Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = lightweight nozzle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3135 KB  
Article
Layer-by-Layer Integration of Electrospun Nanofibers in FDM 3D Printing for Hierarchical Composite Fabrication
by Jaymin Vrajlal Sanchaniya, Hilary Smogor, Valters Gobins, Vincent Noël, Inga Lasenko and Simas Rackauskas
Polymers 2026, 18(1), 78; https://doi.org/10.3390/polym18010078 - 27 Dec 2025
Viewed by 430
Abstract
This study presents a novel integrated manufacturing approach that combines fused deposition modeling (FDM) 3D printing with in situ electrospinning to fabricate hierarchical composite structures composed of polylactic acid (PLA) reinforced with polyacrylonitrile (PAN) nanofibers. A mounting fixture was employed to enable layer-by-layer [...] Read more.
This study presents a novel integrated manufacturing approach that combines fused deposition modeling (FDM) 3D printing with in situ electrospinning to fabricate hierarchical composite structures composed of polylactic acid (PLA) reinforced with polyacrylonitrile (PAN) nanofibers. A mounting fixture was employed to enable layer-by-layer nanofiber deposition directly onto printed PLA layers in a continuous automated process, eliminating the need for prefabricated electrospun nanofiber mats. The influences of nozzle temperature (210–230 °C) and electrospinning time (5–15 min per layer) on mechanical, thermal, and morphological properties were systematically investigated. Optimal performance was achieved at an FDM nozzle temperature of 220 °C with 5 min of electrospinning time (sample E1), showing a 36.5% increase in tensile strength (71 MPa), a 33.3% increase in Young’s modulus (2.8 GPa), and a 62.0% increase in flexural strength (128 MPa) compared with the neat PLA. This enhancement resulted from the complete infiltration of molten PLA into the thin nanofiber mats, creating true fiber–matrix integration. Excessive nanofiber content (15 min ES) caused a 36.5% reduction in strength due to delamination and incomplete infiltration. Thermal analysis revealed a decrease in glass transition temperature (1.2 °C) and onset of thermal degradation (5.3–15.2 °C) with nanofiber integration. Fracture morphology confirmed that to achieve optimal properties, it was critical to balance the nanofiber reinforcement content with the depth of infiltration, as excessive content created poorly bonded interleaved layers. This integrated fabrication platform enables the production of lightweight hierarchical composites with multiscale, custom-made reinforcement for applications in biomedical scaffolds, protective equipment, and structural components. Full article
(This article belongs to the Special Issue Advanced Electrospinning Technology for Polymer Materials)
Show Figures

Graphical abstract

21 pages, 10303 KB  
Article
Effect of Flax Fiber Content on the Properties of Bio-Based Filaments for Sustainable 3D Printing of Automotive Components
by Florence Isnard, Mélissa Poloni, Marta Redrado, Raquel Navarro-Miguel and Skander Mani
Sustainability 2026, 18(1), 199; https://doi.org/10.3390/su18010199 - 24 Dec 2025
Viewed by 273
Abstract
The growing interest in sustainable additive manufacturing has driven research into customized biocomposite filaments reinforced with natural fibers. This study evaluates the influence of flax fiber content (5–15 wt%) on the thermal, rheological, morphological, and mechanical properties of fully bio-based polyamide PA10.10 filaments [...] Read more.
The growing interest in sustainable additive manufacturing has driven research into customized biocomposite filaments reinforced with natural fibers. This study evaluates the influence of flax fiber content (5–15 wt%) on the thermal, rheological, morphological, and mechanical properties of fully bio-based polyamide PA10.10 filaments intended for fused deposition modeling (FDM). Filaments containing up to 15 wt% flax fibers were produced using both conventional single-screw extrusion and the METEOR® elongational mixer to compare shear- and elongation-dominated dispersive mechanisms. Increasing flax loading enhanced stiffness (up to +84% tensile modulus at 15 wt%) but also significantly increased porosity, particularly in METEOR-processed materials, leading to reduced strength and intrinsic viscosity. Microscopy confirmed fiber shortening during compounding and revealed porosity arising from moisture release and insufficient fiber wetting. Rheological analysis showed the onset of a pseudo-percolated fiber network from 10 wt%, while excessive porosity at higher loadings impeded melt flow and printability. Based on the combined evaluation of the mechanical performance, dimensional stability, and processability, a 5 wt% flax formulation was identified as the optimal compromise for FDM. A functional automotive demonstrator (Fiat 500 dashboard fascia) was successfully printed using optimized FDM parameters (nozzle 240 °C, bed 75 °C, speed 20 mm s−1, 0.6 mm nozzle, 0.20 mm layer height, and 100% infill). The part exhibited controlled shrinkage and limited warpage (maximum 1.8 mm across a 165 × 180 × 45 mm geometry with a 3 mm wall thickness). Dimensional accuracy remained within ±0.7 mm relative to the CAD geometry. These results confirm the suitability of PA10.10/flax biocomposites for sustainable, lightweight automotive components and provide key structure–processing–property relationships supporting the development of next-generation bio-based FDM feedstocks. Full article
Show Figures

