Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = lightning impulse voltage tests

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4254 KB  
Article
Study on the Failure Causes and Improvement Measures of Arresters in 10 kV Distribution Transformer Areas
by Taishan Hu, Yuanzhi Wu, Zhiming Liao, Gang Liu, Shangmao Hu, Yongxia Han, Lu Qu and Licheng Li
Energies 2025, 18(17), 4501; https://doi.org/10.3390/en18174501 - 25 Aug 2025
Viewed by 767
Abstract
In recent years, arresters in 10 kV distribution transformer areas of the Guangdong power grid have exhibited a rising trend of premature failures, posing a serious threat to distribution network reliability. This paper studied the failure causes of arresters through performance tests on [...] Read more.
In recent years, arresters in 10 kV distribution transformer areas of the Guangdong power grid have exhibited a rising trend of premature failures, posing a serious threat to distribution network reliability. This paper studied the failure causes of arresters through performance tests on failed arresters and through deterioration tests on new arresters and their prorated sections under typical operating stresses. The failed arresters and their internal varistors displayed varying degrees of physical damage and pronounced degradation in electrical performance, characterized by a strong polarity effect on the DC reference voltage (U1mA), elevated DC leakage current (IL) and resistive current (iR), and excessive residual voltage (U5kV). In the lightning impulse test, varistors primarily showed pinhole-type damage and significant polarity effects on ΔU1mA. In the AC aging test, ΔU5kV increased markedly. In the water immersion test, varistors exhibited salt deposits and aluminum electrode blackening, with ΔU1mA decreasing, while IL and ΔiR increased significantly. Overall, internal moisture superimposed on other operating stresses was identified as a major internal cause of arrester failure, while pollution flashover of the housing was considered the primary external factor. Corresponding improvement measures in material optimization, testing and inspection, and operation and maintenance are proposed to enhance arrester reliability. Full article
Show Figures

Figure 1

16 pages, 1807 KB  
Article
Overvoltages Transmitted in the Transformer Windings on the Lightning Impulse—An Analytical Method for Determination and Experimental Measurements
by Maria-Cristina Nițu, Livia-Andreea Dina, Ileana-Diana Nicolae, Marian-Ştefan Nicolae and Paul-Mihai Mircea
Appl. Sci. 2025, 15(11), 5861; https://doi.org/10.3390/app15115861 - 23 May 2025
Cited by 1 | Viewed by 915
Abstract
Overvoltages are brief and significant increases in the voltage level in an electrical system. They can be caused by a variety of factors, but the most common are associated with atmospheric discharges (lightning). When lightning strikes a power line, the resulting shock wave [...] Read more.
Overvoltages are brief and significant increases in the voltage level in an electrical system. They can be caused by a variety of factors, but the most common are associated with atmospheric discharges (lightning). When lightning strikes a power line, the resulting shock wave can induce surges in electrical equipment that is connected to that line, including transformers. The authors develop an analytical method in order to determine the maximum values of the overvoltages propagating in the transformer windings in case of lightning impulse. It is considered that the transmitted overvoltages consist of an inductive component (magnetic dispersion is neglected, as well as the energy exchange between the capacitances and inductances of the energized winding) and a capacitive component (between the energized winding and the receiving winding; in this case, the emphasis is on the energy exchange between the series capacitance and the inductance of the series winding). The proposed method was applied on a TTUS—ONAN/ONAF 31.5/40 MVA, 110/5/6.6 kV power transformer, and the obtained results were validated by experimental tests. The percentage error between the results obtained by modeling and the results obtained from transformer testing was less than 2%. Full article
(This article belongs to the Special Issue Advances in Transformers and Their Applications)
Show Figures

