179%. Economically, the system generated 1,695,000–1,962,881.4 CNY per hectare annually and reduced fertilizer costs by ~450,000 CNY per hectare. This mushroom–vegetable rotation addresses ecological bottlenecks in saline–alkaline lands through lignin-driven carbon release, organic acid-mediated pH reduction, and actinomycete-dominated decomposition, offering a sustainable agricultural strategy for coastal regions. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

Back to TopTop