Graphical abstract

20 pages, 3431 KB  
Article
Effect of MEX Process Parameters on the Mechanical Response of PLA Structures for Orthopedic Applications
by Stelios Avraam, Demetris Photiou, Theodoros Leontiou and Loucas Papadakis
J. Manuf. Mater. Process. 2025, 9(12), 414; https://doi.org/10.3390/jmmp9120414 - 17 Dec 2025
Viewed by 286
Abstract
The advancement of polymeric materials for orthopedic applications has enabled the development of lightweight, adaptable structures that support patient-specific solutions. This study focuses on the design, fabrication, and mechanical characterization of additively manufactured (AM) polymeric polylactic acid (PLA) components produced via Material Extrusion [...] Read more.
The advancement of polymeric materials for orthopedic applications has enabled the development of lightweight, adaptable structures that support patient-specific solutions. This study focuses on the design, fabrication, and mechanical characterization of additively manufactured (AM) polymeric polylactic acid (PLA) components produced via Material Extrusion (MEX), commonly known as Fused Filament Fabrication (FFF). By optimizing geometric configurations and process parameters, these structures demonstrate enhanced flexibility, energy absorption, and load distribution, making them well-suited for orthopedic products and assistive devices. A comprehensive mechanical testing campaign was conducted to evaluate the elasticity, ductility, and strength of FFF-fabricated samples under tensile and three-point bending loads. Key process parameters, including nozzle diameter, layer thickness, and printing orientation, were systematically varied, and their influence on mechanical performance was recorded. The results reveal that these parameters affect mechanical properties in a complex, interdependent manner. To better understand these relationships, an automated routine was developed to calculate the experimental mechanical response, specifically, stiffness and strength. This methodology enables an automated evaluation of the output, considering parameter ranges for future applications. The outcome of the analysis of variance (ANOVA) of the experimental investigation reveals that the printing orientation has a strong impact on the mechanical anisotropy in FFF, while layer thickness and nozzle diameter demonstrate moderate-to-weak importance. Thereafter, the experimental findings were applied on an innovative orthopedic wrist splint design to be fabricated by means of FFF. The most suitable mechanical properties were selected to test the mechanical response of the designed components under operational bending loading by means of linear elastic finite element (FE) analysis. The computational results indicated the importance of employing the actual mechanical properties derived from the applied printing process parameters compared to data sheet values. Hereby, an additional parameter to adjust the mechanical response is the product’s design topology. Finally, this framework lays the foundation for future training of neural networks to optimize specific mechanical responses, reducing reliance on conventional trial-and-error processes and improving the balance between orthopedic product quality and manufacturing efficiency. Full article
Show Figures