Figure 1

21 pages, 7819 KB  
Article
Comprehensive Comparison of Lightning Properties of Insulating Liquids in Relation to Mineral Oil Under Positive Lightning Impulse
by Filip Stuchala and Pawel Rozga
Energies 2025, 18(9), 2381; https://doi.org/10.3390/en18092381 - 7 May 2025
Cited by 1 | Viewed by 687
Abstract
In this paper, results of comparative studies on the positive lightning impulse breakdown voltage (LIBV) and accelerating voltage (Va) of six insulating liquids of different chemical composition are presented. This paper discusses the behavior of uninhibited naphthenic mineral oil (UMO), inhibited [...] Read more.
In this paper, results of comparative studies on the positive lightning impulse breakdown voltage (LIBV) and accelerating voltage (Va) of six insulating liquids of different chemical composition are presented. This paper discusses the behavior of uninhibited naphthenic mineral oil (UMO), inhibited naphthenic mineral oil (IMO), natural ester (NE), synthetic ester (SE), and two modern dielectric fluids: bio-based hydrocarbon (BIO) and inhibited liquid produced using Gas-to-Liquids (GTL) technology. Measurements are taken in a point-to-sphere electrode system for two selected gap distances: 25 mm (which is suggested by the IEC 60897 standard) and 40 mm. After analyzing the obtained results, it is noted that positive LIBV does not differ significantly between the tested liquids. Noticeable differences are observed, however, for Va. The lowest values of this parameter characterize ester liquids, which is consistent with the common knowledge in this field. In addition, the obtained values of LIBV and Va are used to evaluate the maximum values of electric field intensity through the application of simulations for each specific case based on the finite element method. These simulations confirm that, for a given parameter, maximum electric field stress is on similar level, regardless of the gap distance. This proves that the breakdown and appearance of fast discharges are determined by specific field conditions. Full article
Show Figures

Figure 1

16 pages, 6614 KB  
Article
Comparison of Aging Effect of Ester Liquids and Mineral Oil in Semi-Uniform Field Geometry under Lightning Impulse Voltage and Standard Compliant AC Voltage Testing
by Sabrina Krügel and Ronald Plath
Energies 2024, 17(19), 4946; https://doi.org/10.3390/en17194946 - 3 Oct 2024
Viewed by 1372
Abstract
This study examines and compares the breakdown and aging properties of five insulating liquids. Additionally, the influence of different voltage polarities on these properties was analyzed to investigate the effect of aging on polarity behavior under lightning impulse voltage in a semi-uniform field. [...] Read more.
This study examines and compares the breakdown and aging properties of five insulating liquids. Additionally, the influence of different voltage polarities on these properties was analyzed to investigate the effect of aging on polarity behavior under lightning impulse voltage in a semi-uniform field. The results were compared to standardized AC breakdown tests. After 2330 h and 4350 h of aging, changes were observed in key aging indicators such as water content (both absolute and relative), total acid number, and color across all liquids. Viscosity increased by up to 10% in natural esters. Notably, the rise in water content due to aging was concerning only for mineral oil, exceeding 20%. The impact of aging on breakdown voltage varied depending on the voltage type and polarity. Aging had the least effect under negative lightning impulse voltage, while the synthetic ester MIDEL 7131 exhibited the most significant reduction in breakdown voltage under positive lightning impulse voltage, dropping by over 24%, from more than 560 kV to 428 kV. In contrast, mineral oil showed only a 3% decrease. For the other liquids, the most pronounced reduction in breakdown voltage due to aging occurred under AC voltage, with natural esters showing a 17% decline, synthetic esters 26%, and mineral oil experiencing a 38% reduction. Full article
Show Figures

Figure 1

15 pages, 2391 KB  
Article
Research on Insulation Configuration of 220 kV Bushing in High-Altitude Polluted Areas
by Zhijin Zhang, Yuanpeng Zhang, Wei Xiao, Yong Sun and Xingliang Jiang
Energies 2024, 17(7), 1645; https://doi.org/10.3390/en17071645 - 29 Mar 2024
Cited by 3 | Viewed by 1515
Abstract
The external insulation strength of the power equipment sleeve in the substation and converter station will be reduced with the increase in altitude and atmosphere pollution. The weakness of external insulation seriously threatens the safe operation of electrical equipment. At present, there are [...] Read more.
The external insulation strength of the power equipment sleeve in the substation and converter station will be reduced with the increase in altitude and atmosphere pollution. The weakness of external insulation seriously threatens the safe operation of electrical equipment. At present, there are few studies and conclusions that focus on the flashover characteristics of power equipment bushing in high-altitude polluted areas. Therefore, this paper takes the 220 kV voltage level bushing as the research object and studies the Alternating Current (AC) pollution flashover characteristics and lightning and switching impulse flashover characteristics at low pressure. The insulation configuration at high-altitude polluted areas is analyzed. Finally, the insulation configuration scheme, which is suitable for high-altitude polluted areas, is proposed. The results show that the AC pollution flashover voltages of the bushing decrease with the decrease in the atmospheric pressure and the increase in the salt density as a power exponent function. The impulse flashover voltages also decrease with the decrease in the atmospheric pressure as a power exponent function. The atmospheric pressure/pollution impact characteristic index is related to the type of voltage, the value of the atmospheric pressure, and the value of the salt density. The test bushing does not meet the insulation configuration requirements in some high-altitude polluted areas. Through the analysis and calculation of the test results, the bushing insulation configuration scheme in high-altitude polluted areas is proposed. The research results can provide a reference for the external insulation design of bushings in substations and converter stations in high-altitude polluted areas. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