Graphical abstract

23 pages, 7134 KB  
Article
Optimization of Fused Deposition Modeling (FDM) Process for Small-Scale PEEK Medical Devices
by AmirDanial Azimi, Leila Ladani, Jafar Razmi, David G. Lott and Brent A. Chang
J. Manuf. Mater. Process. 2025, 9(12), 384; https://doi.org/10.3390/jmmp9120384 - 21 Nov 2025
Viewed by 1155
Abstract
Additive manufacturing (AM) of polyetheretherketone (PEEK) offers a promising route for producing lightweight, biocompatible, and patient-specific medical implants with complex geometries. This study investigates and optimizes fused deposition modeling (FDM) parameters for fabricating small-scale PEEK medical components with improved dimensional accuracy and surface [...] Read more.
Additive manufacturing (AM) of polyetheretherketone (PEEK) offers a promising route for producing lightweight, biocompatible, and patient-specific medical implants with complex geometries. This study investigates and optimizes fused deposition modeling (FDM) parameters for fabricating small-scale PEEK medical components with improved dimensional accuracy and surface quality. PEEK’s high processing temperature and thermal contraction make precision printing of fine features challenging. A Taguchi design of experiments (L9 orthogonal array) was employed to assess the effects of nozzle temperature, layer height, printing speed, and extrusion width on dimensional deviation and surface roughness using 5 × 5 × 5 mm cube specimens. Dimensional accuracy was quantified along the horizontal and vertical axes, and surface roughness was measured using a stylus profilometer. Statistical analysis showed layer height was the most significant factor affecting horizontal accuracy (p = 0.0225), while printing speed most strongly influenced vertical deviation. The optimal parameters, 450 °C nozzle temperature, 0.06 mm layer height, 7.5 mm/s printing speed, and 0.4 mm extrusion width, achieved mean deviations of 0.013 mm (horizontal) and 0.049 mm (vertical) with a surface roughness of 4.01 µm. Validation using a benchmark model and micro-computed tomography confirmed improved reproduction of small features under these conditions. The results demonstrate that precise control of FDM parameters enables accurate fabrication of sub-millimeter PEEK structures suitable for medical device applications. Full article
Show Figures

Figure 1

28 pages, 7481 KB  
Article
Mechanical Properties Testing and Numerical Modeling and Simulations of a Nozzle Cover Made of Expanded Polystyrene
by Jianyong Jiang, Zhixuan Zhang, Jian Zheng, Kehui Shu and Wenhao Zhu
Materials 2025, 18(16), 3835; https://doi.org/10.3390/ma18163835 - 15 Aug 2025
Viewed by 695
Abstract
Expandable polystyrene (EPS) nozzle covers can be used to replace traditional metal nozzle covers due to their excellent mechanical properties, as well as being lightweight and ablatable. As an important part of the solid rocket motor, the nozzle cover needs to be designed [...] Read more.
Expandable polystyrene (EPS) nozzle covers can be used to replace traditional metal nozzle covers due to their excellent mechanical properties, as well as being lightweight and ablatable. As an important part of the solid rocket motor, the nozzle cover needs to be designed according to the requirements of the overall system. This study lays a theoretical foundation for the engineering design and performance optimization of the EPS nozzle cover. In this paper, the method of combining test research and numerical simulation is used to explore the pressure bearing capacity of EPS nozzle covers with different thicknesses under linear load. Firstly, the quasi-static tensile, compression and shear tests of EPS materials were carried out by universal testing machine, and the key parameters such as stress-strain curve, elastic modulus and yield strength were obtained; Based on the experimental data, the constitutive model of EPS material with respect to density is fitted and modified; The VUMAT subroutine of the material was written in Fortran language, and the mechanical properties of the nozzle cover with different material model distribution schemes and different thicknesses were explored by ABAQUS finite element numerical simulation technology. The results indicate that the EPS nozzle cover design based on the two material model allocation schemes better aligns with practical conditions; when the end thickness of the EPS nozzle cover exceeds 3 mm, the opening pressure formula for the cover based on the pure shear theory of thin-walled circular plates becomes inapplicable; the EPS nozzle cover exhibits excellent pressure-bearing capacity and performance, with its pressure-bearing capacity showing a positive correlation with its end thickness, and an EPS nozzle cover with a 9 mm end thickness can withstand a pressure of 7.58 MPa (under internal pressure conditions); the pressure-bearing capacity of the EPS nozzle cover under internal pressure conditions is higher than under external pressure conditions, and when the end pressure-bearing surface thickness increases to 9 mm, the internal pressure-bearing capacity is 3.13 MPa higher than under external pressure conditions. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

24 pages, 7102 KB  
Article
Comparing a New Passive Lining Method for Jet Noise Reduction Using 3M™ Nextel™ Ceramic Fabrics Against Ejector Nozzles
by Alina Bogoi, Grigore Cican, Laurențiu Cristea, Daniel-Eugeniu Crunțeanu, Constantin Levențiu and Andrei-George Totu
Technologies 2025, 13(7), 295; https://doi.org/10.3390/technologies13070295 - 9 Jul 2025
Viewed by 1409
Abstract
This study investigates the complementary noise control capabilities of two passive jet noise mitigation strategies: a traditional ejector nozzle and a novel application of 3M™ Nextel™ 312 ceramic fabric as a thermal–acoustic liner on the central cone of a micro turbojet nozzle. Three [...] Read more.
This study investigates the complementary noise control capabilities of two passive jet noise mitigation strategies: a traditional ejector nozzle and a novel application of 3M™ Nextel™ 312 ceramic fabric as a thermal–acoustic liner on the central cone of a micro turbojet nozzle. Three nozzle configurations, baseline, ejector, and Nextel-treated, were evaluated under realistic operating conditions using traditional and advanced acoustic diagnostics applied to data from a five-microphone circular array. The results show that while the ejector provides superior directional suppression and low-frequency redistribution, making it ideal for far-field noise control, it maintains high total energy levels and requires structural modifications. In contrast, the Nextel lining achieves comparable reductions in overall noise, especially in high-frequency ranges, while minimizing structural impact and promoting spatial energy dissipation. Analyses in both the time-frequency and spatial–spectral domains demonstrate that the Nextel configuration not only lowers acoustic energy but also disrupts coherent noise patterns, making it particularly effective for near-field protection in compact propulsion systems. A POD analysis further shows that NEXTEL more evenly distributes energy across mid-order modes, indicating its role in smoothing spatial variations and dampening localized acoustic concentrations. According to these results, ceramic fabric linings offer a lightweight, cost-effective solution for reducing the high noise levels typically associated with drones and UAVs powered by small turbojets. When combined with ejectors, they could enhance acoustic suppression in compact propulsion systems where space and weight are critical. Full article
(This article belongs to the Special Issue Aviation Science and Technology Applications)
Show Figures

Figure 1

22 pages, 5806 KB  
Article
Sustainable Design and Wall Thickness Optimization for Enhanced Lifetime of Ultra-High Temperature Ceramic Matrix Composite Thruster for Use in Green Propulsion Systems
by Tamim Doozandeh, Prakhar Jindal and Jyoti Botchu
Materials 2025, 18(13), 3196; https://doi.org/10.3390/ma18133196 - 7 Jul 2025
Cited by 1 | Viewed by 786
Abstract
This study presents a comprehensive finite element investigation into the design optimization of an ultra-high temperature ceramic matrix composite thruster for green bipropellant systems. Focusing on ZrB2–SiC–Cfiber composites, it explores their thermal and mechanical response under realistic transient combustion conditions. Two [...] Read more.
This study presents a comprehensive finite element investigation into the design optimization of an ultra-high temperature ceramic matrix composite thruster for green bipropellant systems. Focusing on ZrB2–SiC–Cfiber composites, it explores their thermal and mechanical response under realistic transient combustion conditions. Two geometries, a simplified and a complex full-featured model, were evaluated to assess the impact of geometric fidelity on stress prediction. The complex thruster model (CTM) offered improved resolution of temperature gradients and stress concentrations, especially near flange and convergent regions, and was adopted for optimization. A parametric study with nine wall thickness profiles identified a 2 mm tapered configuration in both convergent and divergent sections that minimized mass while maintaining structural integrity. This optimized profile reduced peak thermal stress and overall mass without compromising safety margins. Transient thermal and strain analyses showed that thermal stress dominates initially (≤3 s), while thermal strain becomes critical later due to stiffness degradation. Damage risk was evaluated using temperature-dependent stress margins at four critical locations. Time-dependent failure maps revealed throat degradation for short burns and flange cracking for longer durations. All analyses were conducted under hot-fire conditions without cooling. The validated methodology supports durable, lightweight nozzle designs for future green propulsion missions. Full article
Show Figures