16 pages, 566 KB  
Article
External Multi-Gap Lightning Arrester Modeling Using the Integration Method
by Johnatan M. Rodríguez-Serna, Walter M. Villa-Acevedo and Jesús M. López-Lezama
Energies 2024, 17(5), 1241; https://doi.org/10.3390/en17051241 - 5 Mar 2024
Viewed by 1849
Abstract
Electric power distribution networks are exposed to both internal and external disturbances. Lightning strikes are among the latter and are responsible for a significant percentage of damage in distribution transformers, especially in rural areas. Electric utilities must pay special attention to prevent damage [...] Read more.
Electric power distribution networks are exposed to both internal and external disturbances. Lightning strikes are among the latter and are responsible for a significant percentage of damage in distribution transformers, especially in rural areas. Electric utilities must pay special attention to prevent damage and service interruption due to these unforeseeable events. In this context, Surge Protection Devices (SPDs) combined with a series of external air gaps are designed to safeguard electric equipment and systems from transient over-voltages. There are several well-known models of SPDs in the specialized literature; nonetheless, few studies have been carried out with external gaps and multi-gaps. The main contribution of this paper is a methodology to model the disruptive effect in an external air gap by determining the parameters of Kind’s and Chowdhuri’s models using the integration method. The adjustment of the model parameters is carried out by a genetic algorithm (GA). The proposed model was tested and validated using experimental measurements, and its capability to predict the time-to-breakdown under different impulse voltages was verified. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

18 pages, 7069 KB  
Article
Impact of Electrode Distance in a Quasi-Uniform Model Electrode System on Lightning Impulse Breakdown Voltage in Various Insulating Liquids
by Wiktor Kunikowski, Pawel Rozga, Bartlomiej Pasternak, Jakub Staniewski, Filip Stuchala and Konrad Strzelecki
Energies 2024, 17(4), 782; https://doi.org/10.3390/en17040782 - 6 Feb 2024
Cited by 1 | Viewed by 1784
Abstract
This study presents findings on the influence of gap length distance on the lightning impulse breakdown voltage of three dielectric liquids of different chemical origins. The liquids were tested in a model electrode system with a quasi-uniform electric field distribution and a pressboard [...] Read more.
This study presents findings on the influence of gap length distance on the lightning impulse breakdown voltage of three dielectric liquids of different chemical origins. The liquids were tested in a model electrode system with a quasi-uniform electric field distribution and a pressboard plate placed on the grounded electrode. The experimental studies were supported using calculations and simulations to show the individual relationships between the lightning impulse breakdown voltage and gap distance, which represent the so-called volume effect of the most stressed liquid. The results of the experiment, which involved four considered gap distances of 2, 4, 6, and 8 mm, show that a dynamic increase in lightning impulse breakdown voltage with an increase in gap distance is associated with mineral oil and bio-based hydrocarbons. However, similar trends were not observed for synthetic ester. Calculations that allowed us to assess the impact of gap length distance on lightning impulse breakdown voltage support the observations from the experimental studies. The curves obtained in this field can be considered in the process of designing insulating systems for transformers. Full article
(This article belongs to the Special Issue Design and Optimization of Power Transformer Diagnostics II)
Show Figures

Figure 1

14 pages, 3484 KB  
Article
Development of a Wideband Precision Electric Field Measuring Sensor
by Zhaozhi Long, Feng Zhou, Fuchang Lin, Jiawei Fan, Wenting Li, Yinglong Diao and Kangmin Hu
Sensors 2023, 23(23), 9409; https://doi.org/10.3390/s23239409 - 25 Nov 2023
Cited by 7 | Viewed by 2010
Abstract
High-voltage electric field measurement technology has certain applications in electric field measurement of power systems, but due to the limitation of its measurement accuracy and bandwidth, it cannot be used for the measurement of lightning-impulse voltage. In order to calibrate the nonlinearity of [...] Read more.
High-voltage electric field measurement technology has certain applications in electric field measurement of power systems, but due to the limitation of its measurement accuracy and bandwidth, it cannot be used for the measurement of lightning-impulse voltage. In order to calibrate the nonlinearity of the MV-level lightning-impulse voltage measurement system, this paper proposes the design and implementation of a high-precision inductive wideband electric field measuring sensor (EFMS). The influence of the metal shell on the electric field distribution was simulated, and the influence of the electric field non-uniformity coefficient was studied. The characteristics of the EFMS were tested, and the results showed that the EFMS can accurately reproduce the waveform of lightning-impulse voltage and power-frequency voltage, with a proportionality coefficient of 0.05664 V/(kV/m). In mostly uniform and extremely non-uniform fields, the nonlinearity of the EFMS for impulse voltage is less than ±0.25%, and the nonlinearity of the EFMS for power-frequency voltage is less than 0.1%. It is shown that the EFMS can be used for the nonlinearity calibration of ultra-high voltage impulse measurement devices. Full article
Show Figures

Figure 1

18 pages, 10997 KB  
Article
Experimental Study of the Electrical and Physiochemical Properties of Different Types of Crude Palm Oils as Dielectric Insulating Fluids in Transformers
by Pichai Muangpratoom, Chinnapat Suriyasakulpong, Sakda Maneerot, Wanwilai Vittayakorn and Norasage Pattanadech
Sustainability 2023, 15(19), 14269; https://doi.org/10.3390/su151914269 - 27 Sep 2023
Cited by 5 | Viewed by 3452
Abstract
This paper gives information on the electrical and physiochemical characteristics of six different types of palm oil compared with traditional mineral oil. We found that natural processed crude palm oil (PO-C) had a higher resistance to AC breakdown voltage than other types of [...] Read more.
This paper gives information on the electrical and physiochemical characteristics of six different types of palm oil compared with traditional mineral oil. We found that natural processed crude palm oil (PO-C) had a higher resistance to AC breakdown voltage than other types of palm oil, including traditional mineral oil. The results of the positive lightning impulse voltage test for PO-C were still the highest compared to other types of palm oil, including traditional mineral oil, at 58.26%. The summarised dissipation factors of all tested crude palm oils were significantly higher than those of mineral oils, which will make the palm oil less insulating, especially in PO-A palm oil (36.197%), where the values were higher than those of other oils, while mineral oil has a slightly increased dispersion factor. For relative permittivity, all palm oils were compared, and it was found that PO-C had a lower relative permittivity than the other oils. In terms of physical and chemical properties, in the moisture content test on all oils, PO-C had the percentile with the highest moisture content decrease of 58.74%. In the case of testing the surface tension value, it was found that traditional mineral oil had the highest value (48.46 m/Nm) when compared to palm oil. On the other hand, the acidity in traditional mineral oil is the lowest (0.03 mg KOH/g) compared to all palm oils. Results from studies demonstrate the possibility of using natural processed crude palm oil, or PO-C, as a replacement for traditional mineral oil. This is consistent with the results of electrical properties that show PO-C is higher than other types of palm oil and includes traditional mineral oil. Full article
Show Figures

Figure 1

18 pages, 7737 KB  
Article
Inter-Turn Breakdown Fault Analysis and Winding Structure Optimisation of Winding of Dry-Type Transformers in Wind Farms
by Ziheng Pu, Xinyun Yu, Yaoqiang Wang, Hao Liu and Zihao Feng
Energies 2023, 16(4), 2012; https://doi.org/10.3390/en16042012 - 17 Feb 2023
Cited by 4 | Viewed by 3183
Abstract
To address the problem of winding turn-to-turn breakdown faults in 35 kV dry-type transformers in wind farms under overvoltage conditions, this paper establishes a simulation model based on the structural dimensions and material parameters of the transformer windings. The winding distribution parameters were [...] Read more.
To address the problem of winding turn-to-turn breakdown faults in 35 kV dry-type transformers in wind farms under overvoltage conditions, this paper establishes a simulation model based on the structural dimensions and material parameters of the transformer windings. The winding distribution parameters were calculated using the finite element method. The transient processes inside the high-voltage coil were calculated by constructing a multi-conductor transmission line model (MTL) that took into account the influence of the secondary winding. The voltage distribution of the winding was analysed for both lightning shock and extra-fast transient overvoltage conditions. The simulation results show that the maximum overvoltage between turns of the transformer winding under lightning shock is 5.282 kV; the maximum overvoltage between turns of the winding under very fast transient overvoltage is 11.6 kV, which occurs between the first 2–3 layers of the section, close to the insulation breakdown margin. On this basis, the transformer winding structure was optimised and the maximum inter-turn overvoltage after optimisation was 9.104 kV, reducing the likelihood of insulation breakdown by 24.1%. Finally, the accuracy of the winding structure optimisation simulation study was verified by testing the transformer’s impulse voltage before and after optimisation, providing a reference for the stable operation of 35 kV dry-type transformers in wind farm practical applications. Full article
Show Figures