Figure 1

17 pages, 2876 KB  
Article
Research on the Oil Cooling Structure Design Method of Permanent Magnet Synchronous Motors for Electric Vehicles
by Shijun Chen, Cheng Miao, Xinyu Chen, Wei Qian and Songchao Chu
Energies 2025, 18(12), 3134; https://doi.org/10.3390/en18123134 - 14 Jun 2025
Cited by 1 | Viewed by 2505
Abstract
Permanent magnet synchronous motors for electric vehicles (EVs) prioritize high power density and lightweight design, leading to elevated thermal flux density. Consequently, cooling methods and heat conduction in stator windings become critical. This paper proposes a compound cooling structure combining direct oil spray [...] Read more.
Permanent magnet synchronous motors for electric vehicles (EVs) prioritize high power density and lightweight design, leading to elevated thermal flux density. Consequently, cooling methods and heat conduction in stator windings become critical. This paper proposes a compound cooling structure combining direct oil spray cooling on stator windings and housing oil channel cooling (referred to as the winding–housing composite oil cooling system) for permanent synchronous motors in EVs. A systematic design methodology for oil jet nozzles and housing oil channels is investigated, determining the average convective heat transfer coefficient on end-winding surfaces and the heat dissipation factor of the oil channels. Finite element analysis (FEA) was employed to simulate the thermal field of a 48-slot 8-pole oil-cooled motor, with further analysis on the effects of oil temperature and flow rate on motor temperature. Based on these findings, an optimized oil-cooled structure is proposed, demonstrating enhanced thermal management efficiency. The results provide valuable references for the design of cooling systems in oil-cooled motors for EV applications. Full article
(This article belongs to the Special Issue Advances in Permanent Magnet Motor and Motor Control)
Show Figures

Figure 1

23 pages, 11856 KB  
Article
Optimizing Process Parameters to Enhance Mechanical Properties of 3D-Printed Fiberglass-Reinforced ONYX Polymer
by Naumaan Shafique, Zarak Khan, Mushtaq Khan, Muhammad Younas and Mohd Shahneel Saharudin
J. Manuf. Mater. Process. 2025, 9(4), 108; https://doi.org/10.3390/jmmp9040108 - 26 Mar 2025
Cited by 2 | Viewed by 2078
Abstract
Fused Deposition Modeling (FDM) is widely used for custom manufacturing but has limitations in strength for load-bearing applications. This study explores the optimization of mechanical properties for lightweight, cost-effective components using continuous fiber reinforcement. ONYX polymer, reinforced with continuous fiberglass, was printed using [...] Read more.
Fused Deposition Modeling (FDM) is widely used for custom manufacturing but has limitations in strength for load-bearing applications. This study explores the optimization of mechanical properties for lightweight, cost-effective components using continuous fiber reinforcement. ONYX polymer, reinforced with continuous fiberglass, was printed using the Markforged® Mark Two dual nozzle 3D printer. A Design of Experimentation (DoE) based on a Taguchi L9 array was used, varying fiberglass content (10%, 20%, 30%), infill densities (30%, 40%, 50%), and pattern types (hexagonal, rectangular, Triangular). The results show that increasing fiberglass content, infill density, and using a rectangular pattern enhanced mechanical properties, with a 30% fiberglass addition achieving a 4.743-fold increase in Izod impact energy. The highest mechanical performance was obtained with 30% fiberglass, 50% infill density, and a rectangular pattern, yielding an impact energy of 1576.778 J/m, compressive strength of 29.486 MPa, and Shore D hardness of 68.135 HD. Full article
Show Figures