Figure 1

19 pages, 7207 KB  
Article
Improvement of the Electrical Performance of Outdoor Porcelain Insulators by Utilization of a Novel Nano-TiO2 Coating for Application in Railway Electrification Systems
by Pichai Muangpratoom, Issaraporn Khonchaiyaphum and Wanwilai Vittayakorn
Energies 2023, 16(1), 561; https://doi.org/10.3390/en16010561 - 3 Jan 2023
Cited by 2 | Viewed by 3848
Abstract
The present study aimed to develop the electrical performance of outdoor insulators using a nano-TiO2 coating for railway electrification systems. The prototype design of porcelain insulators with normal coatings and using a nano-TiO2 coating is based on IEC 60815-1. The first [...] Read more.
The present study aimed to develop the electrical performance of outdoor insulators using a nano-TiO2 coating for railway electrification systems. The prototype design of porcelain insulators with normal coatings and using a nano-TiO2 coating is based on IEC 60815-1. The first test was performed to measure the low-frequency flashover AC voltage under both dry and wet conditions. In addition, the other test was conducted to measure the lightning impulse critical-flashover voltage at positive and negative polarity under dry-normal and wet-contaminated conditions. X-ray diffraction (X-RD) and Scanning electron microscopy (SEM) were used to examine the micro surface and show that the nano-TiO2 coating was adhered to the surface of the outdoor porcelain insulator and exists in an amorphous state. Additionally, it was observed and discovered that scattered nano-TiO2 strengthens the glassy matrix and creates a sturdy barrier that causes flashover voltage to be reduced under conditions of high dielectric strength. Nanostructured ceramic formulations outperform ordinary porcelain in terms of breakdown voltage strength, particularly for the insulators’ low-frequency flashover performances under dry and wet test conditions. However, a significant change in the lightning impulse critical-flashover voltage characteristics is observed and is not much better when adding the nano-TiO2 coating to the porcelain insulators. Full article
(This article belongs to the Special Issue Testing, Monitoring and Diagnostic of High Voltage Equipment)
Show Figures

Figure 1

25 pages, 11101 KB  
Article
Investigation of Effects of Different High Voltage Types on Dielectric Strength of Insulating Liquids
by Fatih Atalar, Aysel Ersoy and Pawel Rozga
Energies 2022, 15(21), 8116; https://doi.org/10.3390/en15218116 - 31 Oct 2022
Cited by 14 | Viewed by 3177
Abstract
Liquid dielectrics are different from each other, but are used to perform the same tasks in high-voltage electrical equipment, especially transformers. In similar conditions, the insulation performance of transformer oils under different types of voltage will provide dielectric resistance. In this study, three [...] Read more.
Liquid dielectrics are different from each other, but are used to perform the same tasks in high-voltage electrical equipment, especially transformers. In similar conditions, the insulation performance of transformer oils under different types of voltage will provide dielectric resistance. In this study, three different dielectric liquids applied in transformers, namely mineral oil, natural ester and synthetic ester, were tested. Tests under AC and negative DC voltage were performed at electrode gaps of 2.5 mm, 2 mm and 1 mm using disk and VDE type electrodes as per ASTM D1816-84A and ASTM D877-87 standards, respectively. In turn, the impulse voltage tests were performed under an electrode configuration suggested by the IEC 60897 standard. The current data of 500 ms prior to breakdown under AC electrical field stress was decomposed using the empirical mode decomposition (EMD) and variational mode decomposition (VMD) methods. These analyses were conducted before the full electrical breakdown. Although synthetic ester has the highest dielectric strength under AC and negative DC electrical field stress, mineral oil has been assessed to be the most resistant liquid dielectric at lightning impulse voltages. In addition, stabilization of mineral oil under AC and negative DC voltage was also seen to be good with the help of calculated standard deviation values. However, synthetic ester has a significant advantage, especially in terms of dielectric performance, over mineral oil in spite of the stability of mineral oil. This indicates that liquid dielectric selection for transformers must be carried out as a combined evaluation of multiple parameters. Full article
(This article belongs to the Special Issue Design and Optimization of Power Transformer Diagnostics)
Show Figures