Figure 1

15 pages, 4305 KB  
Article
Pellet-Based Extrusion Additive Manufacturing of Lightweight Parts Using Inflatable Hollow Extrudates
by Md Ahsanul Habib, Rawan Elsersawy and Mohammad Abu Hasan Khondoker
J. Manuf. Mater. Process. 2025, 9(2), 37; https://doi.org/10.3390/jmmp9020037 - 29 Jan 2025
Cited by 2 | Viewed by 3238
Abstract
Additive manufacturing (AM) has become a key element of Industry 4.0, particularly the extrusion AM (EAM) of thermoplastic materials, which is recognized as the most widely used technology. Fused Filament Fabrication (FFF), however, depends on expensive commercially available filaments, making pellet extruder-based EAM [...] Read more.
Additive manufacturing (AM) has become a key element of Industry 4.0, particularly the extrusion AM (EAM) of thermoplastic materials, which is recognized as the most widely used technology. Fused Filament Fabrication (FFF), however, depends on expensive commercially available filaments, making pellet extruder-based EAM techniques more desirable. Large-format EAM systems could benefit from printing lightweight objects with reduced material use and lower power consumption by utilizing hollow rather than solid extrudates. In this study, a custom extruder head was designed and an EAM system capable of extruding inflatable hollow extrudates from a variety of materials was developed. By integrating a co-axial nozzle-needle system, a thermoplastic shell was extruded while creating a hollow core using pressurized nitrogen gas. This method allows for the production of objects with gradient part density and varied mechanical properties by controlling the inflation of the hollow extrudates. The effects of process parameters— such as extrusion temperature, extrusion speed, and gas pressure were investigated—using poly-lactic acid (PLA) and styrene-ethylene-butylene-styrene (SEBS) pellets. The preliminary tests identified the optimal range of these parameters for consistent hollow extrudates. We then varied the parameters to determine their impact on the dimensions of the extrudates, supported by analyses of microscopic images taken with an optical microscope. Our findings reveal that pressure is the most influential factor affecting extrudate dimensions. In contrast, variations in temperature and extrusion speed had a relatively minor impact, whereas changes in pressure led to significant alterations in the extrudate’s size and shape. Full article
Show Figures

Figure 1

7 pages, 658 KB  
Proceeding Paper
Additive Manufacturing of Inflatable Thermoplastic Extrudates Using a Pellet Extruder
by Md Ahsanul Habib and Mohammad Abu Hasan Khondoker
Eng. Proc. 2024, 76(1), 59; https://doi.org/10.3390/engproc2024076059 - 30 Oct 2024
Viewed by 1077
Abstract
Additive manufacturing (AM) has emerged as one of the core components of the fourth industrial revolution, Industry 4.0. Among others, the extrusion AM (EAM) of thermoplastic materials has been named as the most widely adopted technology. Fused filament fabrication (FFF) relies on the [...] Read more.
Additive manufacturing (AM) has emerged as one of the core components of the fourth industrial revolution, Industry 4.0. Among others, the extrusion AM (EAM) of thermoplastic materials has been named as the most widely adopted technology. Fused filament fabrication (FFF) relies on the commercial availability of expensive filaments; hence, pellet extruder-based EAM techniques are desired. Large-format EAM systems would benefit from the ability to print lightweight objects with less materials and lower power consumption, which is possible with the use of hollow extrudates rather than solid extrudates to print objects. In this work, we designed a custom extruder head and developed an EAM system that allows the extrusion of inflatable hollow extrudates of a relatively wide material choice. By incorporating a co-axial nozzle–needle system, a thermoplastic shell was extruded while the hollow core was generated by using pressurized nitrogen gas. The ability to print using hollow extrudates with controllable inflation allows us to print objects with gradient part density with different degrees of mechanical properties. In this article, the effect of different process parameters, namely, extrusion temperature, extrusion speed, and gas pressure, were studied using poly-lactic acid (PLA) pellets. Initially, a set of preliminary tests was conducted to identify the maximum and minimum ranges of these parameters that result in consistent hollow extrudates. Finally, the parameters were varied to understand how they affect the core diameter and shell thickness of the hollow extrudates. These findings were supported by analyses of microscopic images taken under an optical microscope. Full article
Show Figures