Figure 1

13 pages, 4759 KB  
Article
Identification of Lightning Overvoltage in Unmanned Aerial Vehicles
by Tomasz Kossowski and Paweł Szczupak
Energies 2022, 15(18), 6609; https://doi.org/10.3390/en15186609 - 9 Sep 2022
Cited by 6 | Viewed by 2175
Abstract
This paper presents research on the model developed in the Matlab environment for simulating effects of overvoltage in an unmanned aerial vehicle (UAV) upon lightning discharge. They are based on transmittance obtained from voltage surge impulse measured in drone circuits. Overvoltage waveforms were [...] Read more.
This paper presents research on the model developed in the Matlab environment for simulating effects of overvoltage in an unmanned aerial vehicle (UAV) upon lightning discharge. They are based on transmittance obtained from voltage surge impulse measured in drone circuits. Overvoltage waveforms were measured at the input and output of different parts of the machine. It was then possible to calculate the transmittance of those (chosen) circuits. The motors, supply system, communication lines, and sensors were primarily tested. Both positive and negative polarization of the surge pulse were used and compared. The shape of pulse, is standardized by international norms for avionics tests (RTCA DO-160). The special surge generators were used to prepare the same repetition of each pulse (for all measurements). The simplified model of surge pulses propagation in drone circuits was prepared in Matlab. The differential between direct and step-by-step paths of pulse propagation in some connected circuits were also compared. Full article
Show Figures

Figure 1

12 pages, 4346 KB  
Article
Non-Iterative Technique for Determination of Full Lightning Impulse Voltage Parameters
by Peerawut Yutthagowith
Energies 2022, 15(12), 4199; https://doi.org/10.3390/en15124199 - 7 Jun 2022
Cited by 2 | Viewed by 1847
Abstract
This paper introduces an effective and non-iterative technique for the determination of full lightning impulse voltage parameters in high-voltage tests. In the waveform parameter determination, the base curve parameters are determined on the basis of precomputed models that are utilized to correct the [...] Read more.
This paper introduces an effective and non-iterative technique for the determination of full lightning impulse voltage parameters in high-voltage tests. In the waveform parameter determination, the base curve parameters are determined on the basis of precomputed models that are utilized to correct the base curve parameters. Using the data from the cases collected from the standard, the correction factors are computed from the deviation of the parameters which are determined by the proposed and standard recommended method. With the accurate base curve parameters, the waveform parameters can be calculated precisely. Because there is no iterative process in the technique, the proposed method has a simplified computational algorithm and becomes an attractive method. Full article
(This article belongs to the Section F6: High Voltage)
Show Figures

Figure 1

16 pages, 5361 KB  
Article
Design and Performance Tests of a Fault Current-Limiting-Type Tri-Axial HTS Cable Prototype
by Yajun Xia, Yuntao Song, Tao Ma, Jinxing Zheng, Huajun Liu, Fang Liu and Meng Song
Electronics 2022, 11(8), 1242; https://doi.org/10.3390/electronics11081242 - 14 Apr 2022
Cited by 3 | Viewed by 2534
Abstract
Current-limiting superconducting cable uses the quench resistance of superconductor under short-circuit current to improve the short-circuit impedance of the system. In this paper, the design of current-limiting 10 kV three-phase tri-axial superconducting cable is studied. The design methods of cable conductor layer, insulation [...] Read more.
Current-limiting superconducting cable uses the quench resistance of superconductor under short-circuit current to improve the short-circuit impedance of the system. In this paper, the design of current-limiting 10 kV three-phase tri-axial superconducting cable is studied. The design methods of cable conductor layer, insulation layer and current-limiting characteristics are given, and one 5 m-long sample is fabricated for testing. The sample is made of stainless-steel-reinforced yttrium barium copper oxide (YBCO) tape, with an expected rated current of 2.5 kA and rated voltage of 10 kV. The test results show that the designed cable can transmit a maximum AC current of 3.0 kA at 77 K. The cable has passed the power frequency withstand voltage, partial discharge and lightning impulse tests. The current limiting characteristics under the action of DC pulse current show that the cable can quickly quench and produce resistance, and the corresponding equivalent resistance value also changes along with current amplitude and duration. Full article
(This article belongs to the Special Issue Applied Superconductivity in Power Systems)
Show Figures

Figure 1

Back to TopTop