Figure 1

13 pages, 9227 KB  
Article
Effect of Preheating Parameters on Extrusion Welding of High-Density Polyethylene Materials
by Chungwoo Lee, Suseong Woo, Sooyeon Kwon and Jisun Kim
Polymers 2024, 16(21), 2992; https://doi.org/10.3390/polym16212992 - 25 Oct 2024
Cited by 1 | Viewed by 2169
Abstract
High-density polyethylene (HDPE) has emerged as a promising alternative to fiber-reinforced plastic (FRP) for small vessel manufacturing due to its durability, chemical resistance, lightweight properties, and recyclability. However, while thermoplastic polymers like HDPE have been extensively used in gas and water pipelines, their [...] Read more.
High-density polyethylene (HDPE) has emerged as a promising alternative to fiber-reinforced plastic (FRP) for small vessel manufacturing due to its durability, chemical resistance, lightweight properties, and recyclability. However, while thermoplastic polymers like HDPE have been extensively used in gas and water pipelines, their application in large, complex marine structures remains underexplored, particularly in terms of joining methods. Existing techniques, such as ultrasonic welding, laser welding, and friction stir welding, are unsuitable for large-scale HDPE components, where extrusion welding is more viable. This study focuses on evaluating the impact of key process parameters, such as the preheating temperature, hot air movement speed, and nozzle distance, on the welding performance of HDPE. By analyzing the influence of these variables on heat distribution during the extrusion welding process, we aim to conduct basic research to derive optimal conditions for achieving strong and reliable joints. The results highlight the critical importance of a uniform temperature distribution in preventing defects such as excessive melting or thermal degradation, which could compromise weld integrity. This research provides valuable insights into improving HDPE joining techniques, contributing to its broader adoption in the marine and manufacturing industries. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

16 pages, 16695 KB  
Article
Characterization of PLA/LW-PLA Composite Materials Manufactured by Dual-Nozzle FDM 3D-Printing Processes
by Ye-Eun Park and Sunhee Lee
Polymers 2024, 16(20), 2852; https://doi.org/10.3390/polym16202852 - 10 Oct 2024
Cited by 8 | Viewed by 2826
Abstract
This study investigates the properties of 3D-printed composite structures made from polylactic acid (PLA) and lightweight-polylactic acid (LW-PLA) filaments using dual-nozzle fused-deposition modeling (FDM) 3D printing. Composite structures were modeled by creating three types of cubes: (i) ST4—built with a total of four [...] Read more.
This study investigates the properties of 3D-printed composite structures made from polylactic acid (PLA) and lightweight-polylactic acid (LW-PLA) filaments using dual-nozzle fused-deposition modeling (FDM) 3D printing. Composite structures were modeled by creating three types of cubes: (i) ST4—built with a total of four alternating layers of the two filaments in the z-axis, (ii) ST8—eight alternating layers of the two filaments, and (iii) CH4—a checkered pattern with four alternating divisions along the x, y, and z axes. Each composite structure was analyzed for printing time and weight, morphology, and compressive properties under varying nozzle temperatures and infill densities. Results indicated that higher nozzle temperatures (230 °C and 240 °C) activate foaming, particularly in ST4 and ST8 at 100% infill density. These structures were 103.5% larger on one side than the modeled dimensions and up to 9.25% lighter. The 100% infill density of ST4-Com-PLA/LW-PLA-240 improved toughness by 246.5% due to better pore compression. The ST4 and ST8 cubes exhibited decreased stiffness with increasing temperatures, while CH4 maintained consistent compressive properties across different conditions. This study confirmed that the characteristics of LW-PLA become more pronounced as the material is printed continuously, with ST4 showing the strongest effect, followed by ST8 and CH4. It highlights the importance of adjusting nozzle temperature and infill density to control foaming, density, and mechanical properties. Overall optimal conditions are 230 °C and 50% infill density, which provide a balance of strength and toughness for applications. Full article
(This article belongs to the Special Issue 3D Printing of Polymer Composite Materials)
Show Figures

Figure 1

34 pages, 2550 KB  
Review
Additive Manufacturing of Continuous Fiber-Reinforced Polymer Composites via Fused Deposition Modelling: A Comprehensive Review
by Muhammad Azfar Jamal, Owaisur Rahman Shah, Usman Ghafoor, Yumna Qureshi and M. Raheel Bhutta
Polymers 2024, 16(12), 1622; https://doi.org/10.3390/polym16121622 - 7 Jun 2024
Cited by 32 | Viewed by 9252
Abstract
Additive manufacturing (AM) has arisen as a transformative technology for manufacturing complex geometries with enhanced mechanical properties, particularly in the realm of continuous fiber-reinforced polymer composites (CFRPCs). Among various AM techniques, fused deposition modeling (FDM) stands out as a promising method for the [...] Read more.
Additive manufacturing (AM) has arisen as a transformative technology for manufacturing complex geometries with enhanced mechanical properties, particularly in the realm of continuous fiber-reinforced polymer composites (CFRPCs). Among various AM techniques, fused deposition modeling (FDM) stands out as a promising method for the fabrication of CFRPCs due to its versatility, ease of use, flexibility, and cost-effectiveness. Several research papers on the AM of CFRPs via FDM were summarized and therefore this review paper provides a critical examination of the process-printing parameters influencing the AM process, with a focus on their impact on mechanical properties. This review covers details of factors such as fiber orientation, layer thickness, nozzle diameter, fiber volume fraction, printing temperature, and infill design, extracted from the existing literature. Through a visual representation of the process parameters (printing and material) and properties (mechanical, physical, and thermal), this paper aims to separate out the optimal processing parameters that have been inferred from various research studies. Furthermore, this analysis critically evaluates the current state-of-the-art research, highlighting advancements, applications, filament production methods, challenges, and opportunities for further development in this field. In comparison to short fibers, continuous fiber filaments can render better strength; however, delamination issues persist. Various parameters affect the printing process differently, resulting in several limitations that need to be addressed. Signifying the relationship between printing parameters and mechanical properties is vital for optimizing CFRPC fabrication via FDM, enabling the realization of lightweight, high-strength components for various industrial applications. Full article
(This article belongs to the Special Issue Fiber Reinforced Polymer Composites)
Show Figures

Figure 1

15 pages, 7426 KB  
Article
Filament-Reinforced 3D Printing of Clay
by Julian Jauk, Lukas Gosch, Hana Vašatko, Markus Königsberger, Johannes Schlusche and Milena Stavric
Materials 2023, 16(18), 6253; https://doi.org/10.3390/ma16186253 - 17 Sep 2023
Cited by 10 | Viewed by 3214
Abstract
This research resulted in the development of a method that can be used for filament-reinforced 3D printing of clay. Currently, clay-based elements are mixed with randomly dispersed fibrous materials in order to increase their tensile strength. The advantages of taking this new approach [...] Read more.
This research resulted in the development of a method that can be used for filament-reinforced 3D printing of clay. Currently, clay-based elements are mixed with randomly dispersed fibrous materials in order to increase their tensile strength. The advantages of taking this new approach to create filament-reinforced prints are the increased bridging ability while printing, the increased tensile strength of the dried elements, and the achievement of non-catastrophic failure behavior. The research methodology used involves the following steps: (1) evaluating properties of various filament materials with respect to multiple criteria, (2) designing a filament guiding nozzle for co-extrusion, and (3) conducting a comprehensive testing phase for the composite material. This phase involves comparisons of bridging ability, tensile strength evaluations for un-reinforced clay prints and filament-reinforced prints, as well as the successful production of an architectural brick prototype. (4) Finally, the gathered results are subjected to thorough analysis. Compared to conventional 3D printing of clay, the developed method enables a substantial increase in bridging distance during printing by a factor of 460%. This capability facilitates the design of objects characterized by reduced solidity and the attainment of a more open, lightweight, and net-like structure. Further, results show that the average tensile strength of the reinforced sample in a dry state exhibited an enhancement of approximately 15%. The combination of clay’s ability to resist compression and the filament’s capacity to withstand tension has led to the development of a structural concept in this composite material akin to that of reinforced concrete. This suggests its potential application within the construction industry. Producing the prototype presented in this research would not have been possible with existing 3D printing methods of clay. Full article
(This article belongs to the Special Issue Mechanical Performance of Advanced Composite Materials and Structures)
Show Figures

Figure 1

Back to TopTop